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Abstract The unsteady viscous flow over a shrinking cylinder with mass transfer is studied.

Using a similarity transformation, the unsteady Navier–Stokes equations are reduced to nonlinear

ordinary differential equations. Numerical technique is used to solve these equations for some

values of the parameters involved, namely suction and the unsteadiness parameters. The effects

of these parameters on the velocity and the skin friction coefficient are investigated and graphi-

cally presented. Results indicate that dual solutions exist for a certain range of suction and

unsteadiness parameters.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The study of fluid flow over a stretching cylinder has attracted
the interest of many researchers. It should be mentioned that

the boundary layer flow due to a stretching or shrinking sur-
face is a relevant type of flow appearing in many industrial
and engineering processes. There are several applications in
the engineering processes, for example in polymer and metal-

lurgy industries such as manufacture and extraction of poly-
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mer and rubber sheets, melt-spinning, hot rolling, paper

production, wire drawing and glass-fiber production, etc. In
these situations, the quality of the final product depends to a
great extent on the rate of cooling in process and the process

of stretching/shrinking (Bachok et al., 2012). Another example
of flow toward a shrinking sheet is a rising, shrinking balloon
(Wang, 2008). Wang (1988) investigated the steady flow of an

incompressible viscous fluid outside a stretching hollow cylin-
der in an ambient fluid at rest. This problem was then extended
by Ishak et al. (2008a) by including the suction and injection
effects. It was reported that injection reduces the skin friction

as well as the heat transfer rate at the surface while suction acts
in the opposite manner.

Wang and Ng (2011) obtained similarity solution for flow

due to a stretching cylinder with partial slip condition at the
surface. They found that the slip effect significantly decreases
the magnitude of the fluid velocity and the shear stress. Later,

Wang (2012) solved the problem of a natural convection on a
vertical stretching cylinder. The result obtained is an exact
similarity solution of the Navier–Stokes equations. In a subse-

quent paper, Ishak et al. (2008b) have solved numerically the
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Figure 1 The physical model and coordinate system.
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problem of magnetohydrodynamic flow and heat transfer over
a stretching cylinder. They observed that the heat transfer rate
at the surface decreases with increasing values of the magnetic

parameter, while the magnitude of the skin friction coefficient
increases as the magnetic parameter and the Reynolds number
increase.

Recently, Fang et al. (2011) studied the unsteady viscous
flow over an expanding stretching cylinder which provides an
exact similarity solution to the Navier–Stokes equations. They

indicated that the reversal flows exist due to the expansion of
the cylinder and the flow field is strongly affected by Reynolds
number and the unsteadiness parameter. Later, Fang et al.
(2012) reported the numerical solution of the unsteady viscous

flow on the outside of an expanding or contracting cylinder.
The solution is an exact solution to the unsteady Navier–
Stokes equations.

Compared to a stretching cylinder as mentioned above,
there is a limited contribution to the problem of an unsteady
viscous flow over a shrinking cylinder. The problem of the

steady stagnation point flow of a viscous and incompressible
fluid over a permeable shrinking circular cylinder was solved
numerically by Lok and Pop (2011). They found that up to

three solutions exist for a certain range of the shrinking param-
eter. It is worth mentioning that the flow over a shrinking sheet
was considered by Bhattacharyya et al. (2011), Fang et al.
(2010), Faraz et al. (2011), Ishak et al. (2010), Lok et al.

(2011), Miklavčič and Wang (2006), and Wang (2008), among
others. It seems that Miklavčič and Wang (2006) were the first
to investigate the flow over a shrinking surface. For this flow

configuration, the fluid is stretched toward a slot and the flow
is quite different from the stretching case. It has been shown by
these authors that mass suction is required generally to main-

tain the flow over the shrinking sheet. For this new type of
shrinking flow, it is essentially a backward flow as discussed
by Goldstein (1965). For a backward flow configuration, the

fluid loses any memory of the perturbation introduced by the
leading edge, say the slot. Therefore, the flow induced by a
shrinking surface shows quite distinct physical phenomena
from the forward stretching surface.

It is worth mentioning that the unsteady nature of a wide
range of fluid flows is of practical importance and has received
considerable attention in the past several years. In many appli-

cations, the ideal flow environment around the device is nom-
inally steady, but undesirable unsteady effects arise either due
to self-induction of the body, or due to fluctuations or non-

uniformities in the surrounding fluid. On the other hand, some
devices are required to execute time-dependent motion in order
to perform their basic functions (McCroskey, 1977). The study
of unsteady boundary layers owes its importance to the fact

that all boundary layers, which occur in practice are, in a
sense, unsteady. Unsteady viscous flows have been studied
rather extensively and all the characteristic features of unstea-

dy effects are now more or less familiar to fluid mechanicists.
Stewartson (1960), Stuart (1964), Riley (1975,1990), McCroskey
(1977), Telionis (1981) and Wang (1989) have concisely re-

viewed the main ideas and important contributions on the to-
pic. An improved understanding of unsteady fluid flows and
the application of this knowledge to new design techniques

should provide substantial improvements in performance, reli-
ability, and costs of many fluid dynamic devices.

The aim of the present paper is to investigate the behavior
of the unsteady viscous flow over a shrinking cylinder which
has not been considered before. The effects of suction and
the unsteadiness parameters on the flow field are also investi-
gated. The governing partial differential equations are first re-

duced to nonlinear ordinary differential equations, before
being solved numerically using a shooting method for some
values of the governing parameters.

2. Mathematical formulation

Consider the flow of an unsteady, laminar, viscous and incom-

pressible fluid past a permeable infinite cylinder in shrinking
motion as shown in Fig. 1. The diameter of the cylinder is as-
sumed as a function of time with unsteady radius

aðtÞ ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt
p

. Let u and w be the velocity components in
the r and z directions, respectively.

For incompressible fluids without body force and based on

the axisymmetric flow assumptions, and there is no azimuthal
velocity component, the unsteady Navier–Stokes equations
governing the flow are (Fang et al., 2011,2012;)
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where z and r are the cylindrical polar coordinates measured in

the axial and radial directions, respectively, p is the pressure, m
is the kinematic viscosity, b is the constant of expansion/con-
traction strength, and q is the fluid density. We assume that

the boundary conditions of these equations are

u ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt
p ; w ¼ � 1

a20

4mz
1� bt

at r ¼ aðtÞ

w ¼ 0 as r!1
ð4Þ

where U (<0) is the constant mass transfer (suction) velocity
and a0 is a positive constant.

Using the similarity variables (Fang et al., 2012)

u ¼ � 1

a0

2mffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt
p fðgÞffiffiffi

g
p ; w ¼ 1

a20

4mz
1� bt
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� �2
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; ð5Þ

Eq. (1) is satisfied automatically and since there is no longitu-
dinal pressure gradient, the Navier–Stokes Eq. (3) reduces to

the following ordinary differential equation

gf000 þ f 00 þ ff00 � f0
2 � Sðgf 00 þ f0Þ ¼ 0: ð6Þ



Figure 3 Velocity profiles for different values of c when S= �1.
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The boundary conditions (4) become

fð1Þ ¼ c; f0ð1Þ ¼ �1; f0ð1Þ ¼ 0 ð7Þ

where prime denotes differentiation with respect to g,
c = �a0U/2m > 0 is the dimensionless suction parameter and

S ¼ a20b=4m is the unsteadiness parameter. The pressure can
be obtained from Eq. (2) as

p

q
¼ constþ m

@u

@r
þ u
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� �
� 1

2
u2 þ

Z
@u

@t
dr: ð8Þ

Quantity of interest in this study is the skin friction coefficient
Cf, which is defined as

Cf ¼
sw

qw2
w=2

ð9Þ

where the surface shear stress sw is given by Fang et al. (2012)

as

sw ¼
@w

@r

� �
r¼aðtÞ

¼ 1

a30

8mlz

ð1� btÞ3=2
f 00ð1Þ ð10Þ

with l being the dynamic viscosity. Using variables (5), we get

Cfz=aðtÞ ¼ f 00ð1Þ: ð11Þ
3. Numerical method

Numerical solutions to the ordinary differential Eq. (6) subject

to the boundary conditions (7) were obtained using a shooting
method with the shootlib function in Maple software. This
method is described in detail in the book by Jaluria and

Torrance (2003) and effectively used by several authors in solv-
ing boundary layer flows and heat transfer problem (see Fang
et al. (2011, 2012), Rohni et al. (2012) and Wan Zaimi and

Ishak (2012)). In the shooting method, dual solutions are ob-
tained by setting different initial values for the values of
f 00ð1Þ where all the velocity profiles satisfy the infinity bound-
ary conditions (7) asymptotically but with different shapes.

In the present study, for one particular value of suction
parameter c and the unsteadiness parameter S, two different
velocity profiles were found when considering two different ini-
Figure 2 Variation of the skin friction coefficient with S for

different values of c.

Figure 4 Velocity profiles for different values of S when c = 2.
tial guesses of f 00ð1Þ. As a result, two different shapes of vari-
ations for the skin friction coefficient f 00ð1Þ were obtained as

shown in Fig. 2 while two different shapes of velocity profiles
were presented in Figs. 3 and 4.

In this method we have to choose a suitable finite value of
g1 (where g1 corresponds to g fi1). We run our computa-

tions with the value g1= 8, which is sufficient to achieve
the far field boundary conditions asymptotically for all values
of the parameters considered.

4. Results and discussion

Eq. (6) subjected to the boundary conditions (7) was solved

numerically for some values of suction parameter c and the



Table 1 Comparison of the values of f00ð1Þ with those of Fang

et al. (2011), by setting f0(1) = 1 in the boundary conditions (7),

and taking Re = 1 in Eq. (5) of Fang et al. (2011).

S Fang et al. (2011) Present result

0 �1.17775 �1.17775
�0.5 �1.45646 �1.45645
�0.6 �1.55262
�0.8 �1.77008
�0.9 �1.88947
�1 �2.01502 �2.01501
�1.5 �2.71895
�1.8 �3.19165
�2 �3.52458 �3.52458
�3 �5.37255
�4 �7.48373
�5 �9.82401 �9.82400
�6 �12.37208
�8 �18.03321
�10 �24.37726

Table 2 Comparison of the values of f00ð1Þ with those of Fang

et al. (2012) by setting f0(1) = 0 in the boundary conditions (7).

S Fang et al. (2012) Present result

0 0 0

�0.5 �0.1978 �0.19791
�0.6 �0.26233
�0.8 �0.40968
�1 �0.5791 �0.57912
�1.5 �1.08641
�2 �1.6973 �1.69730
�3 �3.18068
�4 �4.96254
�5 �7.0031 �7.00350
�6 �9.27666
�7 �11.76212
�8 �14.44437
�10 �20.35127
�15 �37.89059
�20 �58.82935

Table 3 The critical values of S, i.e. Sc, for different values of

c.

c Sc

0.1 �1.53088
1 �0.95041
1.5 �0.63580
2 �0.31635
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unsteadiness parameter S. The results obtained are used to car-
ry out a parametric study showing influences of the governing
parameters c and S on the skin friction coefficient as well as the

velocity profiles. Table 1 shows the comparison values of f 00ð1Þ
with those of Fang et al. (2011) for the case of a stretching cyl-
inder by setting f 0(1) = 1 in the boundary conditions (7) and

Re = 1 in Eq. (5) of the paper by Fang et al. (2011). The pres-
ent results were also compared with those obtained by Fang
et al. (2012) by setting f 0(1) = 0 in boundary conditions (7),

for unsteady viscous flow of an expanding or contracting cyl-
inder as presented in Table 2. The comparisons are found to be
in good agreement, thus give confidence to the results for the
shrinking case to be reported subsequently.

Fig. 2 shows the variation of the reduced skin friction or
surface shear stress coefficient f 00ð1Þ as a function of the
unsteadiness parameter S for some values of suction parameter

c. This figure shows the existence of dual solutions, upper and
lower branch solutions, of the similarity Eq. (6) for a particular
value of S and of c. In the following discussion, we classify the
upper and lower branch solutions as how they appear in Fig. 2,

i.e. the upper branch solution has a higher value of f 00ð1Þ than
the lower branch solution. Dual solutions are found to exist
for negative values of S. The duality nature of the solution is

consistent with the results reported by Fang et al. (2009) for
the problem of viscous flow over an unsteady shrinking sheet
with mass transfer. It is seen from Fig. 2 that the magnitude

of f 00ð1Þ increases as the parameter c increases. The opposite
trend is observed for the variation of S, i.e. increasing S is to
decrease the magnitude of the reduced skin friction coefficient
f 00ð1Þ. The increasing value of f 00ð1Þ with increasing c is due to

the suction effect which increases the reduced skin friction or
the surface shear stress coefficient. Fig. 2 shows that the effect
of suction is to widen the range of S for which the solution ex-

ists. Moreover, the solution exists up to the critical values of S,
say Sc. There is one solution at S= Sc, two solutions for
S< Sc and no solution when S> Sc. These critical values

of Sc for different values of c are presented in Table 3, while
the values of f 00ð1Þ for some values of S and c are shown in Ta-
ble 4. In Table 4, the values in parentheses represent the second
solutions.

In order to further understand the effects of the mass suc-
tion and the unsteadiness parameters on the flow over the
shrinking cylinder, two examples of the velocity profiles f 0(g)
are illustrated. Fig. 3 presents the velocity profiles for some
values of c with a fixed value of S. It is seen that the fluid veloc-
ity inside the boundary layer increases as the parameter c in-

creases. This observation occurs because suction effect
produces an increase in the skin friction coefficient. For the
first solution, the boundary layer thickness decreases as c in-

creases. This is because the velocity penetration into the fluid
becomes shorter as the mass suction parameter increases.
The opposite trend is observed for the second solution, where
the velocity penetrates deeper with the increase of mass suction

parameter. This finding is in accordance with the results re-
ported by Fang et al. (2009). Both first and second solutions
satisfy the far field boundary conditions asymptotically. From

Fig. 3, one can see that the velocity profiles for the first solu-
tion have positive velocity gradients, and those of the second
solution have negative velocity gradients at the surface which

are consistent with the results presented in Fig. 2. The varia-
tion of the reduced skin friction coefficient is significantly influ-
enced by the effect of suction at the boundary which increases/

decreases the boundary layer thickness.
Fig. 4 depicts the velocity profiles f 0(g) for some values of S

with a fixed value of c. This figure shows the existence of two
different velocity profiles. It is found that the velocity bound-

ary layer thickness decreases as S decreases which implies the
increase in the velocity gradient, in consequence of increases
in the values of jf 00ð1Þj. It is evident from this figure that the



Table 4 Values of the reduced skin friction coefficient f00ð1Þ for different values of c and S.

c S= �4 S= �3.5 S= �3 S= �2.5 S= �2
0.1 3.8407 (�24.8822) 3.2990 (�17.4731) 2.7397 (�11.4552) 2.1466 (�6.7149) 1.4682 (�3.1029)
1 4.7879 (�34.6866) 4.2610 (�25.3598) 3.7255 (�17.5991) 3.1761 (�11.3068) 2.6012 (�6.3803)
1.5 5.3076 (�41.1007) 4.7857 (�30.5988) 4.2577 (�21.7554) 3.7205 (�14.4770) 3.1677 (�8.6689)
2 5.8240 (�48.2617) 5.3059 (�36.5066) 4.7833 (�26.4997) 4.2543 (�18.1503) 3.7150 (�11.3681)

Unsteady viscous flow over a shrinking cylinder 147
velocity gradient shows positive gradient for the first solution,
and satisfies the far field boundary condition (7). In contrast,
for the second solution, negative velocity gradient near the sur-

face is initially shown and the velocity increases steadily with
positive velocity gradient to reach the far field boundary con-
dition (7) asymptotically. It is also found that the velocity of
the fluid is damped faster as the magnitude of the unsteadiness

parameter increases for the second solution. These observa-
tions are again consistent with the results reported by Fang
et al. (2009). It is worth highlighting at this end that, the sta-

bility analysis of multiple solutions for some viscous and por-
ous media problems has been done in several studies (Merkin,
1985; Weidman et al., 2006; Paullet and Weidman (2007);

Harris et al., 2009; and Postelnicu and Pop, 2011), and it
was shown in those papers that only the first (upper branch)
solution is stable and physically realizable in practice, while
the second (lower branch) solution is not. We will, however,

not repeat this analysis here.

5. Conclusion

The problem of unsteady viscous flow over a permeable
shrinking cylinder was solved numerically using the shooting
method. The effect of suction and unsteadiness parameters

on the flow velocity and the skin friction coefficient have been
analyzed and presented graphically. Some conclusions can be
drawn from this study:

� The present problem admits dual solutions.
� The magnitude of the skin friction coefficient increases as

the suction parameter increases.
� The magnitude of the skin friction coefficient decreases with
the increasing of the unsteadiness parameter.
� The flow velocity and the skin friction coefficient are clearly

influenced by the suction and the unsteadiness parameters.
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