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A system of Microring Resonator (MRR) based the comb-like sensor devices has been simulated. We pre-
sent a Silicon-On-Insulator (SOI) ring resonator based on refractive index sensor. The novelty of the archi-
tecture lies in the capability to sense the shifts of multiple peaks simultaneously with an MRR waveguide.
The behavior of optical MRRs, especially when functioning as refractive index sensors, is studied.
Resonant wavelength, i.e. the wavelength at which the transmission spectrum exhibits a dip (peak)
depends on the geometrical characteristics of the circular waveguide and the effective refractive index
of the propagating mode. The previous studies have shown that the depth and vertical symmetry of bur-
ied waveguides are noticeably affected by the field perturbation. One of cost effective and low loss meth-
ods can be the technology known as ion-exchange which uses the glass substrates and the AgNO3/NaNO3

salt-melt at different temperatures and duration can be deposited on the glass substrates. Afterward, an
MRR was designed on the glass substrates, where the effect of the carbon dioxide (CO2), Dihydrogen oxide
(H2O), and sodium chloride (NaCl) as the cladding on the ion-exchange waveguide studied. Within the
compare of the resonance in drop port and throughput port, it can understand that they roughly have
the same distance of wavelength in the resonance. H2O is one of the materials showing higher Qfactor

and FSR while it was in drop port also in throughput CO2 was the highest in these parameters.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Generally, the refractive index (RI) sensitivity of an ion-
exchange waveguide channel is primary determined by the clad-
ding mode due to its sensitiveness to the surrounding medium
(Chen, 1983; West, 2005). Therefore, to comprehensively investi-
gate the response of the modal interferometers to the external
medium, the stimulation of cladding modes as much as possible
in the ion-exchange waveguide can be useful (Tou, 2014;
Stegeman and Stolen, 1989). It is difficult to obtain sufficient lower
order and higher order cladding modes simultaneously. Therefore,
ion-exchanged optical microring resonator (MRR) waveguide can
be considered as the sensing head (Brandenburg et al., 1992;
Sharma et al., 2015). Sodium Chloride (NaCl), as Rock salt is uni-
formly transparent from 0.2 lm in the ultraviolet to 12 lm in the
infrared (Pisareva et al., 2004; Coblentz, 1920). In the region of
15 lm the absorption increases rapidly. Rock salt in moderately
thin pieces expected to transmit several percents of the light up
to wavelengths as long as 26.0 lm. However, a plate 1 cm in thick-
ness is completely opaque to radiation of wavelengths greater than
20 lm (Miles andWallace, 2006). Rock salt has long been a favorite
material for infrared spectroscopy (Chen et al., 2016). It polishes
easily and, although hygroscopic, protected by evaporated plastic
coatings. It shows excellent dispersion over its entire transmission
range (Pfund, 1930). However, it is difficult to obtain natural rock
salt crystals of sufficient size and purity for making optical compo-
nents (Levy, 1983). Measurement of the refractive index of NaCl
dates back to 1871 when Stefan (Stefan, 1871) determined the
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Fig. 1. Schematic of MRR.
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refractive indices. Since then, a large amount of data in the trans-
parent region has been contributed by a number of investigators,
among them are Martens (Martens, 1901), and Langley (Langley
and Abbot, 1900). They used either the deviation method or inter-
ferometry in their experiments. It was not until 1929 that mea-
surements carried out beyond the transparent region.

Measurements the refractive indices of carbon dioxide (CO2) are
relatively old especially in the visible spectrum range (Sengers
et al., 1971; Watson, 1954; Tempelmeyer and Mills, 1968). The
fabry-pérot interferometry is a most efficient device to measure
the refractive index of CO2 (Wilson et al., 2007; Georgieva et al.,
2008). It has more accurate and reliable results when compared
to other used methods such as extrapolation of dispersion formu-
lae (Bideau-Mehu et al., 1973; Medenbach et al., 2001;
Ramaswamy, 1936). Variety applications of optical properties of
water have attracted many researchers, where the applications of
computing radiation transport, development of optical remote
sensing instruments, computing the optical properties of plant
leaves, and optical properties of aqueous are performed (Hale
and Querry, 1973; Djurišić and Stanić, 1999; Querry, 1972; Silva
et al., 2012). The literature on the optical properties of water in
the wavelength region of 0.2–200-lm is presented in Irvine and
Pollack (1968). Currently, the optical interference filter is used to
determination the complex refractive index of thin films (Turner-
Valle, 1998; Gao et al., 2012). These devices are very sensitive
and accurate because very minor changes in the refractive index
cause significant changes in the filter spectral response. The depo-
sition process of the thin films will affect and vary the refractive
indices. Estimations of the refractive indices of single-layer materi-
als with aid of simple analysis of the optical dispersion and optical
transmittance can be performed easily (Denton et al., 1972;
Paulick, 1986; Chambouleyron et al., 1997).

Material science and technology has been the key technology
been and involved in various applications, especially, in nanotech-
nology, where the new technique and material have used for many
types of research and applications. One of the techniques is the
ion-exchange method that has been widely used for nano material
improvement. Generally, the refractive index (RI) sensitivity of an
ion-exchange waveguide channel can be detected by the cladding
modes. A comprehensive study of the response of a modal interfer-
ometer to the external medium can be performed using cladding
modes in the waveguide fabricated by the ion-exchange tech-
niques. It is difficult to obtain sufficient lower order and higher
order cladding modes simultaneously. Therefore, ion-exchange
optical MRR waveguide can be the sensing head. The searching of
new suitable devices is continued; we have found that the use of
MRRs can offer this requirement. Apparently, MRR has shown the
very interesting aspects of applications, where there are many
forms of them can be available for the embedded devices within
the large system, where finally, the large system can be redundant,
while the transmission ability is increased. The aesthetic properties
of ion-exchange glass were known to Egyptians of the 6th century,
who used the process to color glazed earthenware (Righini, 1994),
and the technique is also known to have been applied to the stain-
ing of window glass in the middle ages. The ion-exchange as an
engineering process originally used to improve the surface
mechanical properties of structural glass (Schulze, 1913; Kistler,
1962; Zijlstra and Burggraaf, 1968).

An excellent derivation of the diffusion equation for binary ion-
exchange is provided in Albert and Lit (1990), using silver as the in-
diffusing ion and sodium as the out-diffusing ion. An additional
application of ion-exchange in the glass is the production of
diffractive optical elements. Such structures are becoming increas-
ingly important in the fields of optical interconnection and switch-
ing, and beam shaping and focusing. Due to the lateral diffusion
that occurs during ion-exchange, continuously varying refractive
index profiles can be obtained using a binary mask (Saarikoski
et al., 1997). An optical sensor within the constructor of MRR by
the ion-exchange technique presented for sensing applications.
Three types of material CO2, Dihydrogen oxide (H2O) and NaCl
were used for the characterization of the sensor in MRR with the
ion-exchange Method. Sensors based on ion-exchange MRRs show
a high grade of flexibility to operate in different wavelength win-
dows. The MRRs featuring high-quality factors (Q factor) are par-
ticularly attractive for RI sensing (Teeka et al., 2011; Amiri et al.,
2015a). In the RI sensing systems, the RI change is typically quan-
tified by the transmission spectrum shift of the transducer as pre-
sented in various photonics applications including MRRs (Jin et al.,
2011; Kim and Yu, 2016; Alavi et al., 2014a,b), waveguide Bragg
gratings (Klimov et al., 2015; Zou et al., 2016), and Mach–Zehnder
interferometer (Jiang et al., 2014; Chalyan et al., 2016). A High-Q
MRRs result in very narrow resonance peaks thus comes with small
detection limit, where the sensitivity of an MRR is immune to the
light-matter interaction length (Jiang et al., 2013). The sensitivity
measurement range is limited by the free spectral range (FSR) of
the sensing MRR. Reducing the MRR radius causes an increase of
the FSR. However, this could result in a lower Qfactor due to the
higher radiation loss.

2. Principle and design

Fig. 1 shows the system of an add-drop MRR system.The optical
transfer function at through port and drop port of the add-drop
resonating filter for lossless coupling (c ¼ 0) can be expressed as
(Alavi et al., 2014c; Amiri et al., 2014, 2015b),
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where jEt j2 and jEdj2 are the output intensities of the throughput
and drop ports, respectively (Amiri et al., 2014; Soltanian et al.,
2015). Here, f ¼ e

�a
2 Lad�iknLad is transform parameter (Bahadoran
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(n = 1,2) for each coupling point of the add-drop
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system, j1 and j2 are the coupling coefficients, Lad ¼ 2pRad, shows
the optical length of the add-drop system (Amiri et al., 2014; Amiri
and Ali, 2014). The optical transfer function of the add/drop system
for lossless coupling (c ¼ 0) is expressed by Eqs. (3) and (4) Amiri
et al., 2015c,d; Amiri and Ali, 2014.
Fig. 2. The configurations of ion-exchange.
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Fig. 3. MRR structure that is simulated, the cladding layer can be varying between
CO2, H2O and NaCl.

Table 2
Ion-exchange parameters used in the simulation.

Glass properties

Na concentration (moles/m3) 500
Ag diffusion coefficient (m2/s) 2E�16
Ratio of diffusion coefficient of Ag/Na 0.186
Correlation factor 0.51
Substrate thickness (mm) 0.0005
Process parameters
Temperature (K) 313
Step duration (s) 1800
Ag surface concentration from melt 1
Calculations
Grid period (m) 1.333333E�07
Time interval (s) 5
jEdj2
jEoutj2

¼ S21S
2
2x

1þ C2
1C

2
2x2 � 2xC1 � C2 cosðknLadÞ

ð4Þ

The iterative method was used in order to achieve resonating
results for MRR. The optical path for the add-drop systemwas fixed
to 25 lm. The simulation parameters of the MRR is presented in
Table 1.

As illustrated in Fig. 2, molten Ag+ salt is exchanged with Na+

ions in glass in a thermal environment ion-exchange process can
be done in some steps, which is Aluminiummasked glass substrate
is submersed into the molten salt to perform the ion-exchange
between the ions of Ag+ and Na+ (Fig. 2). The channel can be
formed in the substrate by the diffusion of the ions so that the resi-
due salt on the substrate can be removed in case of cleaning. At the
end, by using wet etching process the Aluminium mask can be
cleaned. The schematic of the MRR waveguide which is simulated
by ion- exchange illustrated in Fig. 3. Within the consideration of
different cladding layer, the waveguide can sense the changes in
the refractive indexes of a different material which is CO2, H2O,
and NaCl as a cladding material. A numerical method is used to
simulate the ion-exchange waveguide. The Finite Difference
Method (FDM) is used to simulate the ion-exchange process. The
parameters of the glass substrate and Ions are used in the simula-
tion and listed in Table 2. Using a glass substrate, and exposing the
AgNO3/NaNO3 salt-melt in 313k for 30 min, the process can be
completed.

Fig. 4 shows the junction depth for different ionic concentra-
tions, where the Ag+ surface concentration varies from 0.2 until
0.8 moles/m3. The junction became shallower and shorter with
respect to increase of Ag+ ionic concentration. If the Ag+ surface
concentration is 0.8 moles/m3, the waveguide has a dimension of
0.18 lm deep and 0.4 lm wide. The channel depth of 0.18 lmwas
obtained and used in numerical method simulation.

The ion-exchange process was performed by using a SiO2 as
substrate by melting down the AgNO3 and NaNO3 salt in 350 K
temperature that caused different concentration from 0.2 till
0.8 moles/m which in this work we consider using of 0.8 models/
m3 of the Ag to fulfill the 0.18 lm of the channel’s height. Different
cladding on the ion-exchange waveguide can make a lot of differ-
ences in shifting the optical spectrum in the MRR. This can be a
good sense to make this waveguide as a sensor for such a material,
NaCl, CO2, and water have been chosen for this simulation to study
the effect of them on the buried waveguide.
Table 1
Parameters used in simulation of
MRR.

Parameters Value (lm)

Channel width 0.4
Gap 0.1
Height 0.18
Total Length 25
Radius 3.1

Fig. 4. Calculation of silver ion concentration distribution using FDM.
3. Results and discussion

The refractive indices that have been used in this simulation
have been listed in Table 3. By the consideration of cladding mate-
rial, it has been observed that the effect of loss power would be dif-
ferent, in drop port CO2 has less power in compare with other
material though in throughput it has been shown that this material



Fig. 6. Drop port power transmission in 3 different materials.

Fig. 7. Throughput port transmission in 3 different materials as cladding.

Table 3
The refractive indexes used in this simulation.

Material n K References

NaCl (Sodium chloride) 1.5280 – Li (1976)
Water (H2O) at 25 �C 1.3180 0.000098625 Hale and Querry

(1973)
CO2 (Carbon dioxide) 1.0004382 – Bideau-Mehu

et al. (1973)
SiO2 1.4657 – Gao et al. (2012)
Ion-exchange channel

Refractive index
3.444 – Ariannejad et al.

(2014)
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has the highest power. In NaCl has shown the different trend that
in drop port it was higher than the other material though in
throughput it had less power. The power for H2O was almost in
the middle of other two materials. Fig. 5 illustrated the power in
drop port and throughput port within different cladding materials.
Within changing the material as upper cladding and interact with
the light that is passing through the waveguide the cladding can
cause the change of the parameters of the light spectrum within
the construction of MRR as the optical waveguide. In the drop port
optical spectrum has been illustrated in Fig. 6, by considering H2O
as a reference the NaCl has a left shift within 8.68 nm also CO2 has
red shift within 21.23 nm that can cause different resonance which
can be useful in case of refractive index sensor. In the through port,
optical spectrum has been illustrated in Fig. 7, by considering H2O
as a reference as before in drop port, the NaCl has a left shift within
8.62 nm also CO2 has red shift within 21.17 nm that can cause dif-
ferent resonance which can be useful in case of refractive index
sensor. Within the compare of the resonance in drop port and
throughput port, it can understand that they roughly have the
same distance of wavelength in the resonance. Throughput port
transmission within center wavelength is 1.55 lm that used in this
simulation. The higher Q-factor was the CO2, 0.6 � 103 and the
lower one was NaCl. The higher frequency in THz is generated
was belong to the NaCl, also CO2 has higher Finesse though NaCl
has less finesse as it shown in Table 4. Drop port transmission
within center wavelength is 1.55 lm that used in this simulation.
Within the understanding of good applications for higher Qfactor,
in drop port H2O showing higher though NaCl has lower Qfactor

and finesse. FSR also is a key in communication applications and
in here again H2O has higher FSR although CO2 has the low value
in this case. The high Q-factor in different cladding material simu-
lated can be beneficial for channel drop filters, lasers, sensors, and
other applications.

Tables 4 and 5 show the detail of the throughput and drop port
transmission spectrum.
Fig. 5. (a) Drop port power in CO2, H2O, and NaCl, (b
4. Conclusion

MRR has been widely investigated and used in many applica-
tions, where there are many forms of MRR can be adapted and
employed (Tanaram et al., 2011; Amiri et al., 2014, 2015e). MRR
can be fabricated and formed the small-scale devices that can
replace the large scale fiber optic system, while the channel capac-
ity is increased, moreover, the capacity expansion can also avail-
able (Alavi et al., 2016, 2015). Using the Finite Difference Method
(FDM), the ion-exchange process in an optical waveguide was
) Throughput port power in CO2, H2O, and NaCl.



Table 4
Throughput port calculation of FSR, FWHM, Qfactor, Finesse, Df (THZ) within different cladding material in MRR structure.

Cladding material FSR (nm) FWHM (nm) Qfactor Finesse Df (THZ)

H2O 39 5.92 0.262 � 103 6.58 4.87
CO2 38 2.57 0.6 � 103 14.78 4.74
NaCl 40 6.26 0.25 � 103 6.39 5

Table 5
Drop Port calculation of FSR, FWHM, Qfactor, Finesse, Df (THZ) within different cladding material in MRR structure.

Cladding material FSR (nm) FWHM (nm) Qfactor Finesse Df (THZ)

H2O 39 1.43 1.08 � 103 27.27 4.87
CO2 38 2.91 0.53 � 103 13.05 4.74
NaCl 40 6.06 0.256 � 103 6.6 5
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simulated to design an MRR. In the simulation, different Ag+ ionic
concentrations were deposited on glass substrates. Subsequently,
an MRR waveguide based on glass substrates was designed, where
the effect of different cladding material has been studied. Our sub-
sequent work will be on the fabrication and characterization of the
ion-exchange based MRR on glass substrates. In the cladding, CO2

and NaCl show the different powers due to the drop port and
throughput power. Within the compare of the resonance in drop
port and throughput port it can be understanding that they
roughly have the same distance of wavelength in the resonance.
The MRR waveguide can be tunable within different materials,
compact THz emitters, on-chip integrated spectrometers, which
inspire a broader use of THz sources and motivate many important
potential THz applications in different fields. H2O is one of the
materials showing higher Qfactor and FSR at the drop port resonance
wavelengths, where at the throughput, CO2 is dominant. Within
the compare of the resonance in drop port and throughput port,
it can understand that they roughly have the same distance of
wavelength in the resonance. H2O is one of the materials showing
higher Qfactor and FSR while it was in drop port also in throughput
CO2 was the highest in these parameters.
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