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The technology, which plays a significant role in our lives, has made it possible for many of the appliances
and gadgets we use on a daily basis to be monitored and controlled remotely. Health and fitness data is
collected by wearable devices attached to patients’ bodies. A number of parties could benefit from this
technology, including doctors, insurers, and health providers. This technology, including smartwatches,
smart ring, smart cloth wristbands, and GPS shoes, is frequently used for fitness and wellness since it
allows users to track their day-to-day health. Devices that compute the sleep characteristics by storing
sleep movements fall within the category of wearables worn on the wrist. In order to lead a healthy life-
style, sleep is crucial. Inadequate sleep can harm one’s physical, mental, and emotional well-being and
increase the risk of developing a number of ailments, including stress, heart disease, high blood pressure,
insulin resistance, and other conditions. Deep learning (DL) models have recently been used to forecast
sleep-quality based on wearables information from the awake hours. Deep learning has been demon-
strated to be capable of predicting sleep efficiency based onwearable data obtained during awake periods.
In this regard, this study creates a novel deep learning model for wearables-enabled smart health moni-
toring system (DLM-WESHMS) for the prediction of sleep quality. The wearables are initially able to collect
data linked to sleep-activity using the described DLM-WESHMS approach. The data is then put through
pre-processing to create a standard format. Using the DLM-WESHMS, sleep quality is predicted using
the deep belief network (DBN) model. The DBN model uses the auto-encoders algorithm (AEA) to predict
popularity, which improves the accuracy of its predictions of sleep quality. The experimental outcomes of
the DLM-WESHMS approach are investigated using several metrics. The DLM-WESHMS model performs
significantly better than other models, according to a thorough comparison analysis.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction organs, specially the mind. Human sleep and wake cycles are con-
Sleep performs a crucial function in helping the frame to relax-
ation, regenerate, and repair power for correct performance of the
trolled by biological clocks in the brain, which maintain a balance
between sleep and wakefulness (Pardamean et al., 2022). Higher
sleep will become an important a part of a healthful individual
and helps in enhancing all body capabilities and intellectual states.
It is possible to suffer from a wide range of fitness complications if
you do not get enough sleep (Strine and Chapman, 2005, Colten
and Altevogt, 2006), including insulin resistance (Knutson et al.,
2006; Nilsson et al., 2004), high blood pressure (Palagini et al.,
2013), cardiovascular complications (Kasasbeh et al., 2006;
Meier-Ewert et al., 2004, compromised immune or metabolic sys-
tem (Cohen et al., 2009; Opp and Toth, 2003) temper problems
(Peterman et al., 2015; Murphy and Peterson, 2015), and decreased
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ability to reminisce and. Among many factors that indicate sleep
quality, sleep performance is one of the most important. It is a
measure of how much sleep you get, how long it takes to fall
asleep, and how long you are asleep even when you are woken
up. The performance of sleep may be adversely affected by poor
sleep quality, which is linked to conditions such as diabetes and
obesity. Adolescent health has also been associated with sleep pat-
terns (Arora and Taheri, 2015; Paruthi et al., 2016). Physical pas-
time can directly affect sleep quality and performance, according
to the latest systematic critiques (Kredlow et al., 2015;
Chennaoui et al, 2015). There is a strong and complex correlation
between bodily activities and sleep, even though it can’t be fully
understood. As a result, there is a greater prevalence of lifestyle
diseases including type 2 diabetes mellitus and obesity (Kredlow
et al., 2015; Chennaoui et al., 2015). Sleep and bodily activities
are associated with different mechanisms, but the exact explana-
tion is still unknown. The negative consequences of sleep depriva-
tion are significantly more severe when there is a poor quality of
sleep or when decreased sleeping hours occur on a daily basis,
rather than as a one-time occurrence (Phan et al., 2020). The
polysomnogram (PSG) is the gold standard for sleep size, requiring
a sleep technician, sleep lab, and examination of numerous physi-
ological variables. As a result, polysomnography has become typi-
cally restricted to the evaluation of sleep across numerous nights
(Sadeghi et al., 2019). In addition to people who suspect they have
sleep problems, longitudinal sleep measurements, particularly
those that are ambulatory and longitudinal, may also help employ-
ees who are at high risk (such as transportation workers) as well as
healthy individuals who want to perform better and stay fit
through better sleep (Shen et al., 2022). It is estimated that 30%
of the population experiences sleep disturbances, according to
the National Institutes of Health (NIH). 10% of persons with a diag-
nosis of insomnia experience both sleep disturbance and daytime
problem (Ramachandran and Karuppiah, 2021). Sleep deprivation
contributes to depression, obesity, insomnia, diabetes, hyperten-
sion, acute myocardial infarction, and atherosclerosis, as well as
depression and obesity. It is also possible that physical activity
can have health-related benefits (nicely-being, effectiveness, and
a better quality of sleep) (Palotti et al., 2019). Exercise regimens
are a beneficial function for people who do not get enough or
enough sleep. Physical sports are thought to be a non-
pharmacological treatment for insomnia that is easily accessible.
However, the most useful confined research were conducted on
how physical exercise improves sleep quality, from both an evalu-
ation and a prediction standpoint. (Akhtar et al., 2022; Liang and
Chapa-Martell, 2021). Many studies have recently become avail-
able establishing sleep excellent as a crucial component for sleep
satisfying assessment using various technologies (Gashi et al.,
2022). Studies are being undertaken to determine whether sleep
health and environmental characteristics like pollution, mental
health, and physical fitness are associated, or whether forecasting
sleep quality is possible. Data acquired from wearable devices is
currently being used in a number of deep learning algorithms to
anticipate sleep quality (Sadeghi et al., 2020). The study analyzed
wakeful interval wearable records to predict good sleep or unfa-
vorable sleep performance using six neural networks. Furthermore,
this paper indicates the utility of DL in anticipating the quality of
sleep. The assessment conclusions of the study methodologies
include effective applications in e-health solutions for sleep, partic-
ularly with CNN achieving the best results (Bahrami and
Forouzanfar, 2022), as well as using wearable devices to extract
projections.

For a wearables-enabled smart health monitoring system
(DLM-WESHMS) model, this study creates a brand-new, innovative
deep learning model. The wearables can initially collect data linked
to sleep-activity using the DLM-WESHMS technique that is being
2

demonstrated. To format the data uniformly, data pre-processing
is then carried out. The DLM-WESHMS model predicts sleep qual-
ity using a deep belief network (DBN) model. The DBN model uses
the auto-encoders algorithm (AEA) to forecast popularity, which
boosts the precision of its predictions of sleep quality. This
improves the performance of the DBNmodel’s sleep quality predic-
tion capabilities (Hamza et al., 2023). Several metrics are used to
analyze the experimental results of the DLM-WESHMS technique.
The following are, in brief, the paper’s main contributions:

� AEA algorithm is combined with pre-processing, sleep quality
prediction based on DBN, and an intelligent DLM-WESHMS
technique. DBN-based sleep quality prediction, and an AEA
algorithm are all components of an intelligent DLM-WESHMS
technique that is given. As far as we are aware, the DLM-
WESHMS model has never been discussed in the literature;
� Autoencoders are designed to take in data and turn it into a dif-
ferent representation. Autoencoders are utilized in a variety of
applications, including pharmaceutical discovery, popularity
prediction, and image processing.
� DLM-WESHMS model predicts unobserved data more accu-
rately when cross-validated and optimized using the AEA
algorithm.

2. Related work

By utilizing DL techniques, (Arora et al., 2020, 2022) goal is to
forecast sleep quality from wearable sensors. Three sleep markers
were modeled so they could be calculated using the information
automatically gathered via wearable technology. These sleep
markers include sleep regularity, daily and weekly sleep quality.
The developed metrics led to the use of DL approaches such as
the multilayer perceptron (MLP) and CNN to forecast sleep quality.
A reasonably priced wearable multisensor device to gather the
subject’s cardiorespiratory signal. Throughout the feature extrac-
tion procedure, three additional features were created. Following
that, to forecast the four sleep classes, the authors developed a
bidirectional RNN structure that uses LSTM (BLSTM). A novel
method for identifying apnea (stop in breathing) from ECG data
obtained by wearable technology is presented by (John et al.,
2021). (Hidayat et al., 2018). To better utilize these data, a simple
K-NN technique is implemented for pre-processing data and
machine learning methods to project changes in sleep quality
according to the amount of physical activity he or she is perform-
ing. This methodology faces a problem in predicting variations in
five clinically recognized indicators of sleep quality using informa-
tion generated by current consumer-grade wrist wearable technol-
ogy. (Khoa et al.,2022; Paricherla et al., 2022) used multi-modal
data from wearables and federated multiple CNNs (FedMCRNNs)
to predict sleep quality in their study. The efficiency of FedMCRNN
in many-to-many and many-to-one scenarios is calculated by the
authors using a number of measures, and they compare it to tradi-
tional ML methods. By applying adaptive neuro-fuzzy inference
systems (Arora et al., 2022) Research focusing on how smart-
phones and wearables (ANFISs) can be used to assess sleep quality
and health. A user’s smartwatch can collect real-time sleep data
and physical activity information. For the purpose of gathering
data about smartphone usage in real-time, a smartphone applica-
tion can be created. A sleep quality indicator (SleepQual) is used
to estimate daily sleep quality using sleep attributes obtained from
smartwatches. Using Pearson’s correlation, the link between
smartphone usage and physical activity and SleepQual was evalu-
ated. Deep-ACTINet is a wrist actigraphy-based end-to-end DL
structure introduced by (Cho et al., 2019) In order to automate
the detection of sleep-wake activity, the raw activity signals
recorded during sleep must be noise-canceled and do not involve
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any feature engineering. Four feature-engineering-related ML
strategies and two conventional fixed sleep-wake score approaches
were compared to the modelled Deep-ACTINet. Although ML and
DL algorithms for predicting sleep quality are available, it is still
necessary to improve the predictive outputs. The number of DL
model parameters rises as a result of the constant deepening of
DL models, leading to model overfitting. The effectiveness of the
CNN model is simultaneously significantly impacted by a variety
of hyperparameters. It is highly recommended to take hyperpa-
rameters like batch size, epoch count, and learning rate selection
into consideration when determining a top-notch result. Due to
hyperparameter tuning’s time-consuming and inaccurate nature,
metaheuristic algorithms can replace trial and error (Al
Duhayyim et al., 2022). Consequently, in this study, we use the
AEA algorithm to choose the DBN model’s parameters.
3. Proposed model

For evaluating sleep quality in a connected healthcare setting,
this study developed a novel DLM-WESHMS algorithm. The wear-
ables are initially able to collect data linked to sleep-activity using
the described DLM-WESHMS approach. The data is then put
through pre-processing to create a standard format. Additionally,
the DLM-WESHMS technique uses the AEA algorithm and DBN
model to predict sleep quality. The general operating process of
the DLM-WESHMS system is depicted in Fig. 1. Here you can see
how the suggested model is fed training data as input. A pre-
processing step is performed on the data before it can be used
for prediction using this model. The suggested model then uses
the DBN model to forecast the quality of the sleep, and the AEG
algorithm can select the hyperparameters of this model in the best
way possible.
Input 

Training 

Data Set

Data Preprocessing
Sl

Enh

Accura

F-Sco

Fig. 1. Overall DLM-WESHMS tec
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3.1. Data pre processing

The DLM-WESHMS approach employs data pre-processing at
the preliminary stage. Smartwatch data did not disclose sleep
onset latency (the time necessary to stop sleeping after coming
to bed). This measure includes the sleep onset delay and includes
all the minutes spent waking up. Therefore, half of the waking time
indicates a sleep start delay in this study. It makes sense to expect
a sleep onset latency of 20 min if a watch records a waking time of
40 min.

3.2. DBN prediction of sleep quality

In this paper, the Deep Belief Network is used to extract sleep
quality features for the purpose of identifying key sleep quality
characteristics within a cross-sectional study. The %top level of
the model handles pre-processing tasks, and the relevant data is
then input into the DBN model. The DBN model utilizes the
abstract features learned and obtained from training in the lower
layers as input, and predicts sleep quality based on those features.
Additionally, the DBN model undergoes a fine-tuning process to
optimize its parameters. This fine-tuning step helps in further
refining the model’s ability to accurately predict sleep quality
features.

Using DBN, a learned dataset can be represented in a highly
hierarchical fashion using a multi-layer probabilistic generative
model. DBN is composed of many RBM layers, with categorization
added on the topmost layer (Almanaseer et al., 2021). DBN is
swiftly trained by using a greedy layer-wise unsupervised training
technique to train multiple RBM. The network parameters are fine-
tuned using supervised learning after network pre-training to pro-
duce the best classification results. The RBM mechanism attaches
only the visible-invisible layer to the hidden-hidden layer, leaving
eep Quality Predic�on Process using 
Deep Belief Network Model

Parameter Turning Process using 
anced Seagull Op�miza�on Algorithm

cy Precision Recall

re AnalysisG-Measure

hnique operating procedure.
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the visible-hidden layer detached. Topic modeling, collaborative
filtering, and feature extraction are the most common applications
of RBM. A RBM contains hidden and visible Bernoulli random val-
ues, as well as sample datasets that map m-dimensional input
spaces into n-dimensional output spaces, where n < m. The RBM
is an energy-based generative model that consists of a layer of vis-
ible nodes (v1, v2. . ... . .vi....vm) that represent the data and a layer of
hidden nodes (h1, h2, hj, hn) that learn to characterize features, with
every vi 2{0,1} and hj 22 {0,1}. The bias of the visible node is then
determined to be (b1, b2...bi...bm), whereas the bias of the hidden
node is determined to be (c1, c2...cj...cn). The following expression
[41] can be used to define the energy function E (v, h) of a joint con-
figuration (v, h).

E v ;hð Þ ¼ �
Xm
i¼1

bjvj�
Xn
j¼1

cjhj�
Xn

j¼1

Xm
i¼1

vjwijhj ð1Þ

Here is an example of how the joint probability distribution for
hidden and visible units can be constructed using the energy func-
tion (v, h):

P v; hð Þ ¼ 1
Z
expð�E v ;hð ÞÞ ð2Þ

Z represents the partition function that can be summed up
across each pair of hidden and visible units in Eq. (2).

Z ¼
X
v

X
h

expð�E v ;hð ÞÞ ð3Þ

The chance assigned to the v visible unit can be obtained by
adding up all possible binary hidden vectors h in the manners
described below:

P vð Þ ¼
X
b

p v ;nð Þ ¼ 1
Z

X
h
Exp �Eðv;hð ÞÞ ð4Þ

The hidden unit (HU) is a visible unit that is independently
given, however in an RBM there are no direct connections between
similar levels. Based on the assumption that v is the visible unit,
the conditional chance of h is as follows:

P hjvð Þ ¼
Yn
j¼1

PðhjjvÞ ð5Þ

The conditional probability of the v visible unit, assuming the h
HU, can be given as follows:

P vjhð Þ ¼
Ym
i¼1

PðhjvÞ ð6Þ

Under the premise of a v visible vector, each HU’s activation
state is conditionally independent. We currently define hj E [0,1]
and j-th Hus activation probability as follows:

Pðhj ¼ 1jv ¼ sigm
Xm

i¼1wijv iþ cj ð7Þ

where sigm xð Þ ¼ 1
1þe�x refers to the logistics sigmoid function. As a

result, when the h HU is assumed, the activation Probability of every
observable vector might be conditionally independent.

Pðvi ¼ 1 j h ¼ sigm
Xn

j¼1wijv iþ bj ð8Þ

RBM can be trained to minimize energy in Eq. (1) by calculating
the value of Network Parameter = (W, b, c). In Eq. (1), the probabil-
ity is maximized after the RBM is trained, so the network energy is
minimized. Following equations are used to evaluate the gradient
of P(v) with respect to network parameters h:

@ log PðvÞ
@h

¼ �Ep hjvð Þ @E v ;hð Þ
@h

� �
þ Epðv 0;h0Þ @E v 0; h0ð Þ

@h

� �
ð9Þ
4

The expectation operator E is represented in Eq. (1). Calculating
the LHS expectation had no problem, but determining the RHS
expectation is more challenging. In order to approximate the log-
likelihood gradient, the contrastive divergence (CD) method is
employed. The CD-k model predicts the expectation in Equation
(J) using k (k = 1) iterations of Gibbs sampling to improve the net-
work parameter h (iV, b,c). The CD is a persistent contrastive diver-
gence (PCD) model, which makes the training process particularly
effective. The variable’s h upgrade mechanism is as follows:

@logPðvÞ
@wij

¼ P hj ¼ 1jvð Þ:v i�
X
v 0

P v 0ð ÞP hj0 ¼ 1jv 0� �
:v 0i0 ð10Þ
@ log PðvÞ
@bi

¼ vi�
X
v0

P v 0ð Þ:vi0 ð11Þ
@ log PðvÞ
@cj

¼ P hj ¼¼ 1jvð Þ �
X
v 0

Pðv 0ÞPðh0j ¼ 1jv 0Þ ð12Þ

It is common for one RBM to be trained first, followed by
another RBM. The intricate design of the dataset is reflected in
the layers of RBMs that extract various features automatically.
3.3. Process for adjusting parameters

The AEA method is also used by the DLM-WESHMS approach
to tune the parameters. The AEA is a SI metaheuristics method
that is based on seagull colony behavior (Dhiman and Kumar,
2019), especially the migrating and attacking (hunting) strate-
gies. Initially, during their migration, they attack other birds over
the water. They then move in a spiral pattern to assault the vic-
tim successfully. There is no doubt that AEA performs the best in
global bound-constrained optimization problems. Therefore,
take into account that it has been successfully applied to a num-
ber of real-world problems. The convergence rate is increased by
conducting a more in-depth analysis of the CEC test suite, but the
basic AEA still achieves notable results for unrestricted bench-
marks. Even if the first AEA was able to identify the ideal search
region in each run, a few runs result in an unsatisfactory conver-
gence, which lowers the quality of the final result. The OBL
approach was created to alleviate these drawbacks. The previous
study showed that intensification and diversification could both
be greatly increased using the OBL technique. Following the
determination of the best solution, Xbest; the best alternative

solution, X0
best can be generated using the following equation

for all the parameters, j:

X0
best;j ¼ ljþ uj� Xbest;j ð13Þ

The lower and upper bounds of the j-th variable are represented
by lj and uj in Eq. (13), respectively, and X0

best;j represents the oppo-
site j-th parameter optimum solution. The fitness function states
that greedy selection can be applied to both the primary and
opposing optimal solutions, and that the better of the two solu-
tions was preserved for the following iteration. The pseudocode
for the proposed method, dubbed AEA, is shown in Algorithm 1.
Finally, AEA appears to contribute to some of the perceived compu-
tational complexity, particularly since additional processing is
added to each iteration (Asiri et al., 2022). OBL’s greedy selection
method selects between Xbest;j and X0

best;j Or to put it another way,
O ((N + (N + 1)) Maxiterations), where N stands for individual amount
and Maxiterations for iterative amount.



Table 1
Data set Details.

Label 1 Class Scale (%) �8h No. of Sample

CLS 1 Insufficient 0–35 100
CLS 2 Mile 35–55 100
CLS 3 Moderate 55–75 100
CLS 4 Sufficient 75–100 100
Total No. Samples 400

Entire Confusion Matrix

C
L

S-
1

85 4 8 0

C
L

S-
2

2 95 1 1

C
L

S-
3

5 0 92 1

A
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1 0 1 97

CLS-1 CLS-2 CLS-3 CLS-4

Fig. 2. Shows the DLM-WESHMS system’s confusion matrix for the whole database.

Fig. 3. Shows the overall classification of sleep quality using
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Algorithm 1.

Algorithm 1 Pseudocode of AEA

Input: Auto Encoders Population PEA
Output: Optimal Search Agent PBS
Initial Parameters: A, B and Maxiteration
Consider fc  2
Consider u  1
Consider v  1
While � < Maxiterations do
For i = 1 to n, do
FITs [i]  Fitness Function (Ps (i,:))
End for
Best = FITs [0]
For i = 1 to n do
If FITs [i] < Best then
Best FITs [i]
End if
End for
Pbs = Best
rd  Rand (0,1)
k  Rand (0,2)
r = U � ekv

Ds = Cs + Ms

P  x0 � y0 � z0
Ps(x) = (Ds � P) + Pbs (x)
X  +1

Perform OBL technique
Choose Xbest and X0

best through greedy selection
End while
Return Pbs
4. Performance validation

This section examines the DLM-WESHMS model’s predictions
for sleep quality on a dataset of 400 samples, as specified in Table 1.
the DLM-WESHMS algorithm for the complete dataset.
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With 100 samples per class (CLS), the dataset is divided into four
classes. Kaggle repository was used to download the data set
(found at https://www.kaggle.com/code/jumpingmandt/sleep-
data-study/data (accessed on 15 September 2022)). A sleep quality
score ranging from 0 to 100 is included in the original data set, we
split the dataset into four classes for our study.

Fig. 2 displays the confusion matrix generated by the DLM-
WESHMS approach for the complete dataset. 85 samples are
divided into CLS 1, 95 samples into CLS 2, 92 samples into class
3, and 97 samples are divided into CLS 4, according to the DLM-
WESHMS method.

Fig. 3 provide detailed results for the DLM-WESHMS method’s
classification of sleep quality over the full dataset. The simulation
results demonstrate that the DLM-WESHMS technique achieves
improved classification results across all classes. It is noted that
C
L
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57 4 7 0
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L

S-
2

1 63 1 1

C
L
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3

5 0 63 1

A
ct
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0 0 0 73

CLS-1 CLS-2 CLS-3 CLS-4

Fig. 4. DLM-WESHMS system for 70% confusion matrix.

Trainin

Fig. 5. Shows the results of the DLM-WESHMS system’s classifi
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the DLM-WESHMS model achieves an average Accuracy of
95.71%, Analys of 94.94%, Precn of 93.17%, Recal of 85.00%, Fscore of
93.26%, and Gmeasure of 93.51%.

Fig. 3 shows the classification results for the full dataset using
the DLM-WESHMS system for sleep quality, with several classes.

Fig. 4 displays the confusion matrix that the DLM-WESHMS
model produced for 70% of the TR databases. 57 samples are sorted
into CLS 1 using the DLM-WESHMS model technique, 63 samples
into CLS 2 and 3, and 73 samples into CLS 4.

Fig. 5 show the results of the DLM-WESHMS method’s short
sleep quality categorization for 70% of the TR database. The DLM-
WESHMS methodology’s simulation values lead to improved clas-
sification outcomes across all classes (CLS). It is noteworthy that
the DLM-WESHMS algorithm achieves an average Accuracy of
96.54%, Analys of 95.83, Precn of 92.83%, Recal of 92.86%, Fscore of
g Phase (70%)

cation of overall sleep quality for 70% of the TR database.

xirtaMnoisufnoC
(30%)- Testing Case
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Fig. 6. DLM-WESHMS system confusion matrix for 30% of the TS database.

https://www.kaggle.com/code/jumpingmandt/sleepdata-study/data
https://www.kaggle.com/code/jumpingmandt/sleepdata-study/data


Fig. 7. Shows the overall sleep quality categorization result of the DLM-WESHMS method for 30% of the TS database.

Table 2
Shows the DLM-WESHMS system’s sleep quality classification results for 30% of the TS database with different classes.

Testing Phase (30%)

Labels Accuracy Analysis Precision Recall F-Score G-Measure

CLS 1 95.81 94.91 87.85 96.76 92.08 92.18
CLS 2 99.18 95.95 100.00 96.95 97.65 97.85
CLS 3 96.85 94.75 93.65 93.55 93.55 93.55
CLS 4 98.35 95.65 100.00 92.41 96.00 96.07
Average 97.54 95.31 95.37 94.91 94.82 94.91

Fig. 8. Compared with other existing approaches, the WSHMSQP-ODL system is analyzed (Arora et al., 2020, Sathyanarayana et al., 2016).
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92.74%, and Gmeasure of 92.83% as well Fig. 5 shows the results of the
DLM-WESHMS system’s classification of sleep quality for 70% of
the TR database into separate classes.

Based on the DLM-WESHMS approach, a confusion matrix was
produced for 30% of the TS database as shown in Fig. 6. The
DLM-WESHMS algorithm categorizes 28 samples as CLS 1, 31 sam-
ples as CLS 2, 28 samples as CLS 3, and 25 samples as CLS 4. Table 2
and Fig. 7 show the DLM-WESHMS method’s comprehensive sleep
quality categorization results for 30% of the TS database. DLM-
WESHMS achieves improved classification results in all simulated
class labels compared to other techniques. The DLM-WESHMS
Algorithm achieves an average Accuracy of 97.54, Analys of 95.31,
Precn of 95.37, Recal of 94.91, FScore of 94.82, and GMeasure of 94.91.

Finally, Fig. 8 present a comparison analysis of the DLM-
WESHMS model on sleep quality categorization (Arora et al.,
2020). The simulation results reveal that the LSTM model performs
poorly, with the lowest Accuracy of 91.67%. MLP, CNN, and LR tech-
niques yield slightly closer classification results simultaneously.
With a maximum Accuracy of 97.54%, the DLM-WESHMS model
surpasses the other models. These findings support the DLM-
WESHMS model’s superior sleep quality categorization results
when compared to other models.

This Figure shows the DLM-WESHMS system’s sleep quality
prediction results in comparison to other available techniques.

5. Conclusion

A unique DLM-WESHMS algorithm was proposed, using smart
healthcare environments, this study evaluated sleep quality. Data
on sleep-activity can initially be collected by wearables with the
DLM-WESHMS approach. Following that, to prepare the data for
standardization, preprocessing is carried out. Furthermore, the
DLM-WESHMS technique predicts sleep quality using the DBN
model. Last but not least, high-performance prediction of sleep
quality is provided by the AEA algorithm, through which fine-
tuning of DBN hyperparameters is achieved. The data -based out-
comes of the DLM-WESHMS model are evaluated using various cri-
teria. A comprehensive comparison demonstrates that the DLM-
WESHMS model outperforms other models, with a maximum
accuracy of 97.54%, Precision of 95.37%, Recall of 94.91% and F-
Score of 94.82%. The suggested model’s improved performance is
attributed to an optimal hyper parameter selection process using
the AEA algorithm. Furthermore, incorporating the OBL approach
into the regular AEA algorithm helps to improve the AEA algo-
rithm’s overall qualities. In the future, feature selection procedures
could be used to improve the DLM-WESHMS model’s performance.
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