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Objective: The Mann-Whitney test is applied for testing the means of two non-normal populations. The
Mann-Whitney test in the presence of Neutrosophy present in this paper. The design and implantation of
the proposed test under neutrosophic statistic are given.
Method: Two methods to apply this test will be given. The application of the proposed test is given with
the aid of melting points of alloy data.
Results: The comparison of the proposed test with the Mann-Whitney test under classical statistics is
given.
Conclusion: The comparison shows the effeteness, efficiency, and flexibility of the proposed test over the
Mann-Whitney test under classical statistics.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
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1. Introduction

The t-test, which is applied in various fields for the testing of the
mean of a single population or equality of two means for two pop-
ulations. This test is implemented under the assumption that the
samples are independent and drawn from the normal distribution.
In practice, it is not necessary that the population under study is
always normal. In this case, the t-test cannot be applied for the
testing of the means of the populations. The non-parametric test
which is called the Mann-Whitney (MW) test is alternative to
the t-test and applied for testing of the means when population
under-investigated is independent of any underlying distribution.
The MW test is applied to test either the independent samples
are selected from the same population or not (de Winter and
Dodou, 2010; Hollander et al., 2013) pointed out the ‘‘MW test
does not have considerably lower power than the t-test even when
all the assumptions of the t-test are met” (Perme and Manevski,
2019) studied the properties of the MW test (Newcombe, 2006a;
Newcombe, 2006b) presented work on confidence interval and dis-
cussed the effect of size on it. (Qin and Hotilovac, 2008; Feng et al.,
2017) presented the comparison among the non-parametric tests
(Vermeulen et al., 2015) worked on the power of the MW test
(Fong and Huang, 2019) presented some modifications in the
MW test (Happ et al., 2019) discussed finding the optimal sample
size for the MW test. More information about the application of the
MW test can be seen in Haynam and Govindarajulu (1966),
Kacprzyk et al. (2017), Shin et al. (2019), Mollan et al. (2019).

The existing WM tests are applied when the observations in the
samples or population are determined and precise. However, in the
real-life the data may be imprecise, fuzzy and indeterminate such
as in measuring the lifetime of the virus, water level, and alloy
melting points, see (Kacprzyk et al., 2017; Taheri and Hesamian,
2017). The fuzzy logic is an alternative approach to model the
imprecise data (Kahraman et al., 2004) used the fuzzy logic to
study parametric and non-parametric tests (Taheri and
Hesamian, 2017) worked on the MW test using the fuzzy approach.
More details about the MW tests for fuzzy logic can be seen in
Dubois and Prade (1983), Grzegorzewski (1998), Denœux et al.
(2005), Grzegorzewski (2009), Taheri and Arefi (2009), Taheri
and Hesamian (2013), Kacprzyk et al. (2017), Taheri and
Hesamian (2017).

Smarandache (1998) introduced the neutrosophic logic which
considered the measure of indeterminacy in addition to measures
of falseness and truthiness. The neutrosophic logic is more efficient
than the fuzzy logic and data in the interval approach, see (Wang
et al., 2005). More details on the applications of neutrosophic logic
can be seen in Broumi and Smarandache (2013), Abdel-Basset et al.
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(2018), Peng and Dai (2018), Shahin et al. (2018), Broumi et al.
(2018), Abdel-Basset et al. (2019a,b), Nabeeh et al. (2019). The neu-
trosophic statistics (NS) which is the extension of classical statis-
tics (CS) used for analyzing the data having indeterminacy
(Smarandache, 2014). Chen et al. (2017a,b) introduced the idea
to deal with the neutrosophic numbers. Aslam (2018) introduced
NS in statistical quality control. More applications of NS can be
seen in Aslam and Albassam (2019), Aslam (2019).

Although the MW tests under the CS and fuzzy approach are
available in the literature. For the testing of data in indeterminate
form, the neutrosophic statistics is the best alternative of previous
tests. By exploring the literature and best of our information, there
is no work on the design of MW test under the neutrosophic statis-
tics. In this paper, we will propose the design and implementation
of the neutrosophic MW (NMW) test. We will present a case study
of alloy melting points data. We will compare the efficiency of the
proposed test over the existing MW test under CS. We expect that
the proposed MW test will be more adequate to be applied when
the data is fuzzy, in interval and indeterminate.

2. The NMW test

In this section, we will present the proposed NMW test when
midpoints of indeterminacy intervals are assigned ranks and when
the interval values are assigned ranks. The objective of the pro-
posed test is to see either two independent samples came from
populations having the same means. The proposed NMW test is
used to test the null hypothesis that samples came from the same
populations versus the alternative hypothesis that samples came
from the different populations.

2.1. Method-I

Suppose that X1N ¼ a1 þ b1I1N; I1N� I1L; I1U½ �, X2N ¼ a2 þ b2I2N;
I2N� I2L; I2U½ �,. . .,XnN ¼ an þ bnInN ; InN� InL; InU½ � be the first neutro-
sophic sample. Let Y1N ¼ a1 þ b1I1N; I1N� I1L; I1U½ �, Y2N ¼ a2 þ b2I2N;
I2N� I2L; I2U½ �,. . .,YnN ¼ an þ bnInN ; InN� InL; InU½ � be the second neutro-
sophic variable. Note here that both neutrosophic random
variables have determinate partsa1,. . .,an and indeterminate parts
b1I1N ,. . .,bnInN . The neutrosophic random variables reduce to the
random variable under CS when no indeterminacy in the popula-
tions. In general, let XN� XL;XU½ � and YN� YL;YU½ � be two neutro-
sophic random variables. Suppose that nN� nL;nU½ � be the
neutrosophic sample size and NN� NL;NU½ � be the size of combined
samples. As mentioned earlier, the main objective of the proposed
NMW tests to see the either neutrosophic samples are selected
from the populations having the same means. Therefore, we pre-
sent methodology of the NMW test using the midpoints of indeter-
minacy intervals. The methodology of the NMW test using the
midpoints of indeterminacy intervals is given in the following
steps.

Step-1: Draw two random samples XN� XL;XU½ � and YN� YL;YU½ �
from the neutrosophic populations.

Step-2: Calculate the average of each indeterminacy interval as
XL þ XU=2 andYL þ YU=2.

Step-3: Combined and arrange the midpoints of indeterminacy
interval in ascending order and assign them the ranks.

Step-4: Find the sum of ranks for XN� XL;XU½ � and YN� YL;YU½ �.
Note the rank of the smaller sample size, say RN� RL;RU½ � and com-
pute the quantity R1

N ¼ nN NN þ 1ð Þ � RN; RN� RL;RU½ �, nN� nL;nU½ �,
NN� NL;NU½ �.

Step-5: Accept the null hypothesis of equal means of two neu-

trosophic populations if RN� RL;RU½ � or R1
N� R1

L ;R
1
U

h i
is smaller than

the tabulated value at the level of significancea, where a is the
probability of rejecting the null hypothesis when it is true.
Note here that, according to Kanji (2006), if the sample size is
the same for variables XN� XL;XU½ � and YN� YL;YU½ �, the statistic
RN� RL;RU½ � will be applied for testing the hypothesis.
2.2. Method-II

We present the second method to perform the proposed NMW
test same as the test under the CS. Suppose that X1N ¼ a1þ
b1I1N; I1N� I1L; I1U½ �, X21N ¼ a2þb2I2N; I2N� I21L; I2U½ �,. . .,XnN ¼ an þ bnInN ;
InN� InL; InU½ � be the first neutrosophic sample. Let Y1N ¼ a1þ
b1I1N;I1N� I1L; I1U½ �, Y21N ¼ a2þb2I2N; I2N� I21L; I2U½ �,. . .,YnN ¼ an þ bnInN ;
InN� InL; InU½ � be the second neutrosophic variable. Assume that
XN� XL;XU½ � and YN� YL;YU½ � be two neutrosophic random variables.
The methodology of NMW test is given as below

Step-1: Draw two random samples XN� XL;XU½ � and YN� YL;YU½ �
from the neutrosophic populations.

Step-2: combine and arrange the lower values of indeterminacy
interval in ascending order and assign ranks.

Step-3: combine and arrange the upper values of indeterminacy
interval in ascending order and assign ranks.

Step-4: Find the sum of ranks for both values of indeterminacy
intervals. Note the rank of the smaller sample size; say RL from
lower values of indeterminacy intervals and RU from the upper val-
ues of intermediacy interval. Based on these ranks compute the
quantity R1

N ¼ nN NN þ 1ð Þ � RN; RN� RL;RU½ �, nN� nL;nU½ �, NN� NL;NU½ �.
Step-5: Accept the null hypothesis of equal means of two neu-

trosophic populations if RN� RL;RU½ � or R1
N� R1

L ;R
1
U

h i
is smaller than

the tabulated value.
Note here that, according to Kanji (2006), if the sample size is

the same for variables XN� XL;XU½ � and YN� YL;YU½ �, the statistic
RN� RL;RU½ � will be applied for testing the hypothesis.
3. Case study

The alloy is a metal made by combining more than two metals.
The alloy is useful in increasing the strength of the material and
helpful in resisting the corrosion. Suppose that an industrial engi-
neer working in metal industry is interested to see either the alloy
melting points data is came from the population having the same
average of melting points. The measuring the melting points is
not an easy task, therefore, the observations are not determined
values and expressed in intervals. The data of sample size 34 is
taken from Kacprzyk et al. (2017). The measurement of melting
points of two alloys are given below

XN� XL;XU½ � For measurement of the first alloy
[563.3, 545.5], [529.4, 511.6], [523.1, 503.5], [470.1, 449.2],

[506.7, 489.0],
[495.6, 479.1], [495.3, 467.9], [520.9, 495.6], [496.9, 472.8],

[542.9, 519.1],
[505.4, 484.0], [550.7, 525.9], [517.7, 500.9], [499.2, 483.0],

[500.6, 480.0],
[516.8, 499.6], [535.0, 515.1], [489.3, 464.4]
YN� YL;YU½ � For measurement of the second alloy
[444.1, 426.1], [430.5, 406.7], [407.2, 387.3], [475.8, 450.9],

[458.5, 440.2],
[507.7, 490.6], [496.8, 480.2], [520.9, 503.8], [503.6, 482.8],

[458.2, 432.8],
[480.5, 453.3], [473.8, 446.9], [468.4, 451.2], [496.2, 478.1],

[477.0, 459.4],
[496.3, 479.4]
The testing procedure of the alloy melting points using method-

I is given in Tables 1 and 2. The sum of rank for the melting points
of the first sample and the second samples are 411 and 184,
respectively. According to the proposed test procedure, we will



Table 1
The ranks of first alloy melting points using method-I.

Data [563.3, 545.5] [529.4, 511.6] [523.1, 503.5] [470.1, 449.2] [506.7, 489.0] [495.6, 479.1]
Mid Points 554.4 520.5 513.3 459.65 497.85 487.35
Ranks 34 30 29 5 23 16
Data [495.3, 467.9] [520.9, 495.6] [496.9, 472.8] [542.9, 519.1] [505.4, 484.0] [550.7, 525.9]
Mid Points 481.6 508.25 484.85 531.0 494.7 538.3
Ranks 13 26 14 32 22 33
Data [517.7, 500.9] [499.2, 483.0] [500.6, 480.0] [516.8, 499.6] [535.0, 515.1] [489.3, 464.4]
Mid Points 509.3 491.1 490.3 508.2 525.05 476.85
Ranks 27 20 19 25 31 12

Table 3
The ranks using method-II.

Combined Determinate
Part

Ranks Combined Indeterminate
Part

Ranks

407.2 1 387.3 1
430.5 2 406.7 2
444.1 3 426.1 3
458.2 4 432.8 4
458.5 5 440.2 5
468.4 6 446.9 6
470.1 7 449.2 7
473.8 8 450.9 8
475.8 9 451.2 9
477 10 453.3 10
480.5 11 459.4 11
489.3 12 464.4 12
495.3 13 467.9 13
495.6 14 472.8 14
496.2 15 478.1 15
496.3 16 479.1 16
496.8 17 479.4 17
496.9 18 480 18
499.2 19 480.2 19
500.6 20 482.8 20
503.6 21 483 21
505.4 22 484 22
506.7 23 489 23
507.7 24 490.6 24
516.8 25 495.6 25
517.7 26 499.6 26
520.9 27 500.9 27
520.9 28 503.5 28
523.1 29 503.8 29
529.4 30 511.6 30
535 31 515.1 31
542.9 32 519.1 32
550.7 33 525.9 33
563.3 34 545.5 34

Table 2
The ranks of second alloy melting points using method-I.

Data [444.1, 426.1] [430.5, 406.7] [407.2, 387.3] [475.8, 450.9] [458.5, 440.2] [507.7, 490.6]
Mid Points 435.1 418.6 397.25 463.35 462.85 499.15
Ranks 3 2 1 9 8 24
Data [496.8, 480.2] [520.9, 503.8] [503.6, 482.8] [458.2, 432.8] [480.5, 453.3] [473.8, 446.9]
Mid Points 488.5 512.35 493.2 445.5 466.9 460.35
Ranks 18 28 21 4 10 7
Data [468.4, 451.2] [496.2, 478.1] [477.0, 459.4] [496.3, 479.4]
Mid Points 459.8 487.15 468.2 487.85
Ranks 6 15 11 17
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select RN = 184. The value of R1
N = 376. The tabulated value which is

222 at a level of significance 0.05 from Kanji (2006). We see that
RN < 222, therefore, we do not reject the null hypothesis and con-
clude that alloy melting points came from the population having
the same means. On the other hand, R1

N > 222, we reject the null
hypothesis and conclude that alloy melting points came from the
population having different means. In this example, samples size
is different, therefore, the conclusion obtained from the statistic
R1
N is recommended.
We now apply the method-II for analyzing the alloy melting

points data. The necessary computations for this test are shown
in Table 3. The smaller values of the sum of ranks of
RN� 180;183½ �; InN� 0;0:016½ �. The values of RN� 180;183½ � < 222,
therefore, we do not reject the null hypothesis and reach the same
conclusion as in method-I. On the other hand, the values of
R1
N� 380;377½ � > 222, so we reject the null hypothesis and reach

on the same decision as in method-I. In this example, samples size
is different, therefore, the conclusion obtained from the statistic R1

N

is recommended.

4. Comparative study

The efficiency and adequacy of the proposed NMW test will be
compared with the existing MW test under CS is given by Kanji
(2006), existing test using the interval data given by Kacprzyk
et al. (2017) and test under the fuzzy approach presented by
Taheri and Hesamian (2017). To discuss the effectiveness of the
proposed NMW test, we will fix the same values of nN� nL;nU½ �,
NN� NL;NU½ � and a. The values of the statistic from the proposed test
can be expressed as RN ¼ 180þ 183InN; InN� 0;0:016½ �. Similarly, the
neutrosophic form of R1

N ¼ 380� 377InN ; InN� 0;0:007½ �. Note here
that the proposed tests are the generalization of tests under CS,
interval approach and fuzzy approach. For example, the proposed
test reduces to test discussed by Kanji (2006) if no indeterminacy
is recorded in the data in hand. In this case, the value of the test
statistic will be 180 and 380 which are the determined parts of
the proposed tests. The statistic RN� 180;183½ � and R1

N� 380;377½ �
without the indeterminacy, interval shows the values under the
interval approaches. For the alloy melting points, it can be noted
that when a = 0.05, the experimenters can expect that the null
hypothesis will be accepted with probability 0.95, rejected with
probability 0.05 and there are measures of indeterminacy which
are 0.016 and 0.007. Nevertheless, on the other hand, the test
under CS only provides the exact value of the test. In addition,
the values under fuzzy and interval approach only provided the
range of the values from 180 to 183 and 380 to 377. It means,
the null hypothesis will be accepted with the probability 0.95
and rejected with the probability 0.05. By comparing the proposed
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tests with the existing tests, we conclude that the proposed tests
deal with the presence of a measure of indeterminacy, which other
tests do not consider. Therefore, the proposed tests will be more
effective and adequate to be applied when the data is recorded
from the complex system in the industry.

5. Concluding remarks

In this article, we presented the design, methodology and deci-
sion criterion for the testing of the means. The test was presented
using different methods of ranking. The proposed test was
designed for the testing of means of the neutrosophic populations.
The proposed test was the extension of several existing tests. From
the comparison, we conclude that the proposed test is quite rea-
sonable to be applied under the uncertainty. The proposed test
was applied on a real data from the industry. The proposed test
for big data can be studied as future research.
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