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KEYWORDS Abstract In this paper, the non-polynomial spline function is used to find the numerical solution

of the third order singularly perturbed boundary value problems of the reaction—diffusion equation
type. The convergence analysis is discussed and the method is shown to have fourth order conver-
gence. To validate the applicability of the method, two model examples have been solved for differ-
ent values of the perturbation parameter and mesh sizes. The numerical results have been tabulated
and also presented in graphs. It can be observed from the results that the present method approx-
imates the exact solution very well.
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1. Introduction self-adjoint second order two point boundary value problems
has been presented using the methods such as optimal quadra-

Any differential equation whose solution changes rapidly in tic and cubic spline collocation on non-uniform partitions

some parts of the interval or domain is known as singular per-
turbation problem. These problems arise very frequently in
diversified fields of applied mathematics and engineering, for
instance in fluid mechanics hydrodynamics, quantum mechan-
ics, chemical-reactor theory, aerodynamics, plasma dynamics,
rarefied-gas dynamics, oceanography, meteorology, modeling
of semiconductor devices, diffraction theory and reaction—dif-
fusion processes and many other allied areas. The numerical
solution of perturbed differential equation of the form of
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(Christara and Ng, 20006), a fourth order adaptive collocation
approach and patching approach (Khuri and Sayfy, 2012,
2014). Parametric Quintic and non-polynomial Quintic spline
solutions have been presented for third-order boundary value
problems and for the system of third order boundary value
problems respectively (Khan and Sultana, 2012a,b).

A singular perturbation problem is said to be reaction dif-
fusion type problem, if the order of differential equation is
reduced by two (Phaneendral et al. 2012). Basically, the prob-
lem of ineffectiveness for solving singularly perturbed prob-
lems has been associated with the perturbation parameter.
Accordingly, more efficient and simpler numerical methods
are required to solve singularly perturbed two-point boundary
value problems. In recent years, a large number of methods
have been established to provide accurate results (Temsah,
2008; Rashidinia et al., 2007; Jalilian et al., 2015; Reza and
Rashidinia, 2009; Ghazala, 2012, 2015; Ghazala and Imran,
2014; Sonali and Hradyesh, 2015). Those shows that a
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considerable amount of work has been done for the
development of numerical methods to boundary value prob-
lems using various splines, yet there is lack of accuracy and
convergence because the treatment of singular perturbation
problems is not trivial distribution and the solution profile
depends on perturbation parameter and mesh size /7,
(Doolan et al., 1980). It is necessary to develop efficient and
accurate numerical methods for third order singularly per-
turbed problems. So,the purpose of this study is to develop a
new spline method for the solution of third order singularly
perturbed boundary value problem which is more accurate
than the existing methods. This method depends on a non-
polynomial spline function which has a trigonometric part
and a polynomial part.

2. Description of the method

Consider the third order self adjoint singularly perturbed
boundary value problem of the form:

Ly(x) = =& (x) +u(x)y = flx), 0<x<1 (1)
with boundary conditions
y0) =, y(1)=p, V()= 2

where u(x) = u >0 and oy, ff;,y,u are constants and ¢ is a
small positive parameter (0 < ¢ << 1), and f{x) are sufficiently
smooth functions. We consider a uniform mesh A with nodal
points x; on [0, 1] such that:

A:0=xo<x1 <X <...<Xp1 <X, =1,x;, = x0+ ih,

1
i=0,1,...,n; where h:;

The spline function we propose has a form T5=
span{1,x, x>, x3, cos(kx), sin(kx)} where k is the frequency of
trigonometric part of the splines function which can be real
or imaginary and will be used to raise the accuracy of the
method.

For each segment [x;,x;],i=0,1,...,n—1, the non-
polynomial S,(x) has the following form:
Sa(x) = a;cosk(x — x;) + b;sink(x — x;)
+ C,'(X — X,‘)3 + a'l»(x — X,‘)z + e,-(x X,‘) +f;7
i=1,2,...n—1 (3)

where, a;, b;, ¢;, d; and e; are constants.

Let y(x) be the exact solution of Eq. (1) with boundary con-
ditions Eq. (2) and S; be an approximation to y; = y(x)
obtained by the spline function Sx(x) passing through the
points (x;,Sa) and (x;;1, Say1). Following the technique of
(Srivastava and Kumar, 2011):

(X,) Vi SA(xi+1) = Yin
S”( i) =D; SZ(XHI) = Diy
i i fOI‘iZO,l,...,nfl
S (xl+l) 1+1 SA (X,‘) = Ti
SZ)(xi) =F Sf)(«\'m) =Fi

4

The coefficients in Eq. (3) using Eq. (4) are determined as:

_F _ Fi —F;cos(0) L :+l Di | Fip—Fi 1 4 B
a4 =3 bi= K*sin(0)  ? Gi= + 6hk> d'_Z(D'+/<2)
Vi1 Vi Fi=Fisy _h
e =" Ihk“+ ( i1 +2D;) — 6k2( Fiy1 +2F)
fi=yi—&; fori=0,1,...,n—1and 0 =kh.

Applying the first and second derivative continuity at
knots, that is, SX"_)I (x;) = SX")(x,-), for m = 1,3, the following
relations are derived:

6
Dy +4D;+ D;y, = 7 Vi1 =20+ yiy)

— 6h*(J1Fi_y +2p,F; + /1 Fiy) (5)
where/h:%f% ksml)andpl_%
D —2D; + Dipy = JaFyy + 2p,F; + 20F, (6)
where 1, = & — L, p, = L — gl

Subtracting Eq. (6) from Eq. (5), we obtain:

72 ,'+ i—
P Vit Yic1)
, A o A
—hz((/tl +€2)Fi+l +2(Pl +FZ>F, + (11 +€2)Fi71)
(7)

Using the continuity of third derivative and Eq. (7), we obtain
the following relation:

1
Di=— i

1
Ti:ﬁ()’wzfﬁ’m + 3y = yiet) = h(pFiy + (P — p + o) Fiv

+( - po+ﬁ)F PF) (8)

where: p =4 + +%8), B=g(1—0cot0) and
=gz (Ocscl — 1)

We define the operator A by Aw = p(win + wia) + swi+
g(wir1 + wiy) for any function w evaluated at the mesh points.
On applying this operator for T in Eq. (8), (Kumar and
Srivastava, 2009), we have:

67 p0_2(p1

AT =pTiy + 9T, +5T; + 9T, +pT;_, 9)

Substituting Eq. (8) into Eq. (9), we derive the following
useful relation:

_4ﬁ)(yi+l JRVH)) (10)

Using Egs. (9) and (10) we obtain:

AT = % ((0‘ +B) (yi+2 _yi*Z) + (20

— Viy) + (20— 4ﬁ)(yi+l +yi—l))
=pT,,+ 4T, + 5T+ 9T, +pT, , (11)

where: s=2(1(ax+p)+4 —2p;) and ¢=2(;(20+p)—
(Ai+p)) fori=2,3....n-2
Rearranging Eq. (1) and evaluating at ‘xi” we have:

1
(4 D)2

" uy; 1
=i (12)

& &

Substituting Eq. (12) into Eq. (11) and simplifying we
obtain:
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((+ B)e + uph® )y, + (20 — 4B)e + qui®)y,_, + sult’y,
— (22— 4B)e + ugh’)y,.y — (o + B)e+ uph’)y,.,

= —h3(p(f;-+z +fica) +sfi +q(fi +firr))s
fori=2...n-2 (13)

End conditions:

The system in Eq. (13) gives (n — 3) linear algebraic equa-
tions in the (n — 1) unknowns y;, fori=1,2,...n— 1, So we
need two more equations, at each ends. Following the proce-
dure given by Reza and Rashidina (2009), the required end
condition can be written as:

Zb/y/ +ethyy +h Zd,y’” +4=0, i=1 (14)
1=0 1=0

Zmly[+h3zk/y§//+[n—l:07 i=n—1 (15)
I=n-3 I=n—4

where by, ¢, d;,m; and k; are arbitrary parameters which are to
be calculated using method of undetermined coefficients.

For /=0,1,...n. Egs. (14) and (15) can be written as:
crhyy + boyo + biyy + bays + bays + I ldoyy + diy' + dayy
+d3ym]+t1 —O, fOrl: 1 (16)

"

M3V 3+ M2y, o+ Mac1 Yy + Y, + B (kua)l)
+ kn—}}’ZL} + kn—Zy,/,/iz + kn—lyz,,l + kny;”) + tn—l
=0, fori=n-—1 (17)

Expanding each terms of Eq. (16) by Taylor’s series about
xo. then, substituting and collecting coefficients of the same
order we obtain:

(bo + by + by + b3)yy +
+(by + 4by + 9b3) Iy

b|+8ba+27b Ydo+d +d+ d3)h3 m

[7|+16hz+81b3+d +2d2+3d})h4 (4)

(b] + 2b2 + 3b3 + Cl)hyé]

b1+32by+243b3 + d +4d7+9(13)h5 (5) (18)

(O
(=5
(=%
(
(
(

by +64by+729b3 | di+8dy+27d3Y 1,6 -,(6)
720 + 6 )h

by+128b,+2187h3 d|+16da+81d;
3040 + )h y

b1+256b,+6561b3 | d)+32d>+243ds 1,8
40320 + 120 )h

+++++

'+o’)y=0

Expanding Eq. (13) in Taylor’s series about x;, we obtain
the following local truncation error:

1
= 4h(2u — B)y, + §h3(6p +6q+ 35 — 100 — 48)y”

%hS( 30(4p + q) + 170+ 148)y"

1
+ 1260}1 (=105(16p + ) + 65 + 628)y

Similarly, we can expand each term for Eq. (17), substitut-
ing and collecting coefficients of the same order.

Using Eq. (19) and eliminating the coefficients of various
powers of / for different choices of parameters o, f§,p,¢q and
s, where o« + ff = %,

"oty (19)

And truncating the terms in Eq. (19) that contains 4" and

above, for arbitrary « and f provided that o + f = %, the value
of p, g and s are evaluated from:
2p+2q+s=1
1212) +20 =7.5 ; we obtain : («, f s) = prt 7
p g =1 S Bra:8) = 63320730720
1680p + 105¢ = 31.5

After equating each coefficient of orders of Eq. (18) with 0
we obtain the values of parameters

(b07 bi,by, b3, c1,dy, dy, ds, d3)
= (320, —-360,0,40,240,—16,—-90, —12, 72) (20)

In a similar manner we obtain parameters of the other end
condition as:

(mn—37 my_o, My_1, My, kn—47 kn—Ba kn—27 kn—l ) kn)
= (—120,360, —360, 120,0,0, —60, —60, 0) (21)
Using Egs. (20) and (21) in Eq. (16) and (17) respectively,
with the help of Eq. (12) we obtain the two end conditions as:

— (360¢ 4 90ulr’ )y,
= —240ehy — (320& — 16uh’)a,

— 12ul’y, + (40e — 2ul’)y,

— IP(16f, 4+ 90f, + 12f, +2f;), fori=1 (22)
—120¢y, 5 + (360& — 60uh’)y, » — (360 + 60uh’)y,
= —120ef, — 60/ (f, | + £, ), for,i=n—1 (23)

Hence, Egs. (13), (22) and (23) gives penta - diagonal sys-
tem for i=1,2,...,n—1 and can easily be solved using
Gauss-Elimination method.

3. Convergence analysis of the method

Consider the system of Eqgs. (11), (22) and (23) in the matrix
form as:

Ay + W DF = C (24)
where;
[—360e—90uh® —12ul®  40&—2uh’
—e+qul’ suh’ e+qul®  —0.5e+uph’
0.5c4uph®  —e+quir® suh’ e+qul®  —0.56+uph’
A=
0.5c+uph®  —e+qui’ sul® e+ quit’
L —120e  360e—60ul® —360e—60uh’ |
ro0 —12 2 ... ... ...
q S q P
P q s q P
D=

60 60 |
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C=(c1,2,-Cn2snr) ", €1 =—240ehy — (320&— 16uh’) — 161°f,
02:*Ph3f0+(’3(°‘+ﬁ)*uph3)“1
¢i=0i=3,4...,n—3 and
Cna = (e(a+ B) —uph®) B, = pf,
cn1=—120¢p,

AISO, y= (yl7y27 . 'yn—27yn—1)r and F = (fl 7Af27 . 'fn—27fn—l)T

The exact solution is defined as 7= (y(x),
y(x2), ..., y(x4-1)), Eq. (24) is written as
Ay —I’DF=T+C (25)

where T = (11,2, . ., Z,H]T with truncation error:

n=25eh’yD(9), x0 < (9) <x3
li= —ﬁe}ﬂym(q)), X2 < (@) <xipy fori=2,3,...,n—1

tnfl = %8117.)}(7)((/))7 Xn-3 < ((P) < Xn+1

(26)
Moreover, A(y—y) =AE=T (27)
E:ﬁ—y:(el,ez,...7e,,,1)T (28)
To determine the error bounds the row sums, s1, 52, ...,S,_
of the matrix A4 are calculated
n—1
s1=» ay = —320& — 104ulr’
=1
n—1
1314 .
S =Y ay=—-05———ul
: ; Y 1805
ni Mo fori=3 3
Si = aj = —— U ori=»os,...,n—
= y 56
n—1
1314
Sp_p = Upy; = 0.56 — ——ul’
" ; "y 1805
n—1
St = oy = —120& — 1200’
=1
Table 1 Maximum absolute errors for Example 1.
[ N =10 N =20 N = 40
Our Method
1/16 6.8572e—6 1.1698e—7 1.8578e—9
1/32 2.9156e—6 4.9916e—8 7.9252e—10
1/64 1.2223e—6 2.0005¢—8 3.2111e—10
Sonali and Hradyesh (2015)
1/16 4.7e—4 l.le—4 2.6e—5
1/32 1.9¢e—4 4.7e—5 1.2e—5
1/64 8.0e—5 1.9e—5 4.8e—6
Ghazala (2012)
1/16 2.9e—3 1.2e—4 6.4e—6
1/32 9.2¢e—4 3.8e—5 2.1e—6
1/64 1.4e—4 6.8e—6 4.6e—7

Since 0 < ¢1, we can choose / sufficiently small so that the
matrix A4 is irreducible and monotone. Using, Ghazala (2012)
and Mohanty and Jha (2005), it follows that A~! exists and its
elements are non-negative. Hence, from Eq. (27), we get
E=A4"'T

Also from the theory of matrices A~'4 = T 1)xn-1)

Since each row of sum of matrix is J,_1)xu-1) =1 and
A4 =1.

That is ay! (@i +an+...a1,-1) +a (a +an+ ...ar-1)+
cotan (@t @y ) =1

= ail(s)) +ai (s2) +...a (semr) = 1

This is written in a compact form

n—1

> apisi=1, fork=1,2,....n—1. (29)
i=1

Defining S; = min s;, from Eq. (29)
Silagy +agy+ ...+ ag, ) <1

It follows that

n—1
Sl <i = (30)
i=1 ’ Sj h Bio

where B, = (h%)é, >0,1<io<n—1
From Eq. (27), the error terms can be written as
n—1
= a'T, j=12,..n-1 (31)
=1
Using Egs. (26) and (30)
el < max [z el Y @), gy, < (BE) M@ i,
lex| < (ueh*ymax||y? ()| forj=1,2,...,n—1

i <(@)<Xis2

where u is a constant and independent of /1, and hence it fol-
lows that ||E|| = O(h*).
This result can be summarized in the following theorem.

Table 2 Maximum absolute errors for Example 2

€ N =10 N =20 N =40

Our Method

1/16 3.1247e—7 4.9269¢—9 7.4543e—11

1/32 1.3421e—7 2.1095e—-9 3.1741e—11

1/64 5.6587e—8 8.4937e—10 1.2904e—11
Ghazala and Imran (2014)

1/16 5.70e—7 5.97e—8 4.14e—-9

1/32 2.50e—7 2.52e—8 1.75e—9

1/64 1.00e—7 9.90e—9 6.8e—10
Sonali and Hradyesh (2015)

1/16 2.4e—4 6.1 x107° 1.5e—5

1/32 1.0e—5 2.6 x 107 6.4¢e—6

1/64 4.0e—5 1.0 x 10°° 2.5e—6
Ghazala (2012)

1/16 1.3e—2 1.1e-3 7.8e—5

1/32 3.2e-3 2.7e—4 1.8e—5

1/64 3.4e—4 2.2e-5 1.1e—6
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6 T T T T T T T T T
—— -* YY = Numerical solution
---—---- YE = Exact solution
5 - -
4 - -
% 3l 4
>
2 - -
1k i
O ¥ 1 1 1 1 1 1 1 \e: f * f
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure. 1  The graph of exact and numerical solution of Example 1 for N = 40 and ¢ = Z.

x 107
7 -
—+—N=10, €=1072
6+ —S—N=20, =102
""""" —N =160, =102

n L
§ 5
@
2 4
.E
£
g
e 3T
=
o
D
< 2f

1 -

0 L——O—p "4 O—CO—@—o a4 OO

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure. 2 Absolute errors decrease as the Number of mesh N increases for Example 1.

Theorem. The method given by Egs. (13), (22) and (23) for discussed in the literature and their exact solutions were avail-
solving the boundary value problem of Egs. (1) and (2) for able for comparison.
sufficiently small h gives a fourth order convergent solution.

Example 4.1. Consider the following singularly perturbed

blem.
4. Numerical examples and results problem

—&)"(x) + y(x) = 6e(1 — x)°x* — 667 (6(1 —x)° —=90(1 — x)*x
To demonstrate the validity of the methods, two model singu-
larly perturbed problems have been considered. These exam- + 180(1 — x)3x2 —60(1 — x)2x3>
ples have been chosen because they have been widely
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Table 3 Maximum absolute errors for the give two Examples at different ¢ and N.

€ N =10 N =20 N = 40 N = 80 N = 160
Example 1
107! 1.1975e—05 2.0219e—07 3.1957e—09 4.7607e—11 5.7583e—13
1072 6.6766e—07 1.1287e—08 1.7827e—10 2.7109e—12 3.6632e—14
1073 3.2989¢—08 5.2434e—10 8.5508e—12 1.3163e—13 1.9575e—15
1074 1.2010e—09 2.7305e—11 3.8892e—13 6.3114e—15 9.6848e—17
10~° 1.6891e—11 8.9636e—13 2.1008e—14 2.8475e—16 4.5782e—18
10 1.7571e—13 1.1945¢—14 6.2565¢—16 1.5583e—17 2.1979¢e—19
1077 1.7642e—15 1.2335¢—16 7.9310e—18 4.2141e—19 1.1354e—20
Example 2
107! 5.4458e—07 8.5081e—09 1.2746e—10 3.8280e—12 2.5562e—12
1072 3.1090e—08 4.8206e—10 7.1755e—12 1.0009¢—13 4.7587e—14
103 1.6607e—09 2.3244e—11 3.5263e—13 5.2109e—15 4.0246e—16
1074 6.0523e—11 1.2982e—12 1.6745¢e—14 2.5603e—16 7.2777e—18
103 9.5650e—13 4.2374e—14 9.5845¢e—16 1.1907e—17 1.3447¢—19
107 1.1282e—14 6.8915e—16 2.8422e—17 6.9320e—19 8.6027e—21
1077 1.1478e—16 7.7799¢—18 4.5896e—19 1.8729¢—20 4.9879¢—22
0.05 T T T T T T T T T
0.045 1
0.04 ]
0.035 | 1
0.03 1
X 0025 + -
>
0.02 1
0.015 | 1
001 F —#— -* YY = Numerical solution |
-1 J | -- YE = Exact solution
L
0.005 1
0 1 1 1 1 1 1 1 1 1

Figure. 3  The graph of exact and numerical solution of Example 2 for N = 40 and & = .

¥(0) =0, y(1) =0,

The analytic solution is y(x) = 6x’¢(1 — x)

The numerical solutions in terms of maximum absolute
errors are given in Tables 1 and 3 with its graph in Figs. 1
and 2 as follows:

Y(0)=0for0<x<1

5

Example 4.2. Consider the following singularly perturbed
problem.

—ey"(x) + y(x) = 81&% cos 3x + 3esin3x,

»(0) =0, y(1)=3esin3,
is y(x) = 3esin3x.

The numerical results in terms of maximum absolute errors
are tabulated in Tables 2 and 3 with its graph given in Fig. 3
and 4.

for,0 < x <1

' (0) = 9¢. The analytical solution

5. Discussion and conclusion

In this paper, the quintic non-polynomial spline method has
been presented for solving third order singularly perturbed
boundary value problems of the reaction—diffusion equation
type. First, the given domain is discretized and the derivative
of the given differential equation is replaced by the spline
approximations. Then, the system is transformed to penta-
diagonal system, which can easily be solved using any appro-
priate methods for solving the systems of linear equations.
To validate the applicability of the proposed method, two
model examples have been considered and solved for different
values of perturbation parameter and different mesh sizes. The
order of convergence has been established for the method and
is convergent to order four. As it can be observed from the
numerical results presented in Tables 1-3 and graphs (Figs 1
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x 107
6 -

Absolute pointwise errors

—+—N=10, e=10"1
—*—N=10, £=10"2
—OS—N=10, £=104

0.5 0.6 0.7 0.8 0.9 1

Figure. 4  Absolute errors decrease as perturbation parameter ¢ decreases for Example 2.

and 3), the present method approximates the exact solution
very well. Moreover, the method has been analyzed by taking
sufficiently small size of /& and perturbation parameter where
other existing numerical methods reported in the literature
may fail.

The results obtained by the present method have been com-
pared with the numerical results obtained by (Ghazala, 2012;
Ghazala and Imran, 2014; and Sonali and Hradyesh, 2015)
and is observed to be more accurate than the methods pro-
posed by the aforementioned scholars. Furthermore, the abso-
lute errors decrease rapidly as &V increases and the perturbation
parameter decreases (Figs. 2 and 4). This method can be
extended to higher order Quintic non-polynomial spline meth-
ods for solving similar problems.
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