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Abstract In this paper, we consider a class of nonlinear transient heat conduction equations with

some supplementary conditions. We apply the operational Tau method with arbitrary polynomial

bases to approximate the solution of these equations. In addition, some theoretical results are given

to simplify and reduce the computational cost. Finally some numerical examples are given to clarify

the efficiency and accuracy of the proposed method.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

A parabolic partial differential equation has extensive applica-
tions in engineering and applied sciences such as phenomena of

dispersion, diffusion, conduction, convection, reaction and dis-
sipation (Su et al., 2009; Helal, 2012; Khan et al., 2012; Ozisik,
1993; Rahman, 2002; Wazwaz, 2009). Most of these equations

are usually difficult to solve analytically, therefore approxi-
mate or numerical techniques must be used. We are interested
in presenting an approximate scheme based on the operational

Tau method to solve nonlinear transient heat conduction
equations with variable thermo-physical properties which can
involve heat generation terms.
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The Tau method can be described as a spectral method with
arbitrary polynomial bases. In fact, the Tau method is a modifi-
cation of the spectral Galerkin method that is applicable to

problemswith non-periodic boundary conditions. Themain dif-
ference between them are the test functions which are not re-
quired individually to satisfy the boundary conditions in the

Tau method (Canuto et al., 2006; Gottlieb and Orszag, 1977).
Ortiz and Samara (1981) proposed an operational approach

to the Tau method as an approximation technique for solving
nonlinear ordinary differential equations with supplementary

conditions. The advantages of this technique are using simple
operational matrices which reduce the computational costs
remarkably, since only non zero elements of these matrices

are needed to save.
During recent years, much work has been done for solving

various types of ordinary differential equations, partial differ-

ential equations, and integral and integro-differential equa-
tions (Ebadi et al., 2007; Ghoreishi and Hadizadeh, 2009;
Hosseini, 2009; Hosseini Aliabadi and Shahmorad, 2002; Liu

and Ortiz, 1989; Liu and Pan, 1999) by the Tau method.
In this work, we state the required preliminaries of the

operational Tau method to apply on nonlinear second-order
partial differential equations. Then, we present a numerical
ing Saud University.
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scheme for solving 1-D nonlinear transient heat conduction
equation of the form

@

@x
kðuÞ @u

@x

� �
þ fðx; tÞ ¼ qcp

@u

@t
; x 2 I ¼ ½a; b�; t > 0; ð1Þ

with the supplementary conditions

Bc1uðx; tÞ ¼ u1ðtÞ; ð2Þ
Bc2uðx; tÞ ¼ u2ðtÞ; ð3Þ
Icuðx; tÞ ¼ wðxÞ; ð4Þ

where f(x, t), u1(t), u2(t) and w(x) are given smooth real valued

functions and the linear operators Bc1 , Bc2 and Ic define the
left-hand side of the supplementary conditions. Note that (2)
and (3) denote the boundary conditions and (4) denotes the ini-

tial condition. For example, these conditions can be expressed
as follows:

c11uða; tÞ þ c12
@u

@x
ða; tÞ ¼ u1ðtÞ; ð5Þ

c21uðb; tÞ þ c22
@u

@x
ðb; tÞ ¼ u2ðtÞ; ð6Þ

uðx; t0Þ ¼ wðxÞ; ð7Þ

where cij are constants.
The parameters q and cp in Eq. (1) denote density and spe-

cific heat, respectively. Also, we assume that the thermal con-

ductivity varies with temperature in the form

kðuÞ ¼ k0ð1þ a1uþ a2u
2Þ; ð8Þ

where k0 is the value of k(u) at reference temperature and a1, a2
are known coefficients.

This paper is organized as follows: In the next section, we
briefly review some preliminaries of the Tau method. Also,

we present some theorems and lemmas to formulate nonlinear
transient heat conduction equation with some given supple-
mentary conditions. In Section 3, we recall an efficient Tau er-
ror estimator. Numerical results of some problems are given in

Section 4 to clarify the efficiency of the method. Finally, Sec-
tion 5 contains the conclusion.

2. Some theoretical results

The operational approach to the Tau method proposed by Or-
tiz and Samara (1981) based on the use of following simple

matrices

l ¼ ½lij�
1
i;j¼0; lij ¼ diþ1;j;

g ¼ ½gij�
1
i;j¼0; gij ¼ ðjþ 1Þdi;jþ1

having the following properties:

Lemma 2.1 Ortiz and Samara, 1981. If yNðxÞ ¼ aNXx, where
aN = (a0,a1, . . . ,aN,0,. . .) and Xx = (1,x, . . . ,xN,. . .)T, then

(a) xyN(x) = aNlXx;
(b) d

dx yN ðxÞ ¼ aNgX x.

Corollary 2.2 Ortiz and Samara, 1981. Generally, under
assumptions of Lemma 2.1, we have

(a) xiXx = liXx;
(b) dr

dxr X x ¼ grX x.

Let /x ¼ f/iðxÞ : i 2N ¼ f0; 1; . . . ;Ngg be a polynomial

basis given by /x ¼ bUXx, where bU is a nonsingular lower tri-
angular coefficients matrix and Xx = (1,x, . . . ,xN)T is the stan-
dard basis. In this work, we assume the approximate solution

has the truncated series form

uNðx; tÞ ¼
XN
i¼0

XN
j¼0

uiðNþ1Þþj/iðxÞ/jðtÞ ¼ u/x;t ¼ uUXx;t; ð9Þ

where u ¼ ðu0; u1; . . . ; uðNþ1Þ2�1Þ is the vector of unknown coef-
ficients, /x,t = /x � /t is a basis for the space of bivariate

orthogonal polynomials with the lower triangular coefficients
matrix U ¼ bU � bU and Xx,t = Xx � Xt is a standard basis
for bivariate polynomials. Note that � denotes the kronecker

product.
In the remaining part of this paper, we assume that l and g

are (N + 1) · (N + 1) matrices.

We proceed to convert Eq. (1) with the supplementary con-
ditions (2)–(4) to the corresponding nonlinear system of alge-
braic equations. To this end, we state some useful lemmas

and theorems.

Theorem 2.3. If uN(x,t) = u/x,t, then

(a) xuN ðx; tÞ ¼ ul̂x/x;t, where l̂x ¼ U~lxU
�1; ~lx ¼ l� I with

the elements
ð~lxÞij ¼ diþNþ1;j; i ¼ 0; 1; . . . ;NðN þ 1Þ � 1; I is an
(N + 1) · (N + 1) identity matrix and d denote the kro-

necker delta;
(b) tuN ðx; tÞ ¼ ul̂t/x;t, where l̂t ¼ U~ltU

�1 and ~lt ¼ I � l
with the elements ð~ltÞii ¼ l; i ¼ 0; 1; . . . ;N;

(c) @p

@xp uN ðx; tÞ ¼ uĝp
x/x;t for p 2 N, where ĝx ¼ U~gxU

�1 and
~gx ¼ g� I with the elements ð~gxÞij ¼ ðjþ 1Þdi;jþ1I ; j ¼
0; 1; . . . ;N � 1;

(d) @q

@tq uN ðx; tÞ ¼ uĝq
t /x;t for q 2 N, where ĝt ¼ U~gtU

�1 and
~gt ¼ I � g with the elements ð~gtÞii ¼ g; i ¼ 0; 1; . . . ;N .

Proof.

(a) By Corollary 2.2 and kronecker product properties, we
can write

xuðx; tÞ ¼ xðu/x;tÞ ¼ uUxðXx � XtÞ ¼ uUðxXxÞ � Xt

¼ uU~lxU
�1/x;t ¼ ul̂x/x;t;

where ~lx ¼ l� I and so

ð~lxÞij ¼
1; j ¼ iþNþ 1; i ¼ 0; 1; . . . ;NðNþ 1Þ � 1;

0; otherwise:

�

which can be written as

ð~lxÞij ¼ diþNþ1;j; i ¼ 0; 1; . . . ;NðNþ 1Þ � 1.
(b) The proof is similar to the proof of part (a).
(c) By Corollary 2.2 and kronecker product properties, we

have

@p

@xp
uNðx; tÞ ¼

@p

@xp
ðu/x;tÞ ¼ uU

@p

@xp
ðXx � XtÞ

¼ uU
@p

@xp
Xx

� �
� Xt ¼ uU~gp

xU
�1/x;t ¼ uĝp

x/x;t;
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where ð~gxÞij ¼ ðjþ 1Þdi;jþ1I; j ¼ 0; 1; . . . ;N� 1.

(d) The proof is similar to the proof of part (c). h

Remark 2.4. The effect of xptq; p; q 2 N on the coefficients of
uN(x,t) = u/x,t is equivalent to post multiplication of u bydlp
xl

q
t , i.e.

xptquNðx; tÞ ¼ udlp
xl

q
t /x;t or x

ptq/x;t ¼ dlp
xl

q
t /x;t;

where dlp
xl

q
t ¼ U~lp

x~lq
tU
�1 and the elements of the matrices ~lp

x

and ~lq
t are determined by

~lp
x

� �
ij
¼

1; j ¼ iþ pðNþ 1Þ; i ¼ 0; 1; . . . ; ðN� pþ 1ÞðNþ 1Þ � 1;

0; otherwise

�

and

~lq
t

� �
ij
¼

lq; i ¼ j; i ¼ 0; 1; . . . ;N;

0; otherwise

�

with (lq)ij = di+q,j,i= 0,1, . . . ,N � q.

In addition, the matrix ~lp
x~lq

t has the following simple form

~lp
x~lq

t ¼ ~lq
t ~l

p
x ¼

�0 B

�0 �0

� �
;

where �0 is an p · p zero matrix and B is an

(N � p+ 1) · (N � p+ 1) diagonal matrix with the elements
lq.

Remark 2.5. The matrices ~gp
x and ~gq

t have the following simple

forms

~gp
x ¼

�0 �0

C �0

� �
;

where

C ¼ diagððpðp� 1Þ � � � � � 1ÞI; ððpþ 1Þp� � � � � 2ÞI; . . . ; ðNðN
� 1Þ � � � � � ðN� Pþ 1ÞÞIÞ;

and

~gq
t ¼ diagðgq; gq; . . . ; gqÞ:

To obtain a matrix representation for the nonlinear part of Eq.

(1), we state the following lemma and corollaries.

Lemma 2.6. Let uN(x,t) = u/x,t = uUXx,t and
vN(x,t) = v/x,t = vUXx,t, where v is a vector similar to u with
elements vi. Then

uNðx; tÞvNðx; tÞ ¼ u bV/x;t ¼ uUVXx;t;

where bV ¼ UVU�1 and Uj’s are the columns of matrix U with

V ¼

vU0 vU1 � � � vUðNþ1Þ2�1
0 vU0 � � � vUðNþ1Þ2�2

..

. ..
. . .

. ..
.

0 0 � � � vU0

0
BBBBB@

1
CCCCCA:

Proof. By assumptions of lemma, we have
uNðx; tÞvNðx; tÞ ¼ uUðXx;t � ðvUXx;tÞÞ;

thus it suffices to show Xx,t · vUXx,t) = VXx,t. By a simple

computation, we can write

Xx;tvUXx;t ¼ ½ð1; t; . . . ; tNÞ; ð1; t; . . . ; tNÞx; . . . ; ð1; t; . . . ; tNÞxN�T

ðv0; v1; . . . ; vðNþ1Þ2�1ÞðU0jU1j . . . jUðNþ1Þ2�1ÞXx;t

¼ ð1; t; . . . ; tNÞv; ð1; t; . . . ; tNÞxv; . . . ; ð1; t; . . . ; tNÞxNv
� �T

� ðU0jU1j . . . jUðNþ1Þ2�1ÞXx;t

¼ ðvU0ÞXx;tjðvU1ÞXx;tj . . . jðvUðNþ1Þ2�1ÞXx;t

	 
T

Xx;t ¼

vU0 vU1 vU2 � � � vUðNþ1Þ2�1
0 vU0 vU1 � � � vUðNþ1Þ2�2
0 0 vU0 � � � vUðNþ1Þ2�3

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � vU0

0
BBBBBBB@

1
CCCCCCCA
Xx;t: �

Corollary 2.7. If uN(x,t) = u/x,t, then

ukNðx; tÞ ¼ u bUk�1/x;t; k 2 N;

where bU ¼ UUk�1U�1 and U is an upper triangular matrix with

elements

Uij ¼
XðNþ1Þ2�1
r¼0

ur/r;j�i; i 6 j; i ¼ 0; 1; . . . ; ðNþ 1Þ2 � 1;

0; i > j:

8><
>:

Corollary 2.8. If uN(x,t) = u/x,t, then

(a) @p

@xp uN ðx; tÞ
� �r ¼ uWpMr�1

p U�1/x;t for p; r 2 N, where

Wp ¼ U~gp
x and

Mp ¼

uWp
0 uWp

1 � � � uWp

ðNþ1Þ2�1

0 uWp
0 � � � uWp

ðNþ1Þ2�2

..

. ..
. . .

. ..
.

0 0 � � � uWp
0

0
BBBBB@

1
CCCCCA:

(b) @q

@tq uN ðx; tÞ
� �s ¼ uCqN s�1

q U�1/x;t for q; s 2 N, where
Cq ¼ U~gq

t and

Nq ¼

uCq
0 uCq

1 � � � uCq

ðNþ1Þ2�1

0 uCq
0 � � � uCq

ðNþ1Þ2�2

..

. ..
. . .

. ..
.

0 0 � � � uCq
0

0
BBBBB@

1
CCCCCA:

Corollary 2.9. If uN(x,t) = u/x,t, then

(a) uk
N ðx; tÞ @

p

@xp uN ðx; tÞ ¼ u bU k�1 bM p/x;t; k; p 2 N;
(b) uk

N ðx; tÞ @
q

@tq uN ðx; tÞ ¼ u bU k�1 bN q/x;t; k; q 2 N,

where bUk�1 ¼ UUk�1U�1; cMp ¼ UMpU�1 and bNq ¼
UNqU�1.

To convert Eq. (1) to a matrix form, we assume that the
right-hand side of (1) has the following form
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fðx; tÞ ¼
XN
i¼0

XN
j¼0

fiðNþ1Þþj/iðxÞ/jðtÞ ¼ f/x;t ¼ fUXx;t; ð10Þ

where f ¼ ðf0; f1; . . . ; fðNþ1Þ2�1Þ.
Using the above results, we have provided all requirements

to convert Eq. (1) and supplementary conditions (2)–(4) to the
corresponding matrix representation.

For simplicity, we write Eq. (1) in the operator form

Duðx; tÞ ¼ fðx; tÞ; ð11Þ

where

D ¼ qcp
@

@t
� @

@x
k
@

@x

� �
; ð12Þ

is a differential operator.
Replacing the approximate solution (9) in 2,3,4 and (11)

and using the above lemmas and theorem gives

u bPD ¼ f; ð13Þ
u bBc1 ¼ u1; ð14Þ
u bBc2 ¼ u2; ð15Þ
ubIc ¼ w; ð16Þ

where bPD; bBc1 ;
bBc2 and

bIc are the corresponding matrix repre-
sentation of Eq. (1) and supplementary conditions (2)–(4),

respectively.

Remark 2.10. The matrix bPD in Eq. (13) has the following
structurebPD ¼ qcpĝt

� k0 ĝx þ a1ðWM1U
�1 þ cM2Þ þ a2ð2UM1U

�1 þ bUcM2Þ
h i

;

where

M1 ¼

uðfM1Þ0 uðfM1Þ1 � � � uðfM1ÞðNþ1Þ2�1
0 uðfM1Þ0 � � � uðfM1ÞðNþ1Þ2�2
..
. ..

. . .
. ..

.

0 0 � � � uðfM1Þ0

0
BBBBBB@

1
CCCCCCA;

and fM1 ¼ WM1.

Set bG ¼ ð bPD; bBc1 ;
bBc2 ;

bIcÞ and g = (f,u1,u2,w). Then, the
nonlinear systems of Eqs. (13)–(16) can be written as

u bG ¼ g; ð17Þ
which is constructed as follows:

(i) Choose the corresponding equations obtained from sup-

plementary conditions (14)–(16) (3(N+ 1) equations).
(ii) Choose (N + 1)2 � 3(N + 1) equations from nonlinear

system of Eq. (13).

Solving the system (17) gives the unknown coefficients
fukgðNþ1Þ

2�1
k¼0 and so, the approximate solution uN(x, t) is

obtained.

3. Error estimation

Whenever the solution of a problem is not known, specially in

nonlinear phenomena, an error estimator is needed as a vital
component of the algorithm. To this end, an error estimator
for the proposed method is presented in this section.

Define the error function as

eNðx; tÞ ¼ uðx; tÞ � uNðx; tÞ: ð18Þ

Substituting uN(x, t) into (2)–(4), (11), yields

DuNðx; tÞ ¼ fðx; tÞ þHNðx; tÞ; ð19Þ
Bc1uNðx; tÞ ¼ u1ðtÞ; ð20Þ
Bc2uNðx; tÞ ¼ u2ðtÞ; ð21Þ
IcuNðx; tÞ ¼ wðxÞ; ð22Þ

where HN(x, t) is a perturbation term. Subtracting (19)–(22)

from (11), (2)–(4) respectively, gives

DeNðx; tÞ ¼ �HNðx; tÞ; ð23Þ
Bc1eNðx; tÞ ¼ 0; ð24Þ
Bc2eNðx; tÞ ¼ 0 ð25Þ
IceNðx; tÞ ¼ 0: ð26Þ

Now, we can proceed by the same way as we did in Section 2 to

get the estimation eN,M(x,t) to the error function eN(x,t).

4. Numerical results

In this section, we illustrate by numerical examples the effi-
ciency and accuracy of the proposed method where the ’’Abso-
lute Errors’’ and ’’Estimate Errors’’ are reported at some

arbitrary selected points. Note that, non-polynomial terms of
the problem or supplementary conditions must be approxi-
mated by polynomials of suitable degrees.

Example 4.1. Consider the following nonlinear transient heat

conduction equation

@

@x
kðuÞ @u

@x

� �
þ fðx; tÞ ¼ @u

@t
; x 2 ½0; 1�; t > 0;

where

kðuÞ ¼ 1þ u2;

and

fðx; tÞ ¼ 1� 2x� 2t;

with the supplementary conditions

uð0; tÞ ¼ t; uð1; tÞ ¼ 1þ t; uðx; 0Þ ¼ x:

The exact solution of this problem is u(x,t) = x + t. For
N= 2 and using the standard basis, the proposed method

gives the nonlinear system

u0 ¼ u2 ¼ u6 ¼ 0;

u1 ¼ u3 ¼ 1;

u4 þ u7 ¼ 0;

u5 þ u8 ¼ 0;

u0ð2u0u7 þ 2u1u6 þ 4u3u4Þ þ u1ð2u0u6 þ 2u23Þ � 2u2 þ 2u7 ¼ 2;

u0ð2u0u8 þ 2u1u7 þ 2u2u6 þ 4u3u5 þ 2u24Þ
þu1ð2u0u7 þ 2u1u6 þ 4u3u4Þ
þu2ð2u0u6 þ 2u23Þ þ 2u8 ¼ 0;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:



Table 4 Maximum absolute errors of perturb problem of

Example 4.3.

e N = 4 N = 8

10�3 9.9845e�03 3.3240e�06
10�5 9.5500e�03 3.2132e�06
10�7 9.2408e�03 3.1425e�06

Table 2 Absolute errors of Example 4.3.

(x,t) N= 4 N= 8 N = 10

(0.1,0.1) 8.4742e�09 2.7835e�16 3.1880e�17
(0.2,0.2) 5.5163e�07 2.8794e�13 4.1700e�17
(0.3,0.3) 6.3923e�06 1.6774e�11 1.3453e�14
(0.4,0.4) 3.6546e�05 3.0095e�10 4.3508e�13
(0.5,0.5) 1.4189e�04 2.8321e�09 6.3847e�12
(0.6,0.6) 4.3128e�04 1.7720e�08 5.7408e�11
(0.7,0.7) 1.1073e�03 8.3660e�08 3.6819e�10
(0.8,0.8) 2.5127e�03 3.2141e�07 1.8440e�09
(0.9,0.9) 5.1891e�03 1.0550e�06 7.6460e�09
(1,1) 9.9485e�03 3.0586e�06 2.7314e�08

Cpu time (s) 2.90 5.75 15.50

Table 3 Estimate errors of Example 4.3.

(x,t) N= 4 N = 8

(0.1,0.1) 7.5201e�09 2.2836e�16
(0.2,0.2) 5.4793e�07 2.3491e�13
(0.3,0.3) 6.3840e�06 1.4720e�11
(0.4,0.4) 3.6528e�05 2.8526e�10
(0.5,0.5) 1.4175e�04 2.6355e�09
(0.6,0.6) 4.3122e�04 1.7418e�08
(0.7,0.7) 1.1068e�03 8.3544e�08
(0.8,0.8) 2.5112e�03 3.2082e�07
(0.9,0.9) 5.1825e�03 1.0455e�06
(1,1) 9.9436e�03 3.0545e�06

Cpu time (s) 3.15 6.00
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with the solution {u1 = u3 = 1, ui = 0 for i „ 1,3} which leads

to the exact solution. Indeed, as mentioned in Ortiz and Sa-
mara (1981), the operational Tau method for equations with
polynomial solution is exact, whenever the degree of the Tau

approximation is at least equal to the degree of solution.

Example 4.2. Consider a plane wall having variable thermo-
physical properties (thermal conductivity, specific heat and
density) in which its surface temperatures are related to the

time. We assume that a heat sink or heat source is presented
in the wall in which the magnitude of released or dissipated
energy is a nonlinear function of space and temperature (for

examples chemical reaction or electrical resistance). Also, the
ambient temperature is zero. The following nonlinear heat
conduction equation can be obtained using the first law of
thermodynamics

@

@x
kðuÞ @u

@x

� �
þ fðx; tÞ ¼ u2

@u

@t
; x 2 ½0; 1�; t > 0:

In a special case we assume that thermo-physical properties
and sum of heat flux are

kðuÞ ¼ 1þ uþ 1

2
u2;

and

fðx; tÞ ¼ � sin2 tð1þ x sin t� x3 cos tÞ:

The supplementary conditions are assumed to be of the Dirich-

let kind, namely

uð0; tÞ ¼ 0; uð1; tÞ ¼ sin t; uðx; 0Þ ¼ 0:

The exact solution of this problem is u(x, t) = x sin t.
Table 1 shows the absolute errors with respect to shifted

Chebyshev basis functions at the selected points for various
choices of N.

Example 4.3. Consider the nonlinear transient heat conduc-
tion equation of the form

@

@x
kðuÞ @u

@x

� �
þ fðx; tÞ ¼ @u

@t
; x 2 ½0; 1�; t > 0:

with supplementary conditions

uð0; tÞ ¼ 0; uð1; tÞ þ @uð1; tÞ
@x

¼ 2et; uðx; 0Þ ¼ x;

where thermo-physical properties and sum of heat flux are

kðuÞ ¼ 1þ u2;
Table 1 Absolute errors of Example 4.2.

(x,t) N = 4 N= 8 N= 12

(0.1,0.1) 8.3313e�09 2.7555e�16 2.0000e�22
(0.2,0.3) 4.0413e�06 1.0839e�11 5.1200e�18
(0.4,0.3) 8.0827e�06 2.1679e�11 1.0230e�17
(0.5,0.5) 1.2944e�04 2.6850e�09 9.7900e�15
(0.6,0.8) 1.6136e�03 2.2064e�07 5.2810e�12
(0.7,0.8) 1.8826e�03 2.5741e�07 6.1612e�12
(0.8,0.9) 3.8616e�03 8.4784e�07 3.2530e�11
(0.9,0.8) 2.4205e�03 3.3096e�07 7.9215e�12
(1,1) 8.1376e�03 2.7308e�06 1.5983e�10

Cpu time (s) 3.80 7.10 19.80
and
fðx; tÞ ¼ xetð1� 2e2tÞ:

The exact solution of the problem is u(x,t) = xet.

The absolute and estimate errors for this example with
respect to shifted Chebyshev basis for various choices of N,
reported in Tables 2 and 3, show the accuracy and efficiency of

the proposed method. These results confirm that the absolute
and estimate errors are in good agreement.

To check the stability of the proposed method, we perturb
the coefficients of approximate solution by e = 10�3, 10�5 and
10�7. Then, we solve the perturbed problem by the method and

find out that there are no total changes in the final results.
Table 4 shows the maximum absolute errors of the perturbed
problem with respect to shifted Chebyshev basis for various

choices of N.
5. Conclusion

In this work, a computational method based on the
operational Tau method is present for solving 1-D nonlinear
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transient heat conduction equations by converting it and nec-
essary supplementary conditions to a nonlinear system of
equations. Our results indicate the proposed algorithm can

be regarded as a structurally simple algorithm and high supe-
rior performance that is conventionally applicable to the
numerical solution of these type of equations. The accuracy

of the method is improved as the degree of approximation is
increased.
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