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Abstract In this paper, a continuous-time model of a production inventory system in which a man-

ufacturing firm produces a single product selling some and stocking the remaining is considered.

Model reference adaptive control with feedback is applied to track the output of the system (the

inventory level) toward the inventory goal level. The theory is illustrated by the presentation of

the results of computer simulation studies of this particular system.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Applications of optimal control theory to management

science, in general, and to production planning, in particular,
are proving to be quite fruitful; see Sethi and Thompson
(2000). Naturally, with the optimal control theory, optimal

control techniques came to be applied to production planning
problems. For example,

� Self-tuning control: Hedjar et al. (2007) study how to use

control and identification methods for controlling the sys-
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tem when its parameters are not all a priori known to the
designer.
� Receding-horizon control: Hedjar et al. (2005) applied a dis-

crete-time technique in which the control action is obtained
by repeatedly solving on-line open-loop optimization prob-
lems at each time step.
� Predictive control: Hedjar et al. (2004) used a j-step ahead

predictor to predict the tracking error. An identification
algorithm is incorporated to estimate the model parameters
in the case where they are unknown.

In this paper we apply yet another optimal control tech-
nique, called model reference adaptive control (MRAC), in

which the performance specifications are given in terms of a
model (or targets, or goals); see for example Sastry and
Bodson (1989). The goals represent the ideal state of the
process. Adaptive control is therefore similar to self-tuning

control in that it also attempts to overcome unknown or
varying system dynamics while achieving adequate tracking
performances.
ier B.V. All rights reserved.
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In order to apply the MRAC to the problem of production

planning, we will be using another concept from optimal
control theory that of feedback control. This concept was first
applied by James Watt to control the speed of his steam engine
about 200 years ago. Since then, the number of industrial

applications has increased to the point that most automatic
control systems today include feedback control. As we pro-
gress, we will occasionally make use of some notions from

the theory of optimal control that may not be familiar to the
management scientists. Each time this proves to be necessary,
we will be giving, for the novice, the definition of such notions.

In the next section we introduce the notation and formally de-
scribe the system. We are assuming that the firm of interest to
us adopts a continuous-review (instead of a periodic-review)

policy. In Section 3 we derive the optimal control variable
when all system parameters are known while in Section 4, we
derive the optimal control variable when not all system param-
eters are known. Illustrative examples are provided in both

Sections 3 and 4.
2. Model assumptions and notation

We consider the classical production planning problem in
which a manufacturing firm producing a single item, selling

some and stocking the remaining units. We assume that the
firm has set an inventory goal level and a production (or con-
trol) goal rate. We also assume that a proportion of the units

in stock deteriorate at a constant rate which may be known or
unknown. Item deterioration is of great importance in inven-
tory theory see Goyal and Giri (2001). In this paper, we apply
an optimal control technique, called model reference adaptive

control (MRAC) to the fore cited production planning prob-
lem where the firm adopts a continuous-review policy, that
is, the inventory level is monitored continuously. To state

the model we use the following notation:

I(t): inventory level at time t,

P(t): production rate at time t (P(t) P 0),
D(t): demand rate at time t,
h: constant deterioration rate (h > 0),

Id(t): inventory goal level at time t,
Pd(t): production goal rate at time t (Pd(t) P 0).

The interpretation of the goal rates is as follows:

� The inventory goal level Id(t) is a safety stock that the firm
wants to keep on hand at time t.

� The production goal rate Pd(t) is the most efficient rate
desired by the firm at time t.

Given a reference model in terms of goals Id for the inven-
tory level I (state variable) and Pd for the production rate P,
the objective of the control problem is to choose an appropri-

ate production rate P such that all the functions involved are
bounded and I tracks Id.

Since demand occurs at rate D, production occurs at the
controllable rate P, and deterioration occurs at a constant rate

h, it follows that the inventory level I evolves at each instant of
time t according to the state equation

_I ¼ �hIþ P�D: ð2:1Þ
Letting u ¼ P�D (which will be considered in the sequel as

the control variable), the state equation (2.1) becomes

_I ¼ �hIþ u: ð2:2Þ

The pair (Id, ud) satisfies the differential equation

_Id ¼ �adId þ bdud; ð2:3Þ

where the parameters ad and bd are selected by the firm. In
what follows, we give some explanation of how ad and bd are
chosen.

In the analysis of process dynamics, the process variables
and controls are functions of the time t.

Taking the Laplace transform of both sides of (2.3), we

have:

IdðsÞ ¼
bd

sþ ad
udðsÞ: ð2:4Þ

For any bounded piecewise continuous goal ud(s). Id and ud are
measured at each time t.

The parameter ad, which is chosen to be positive (ad > 0) in
order to ensure the stability of the reference model, represents

the rate of convergence of the desired inventory level.
Since the final value of the desired inventory level is given

by: limt!1IdðtÞ ¼ bd
ad
udðtÞ or Idð1Þ ¼ bd

ad
udð1Þ. One can choose

the parameter bd to tune the gain bd
ad
between the input/output

of the reference model. The parameter bd is also chosen to be
positive (bd > 0) in order to preserve the sign between the in-

put and the output of the reference model.
Further, the form of Eq. (2.4) allows us to break the

transform of the output variable (namely the desired inven-

tory level Id) into the product of two terms: the fraction,
known as the transfer function, and the transform of the in-
put variable (namely the desired production rate ud). The
transfer function and its parameters characterize the process

and determine how the output variable responds to the input
variable.

As we mentioned in Section 1, our aim in this paper is to

illustrate an application of the MRAC technique by applying
it to a management science problem, namely the production
planning problem. In Hedjar et al. (2004, 2005, 2007), a

reference model ðId; udÞ is given and the objective is to obtain
the state and control (I, u) that minimize a performance index
defined as the sum of the penalty costs incurred when (I, u)

deviate from their respective goals (Id, ud). In the MRAC
technique, no objective function is designed. The reference
model (Id, ud) is still given and the goal is to determine the
control u so that the state variable I tracks its goal Id.

The next section treats the case where the deterioration rate
h is known. Then, in the following section we will be dealing
with the case when h is unknown.
3. Model reference control

For I to track Id for any goal control ud, the control variable u
should be chosen so that the transfer function from the input ud
to the output I is equal to that of the reference model. As men-

tioned in Section 1, we propose the following feedback control

u ¼ �k�Iþ ‘�ud; ð3:1Þ

where k� and ‘� need to be calculated. Substituting (3.1) into
(2.2), we get
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_I ¼ �ðhþ k�ÞIþ ‘�ud: ð3:2Þ

So that the transfer function from the input ud to the output I
is given by

IðsÞ
udðsÞ

¼ ‘�

sþ hþ k�
: ð3:3Þ

From (2.4), the transfer function of the model is given by

IdðsÞ
udðsÞ

¼ bd
sþ ad

: ð3:4Þ

These transfer functions are equal provided we choose

‘� ¼ bd and k� ¼ ad � h: ð3:5Þ

Therefore, it suffices to choose

u ¼ ðh� adÞIþ bdud: ð3:6Þ

And hence the production rate

P ¼ Dþ ðh� adÞIþ bdud:

The control variable (3.6) guarantees that the transfer function
IðsÞ
udðsÞ

is equal to that of the reference model. Such a transfer

function matching guarantees that IðtÞ ¼ IdðtÞ; 8t P 0 when
Ið0Þ ¼ Idð0Þ or jIðtÞ � IdðtÞj ! 0 exponentially fast when
Ið0Þ– Idð0Þ, for any bounded goal control ud.

Simulation example: Let us assume, for example, that items

in stock deteriorate at a rate of h ¼ 0:01, so that

IðsÞ
uðsÞ ¼

1

sþ h
¼ 1

sþ 0:01
: ð3:7Þ

Also, let ad ¼ 0:1 and bd ¼ 1, so that

IdðsÞ
udðsÞ

¼ bd
sþ ad

¼ 1

sþ 0:1
:

According to Eq. (3.5), the control parameters are given by

‘� ¼ 1 and k� ¼ 0:09:

The optimal control is

u ¼ �0:09Iþ ud:

And the production rate is

P ¼ D� 0:09Iþ ud:

Note that from Eq. (3.7), we have
1

1
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Figure 1 Results of model re
lim
t!1

Id ¼
bd
ad

ud ¼ 10ud:

Now if we want, for instance, the inventory level I to tend to,

say, 10, we just need to choose ud = 1. As an illustration, let us
assume a seasonal demand of rate

DðtÞ ¼ 5þ 5 sinðpt=64Þ:

A simulation was conducted for 100 units of time and the re-

sults are depicted in Fig. 1. The inventory level tracking per-
fectly the inventory goal level is shown on the left while the
production and demand rates are shown on the right.
4. Model reference adaptive

A situation virtually always met in practice occurs when the
deterioration rate is unknown. When the parameter h is un-
known, the control (3.1) cannot be implemented. Therefore,

instead of (3.1), we propose the control

u ¼ �kðtÞIþ ‘ðtÞud; ð4:1Þ

where k(t) and ‘ðtÞ are the estimates of k* and ‘�, respectively,
at time t, and search for an adaptive law to generate k(t) and

‘ðtÞ online. Therefore, we can view the problem as an online
identification problem of the unknown constants k* and ‘�.
We start with the state equation (2.2) which we express in
terms of k* and ‘� by adding and subtracting the desired input

terms �k�Iþ ‘�ud to obtain

_I ¼ �hIþ u ¼ �hIþ u� ð�k�Iþ ‘�udÞ
¼ �ðhþ k�ÞIþ ‘�ud þ k�I� ‘�ud þ u:

From (3.5), one gets

_I ¼ �adIþ bduþ ðk�I� ‘�ud þ uÞ;

i.e., using the Laplace transform

IðsÞ ¼ bd
sþ ad

udðsÞ þ
1

sþ ad
½k�IðsÞ � ‘�udðsÞ þ uðsÞ�: ð4:2Þ

Because IdðsÞ ¼ bd
sþad

udðsÞ is known and bounded, we express

(4.2) in terms of the tracking error defined as

eðsÞ :¼ IðsÞ � IdðsÞ;
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i.e.,

eðsÞ ¼ 1

sþ ad
½k�IðsÞ � ‘�udðsÞ þ uðsÞ�: ð4:3Þ

Substituting u ¼ �kðtÞIþ ‘ðtÞud in (4.3) and defining the
parameter errors

DkðtÞ :¼ kðtÞ � k� and D‘ðtÞ :¼ ‘ðtÞ � ‘�:

We have

eðsÞ ¼ 1

sþ ad
½�DkIðsÞ þ D‘udðsÞ�:

Or in the time domain,

_e ¼ �adeþ ð�DkIþ D‘udÞ: ð4:4Þ

The development of a differential equation (4.4) relating the
estimation error with the parameter error is a significant step

in deriving the adaptive laws for updating k(t) and ‘ðtÞ. We as-
sume that the structure of the adaptive law is given by

_k ¼ f1ðe; I; ud; uÞ and _‘ ¼ f2ðe; I; ud; uÞ; ð4:5Þ

where the functions f1 and f2 are to be designed.
4.1. Lyapunov approach

Late in the nineteenth century, Lyapunov (Khalil, 2002; Sastry
and Bodson, 1989) developed an approach to stability analysis

that is widely used at the present time, known as the direct
method. In a nutshell, this method consists of exhibiting a po-
sitive scalar function V such that _V 6 0. Such a function is
called Lyapunov function and has the origin as a stable equi-

librium point. The Lyapunov function is not unique; rather,
many different Lyapunov functions may be found for a given
system. Likewise, the inability to find a satisfactory Lyapunov

function does not mean that the system is unstable. In the con-
text of adaptive control, the use of the Lyapunov approach al-
lows us not only to analyze the stability properties of the

system but also to design an adaptive law for k and ‘. First,
we recall below, Lyapunov theorem which allows us to differ-
entiate between the stability and asymptotic stability of a
system.

Theorem (Khalil, 2002). Let x = 0, be an equilibrium point for
a general nonlinear system modeled by:

_x ¼ fðx; tÞ where t 2 Rþ and x 2 Rn:

Let D � Rn be a domain containing the equilibrium point
x = 0 and define: V : D! R be a continuously differentiable

function such that: Vð0Þ ¼ 0 and VðxÞ > 0 in D � {0}:

� If _V ðxÞ 6 0 in D, then x ¼ 0 is stable. This means that given
e > 0; 9r 2 ð0; e�, such that Br ¼ fx 2 Rn=kxk < r < eg �
D.

� If _V ðxÞ < 0 in D� f0g, then x ¼ 0 is asymptotically stable,
i.e., 8xð0Þ 2 D, kxð0Þk < d! kxðtÞk ! 0 as t!1.

Using this theorem, we will show that our closed loop sys-
tem is stable.

Consider the function
Vðe;Dk;D‘Þ ¼ e2

2
þ Dk2

2c1
þ D‘2

2c2
; ð4:6Þ

where c1; c2 > 0, as a Lyapunov candidate for the system de-
scribed by (4.4) and (4.5). The time derivative _V along any tra-

jectory of (4.4) and (4.5) is given by

_V ¼ �ade2 � DkeIþ D‘eud þ
Dk
c1

f1 þ
D‘
c2

f2

¼ �ade2 þ
f1
c1
� eI

� �
Dkþ f2

c2
þ eud

� �
D‘: ð4:7Þ

The indefinite terms in (4.7) disappear if we choose

f1 ¼ c1eI and f2 ¼ �c2eud:

Therefore, for the adaptive law,

_k ¼ c1eI and _‘ ¼ �c2eud: ð4:8Þ

Which lead to?

_V ¼ �ade2 < 0: ð4:9Þ
4.2. Stability analysis

The inventory system closed by the time varying feedback (4.1)
can be represented by:

_e ¼ �adeþ D‘ud � DkI;

D _k ¼ c1eI;

D _‘ ¼ �c2eud:

8<
:
The above closed loop system can be written under matrix

form: _x ¼ Aðt; I; udÞxðtÞ where x ¼ ½ e Dk D‘ �T represents

the state of the inventory system in closed loop and

Aðt; I; udÞ ¼
�ad �I ud
c1I 0 0
�c2ud 0 0

2
4

3
5 is the state matrix.

The Lyapunov function can be rewritten as:

Vðe;Dk;D‘Þ ¼ VðxÞ ¼ e2

2
þ Dk2

2c1
þ D‘2

2c2
¼ 1

2
xTCx > 0. Since the

matrix C ¼
1 0 0
0 1

c1
0

0 0 1
c2

2
4

3
5 is positive definite, that is, VðxÞ > 0

in R3 � f0g where 0 ¼ ½ 0 0 0 �T is the equilibrium point

or the origin of the closed loop system. We have _VðxÞ ¼
�ade 6 0.

Note that:

� When e – 0, _V < 0, the state xðtÞ converges toward the
equilibrium point provided the tracking error e – 0, until
the state reaches the origin, in which case e ¼ 0, Dk ¼ 0,

i.e., kðtÞ ¼ k� and D‘ ¼ 0, i.e., ‘ ¼ ‘�.
� When e ¼ 0 before x(t) reaches the equilibrium point, _V ¼ 0

and according to the theorem given above, x(t) converges to

x0, where x0 ¼ ½ 0 �k �‘ �T , where �k and �‘ are constants.

Thus, we have the tracking error e ¼ 0, IðtÞ ¼ Id , Dk ¼ �k,

i.e., kðtÞ ¼ k� þ �k and D‘ ¼ �‘, i.e., ‘ðtÞ ¼ ‘� þ �‘.

This shows that our system is stable and not asymptotically
stable. Although in control theory, it is usually preferable to
have an asymptotic stability ðxðtÞ ! 0Þ instead of stability,

in our case, stability ðe! 0Þ is sufficient since the tracking per-
formance is achieved ðIðtÞ ! IdÞ.
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Figure 2 Convergence results of model reference adaptive control simulation.
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Implementation: The MRAC control law (4.1) and (4.8) is
easily implemented. The adaptive gains c1 and c2 can be chosen
to be any positive real numbers; see Sastry and Bodson (1989).

It is to be noted however that these values affect the transient
performance of the closed loop system: large c1, c2 lead to fas-
ter convergence. The initial values kð0Þ; ‘ð0Þ are chosen to be a

priori guesses of the unknown parameters k and ‘, respectively.
Small initial parameter error usually leads to better transient
behavior. The reference model and input ud are designed so
that Id describes the optimal trajectory to be followed by the

state equation.
Simulation example: Consider the data of the previous

section example, except for the deterioration rate h that is sup-

posed to be unknown now. We also take

Id ¼
10; 0 6 t < 100;

5; 100 6 t 6 200;

�
and ud ¼

1; 0 6 t < 100;

0:5; 100 6 t 6 200:

�

And c1 ¼ c2 ¼ 0:2. A simulation was conducted for 200 units

of time. First we show in Fig. 2 the convergence of k(t) to �k
(left) and ‘ðtÞ to �‘. Note that these results have been expected
in the stability analysis.

Fig. 3 shows the variations of the inventory level I(t) and
the inventory goal level Id (left) and the variations of the pro-
duction rate P(t) and demand rate D(t) (right). It is depicted
that after transient time, the inventory level I(t) tracks per-
fectly the inventory goal level IdðtÞ.
5. Conclusion

We have shown in this paper how to use an optimal control
technique known as ‘Model reference adaptive control with
feedback’ to solve a production-inventory planning problem.

Simulations have been conducted to validate the results ob-
tained. As a future research direction, we suggest the use of
this technique on other inventory models, particularly those
involving more than one differential equation, and on prob-

lems from other fields, such as economics, finance, etc.
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