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Introduction: Paracetamol (acetaminophen) is a medicine used for the treatment of fever, pain, and
inflammation during pneumococcal infection.
Objectives: To see how paracetamol affects the transcriptional profile of Streptococcus pneumonia across
the genome.
Methods: In this study, microarray analysis was performed for transcriptional profiling.
Results: Transcriptome data showed differential expression of several genes in S. pneumoniae D39 wild-
type incorporated with paracetamol in the growth medium. Furthermore, these genes were categorized
using Clusters of Orthologous Groups (COG) functional categorization on the basis of the suspected func-
tions of the respective proteins. The majority of differentially expressed genes are in COG categories E
(Amino acid transport and metabolism) and I (Lipid transport and metabolism). Analysis of protein–pro-
tein interaction networks exhibited compactly connected networks between fatty acid transport/biosyn-
thesis and antibiotic biosynthesis genes. Moreover, pathways enrichment analysis revealed that fatty acid
metabolism and biosynthesis genes were significantly affected under the criteria we’ve established.
Conclusion: These results suggest the fatty acid biosynthesis and metabolism genes to be potential target
of paracetamol in S. pneumoniae D39 wild-type.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

An opportunistic pathogen of humans, Streptococcus pneumo-
niae, inhabits the mucosa of nasal portions and causes sinusitis,
otitis media, sepsis, meningitis and pneumonia which results
about a million people deaths every year worldwide (O’Brien
et al., 2009). Multi-resistant pneumococcal strains’ emergence
and dissemination has been on the rise since mainstream drugs
usage worldwide (Kim et al., 2016). Generation of resistant pneu-
mococcal clones results through adaptation to drug pressures
enforced although they reside within the human upper respiratory
tract (Kim et al., 2016). Most pneumococcal antimicrobial resis-
tances have basic causal factors that have been uncovered (Kim
et al., 2016). The escalating rates of resistance to antibiotics to all
currently available treatments, along with an almost empty phar-
macological pathways for new drugs, has caused a panic in drug
discovery efforts around the world (Brockhurst et al., 2019).
Though different drugs have shown potency against most pneumo-
coccal infections, the existing options are limited against some
pneumococcal isolates (Kim et al., 2016).

Several factors are deemed liable for the development of resis-
tance among intrusive pneumococcal disease cases including mod-
ern drug usage (foremost risk factor) (Levine et al., 1999), age
(predominantly children below 5 years of age) and pediatric sero-
types (serotypes found commonly in children), hospitalization,
attending day care, female gender, living in an urban area, HIV
infection and immunosuppression (Levine et al., 1999). At present,
>40 % of pneumococcal isolates lack significant conjugate vaccine
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coverage and are penicillin resistant in several countries (Torné
et al., 2014). Paracetamol is deemed as the first-line remedy for
an acute sore throat. Nonetheless, in primary care, antibiotics are
still normally prescribed as first-line treatment for sore throat.
Therefore, we believe that it would be very interesting to give a
try to a less-problematic and routinely used medication paraceta-
mol (acetaminophen/APAP) and investigate the response of pneu-
mococcus to paracetamol at molecular level. Moreover,
paracetamol has been shown to enhance biofilm formation in
human pathogen Staphylococcus aureus. This research elucidates
the impact of paracetamol on the whole transcriptome of pneumo-
coccus and highlights the putative targets of paracetamol in pneu-
mococcus by differential network analysis and pathway
enrichment analysis.
2. Methods

2.1. Bacterial strains and growth experiments

S. pneumoniae D39 wild-type strain was used for our research.
Growth of S. pneumoniae D39 was performed as mentioned before
(Afzal et al., 2015). S. pneumoniae from�80 �C stocks were first pla-
ted on blood agar plates overnight. Next day, bacteria were taken
from the blood agar plates and inoculated in GM17 (0.5 % glu-
cose + M17) and grown overnight. Fresh cultures from the over-
night grown bacteria were used for our experiments.
2.2. RNA extraction, cDNA preparation and hybridization

Wild-type S. pneumoniae D39 was grown in chemically defined
media (CDM) (in replicates) with 0 and 5 mM paracetamol were
used for microarrays analysis. Paracetamol was purchased from
Sigma Aldrich. For RNA isolation, cells in their corresponding
mid-exponential phase (grown for about 6–7 h) were harvested.
The extraction of RNA and preparation of cDNA was executed as
elucidated before (Afzal et al., 2015). All other aspects of the
microarray experiment were carried out as depicted earlier (Afzal
et al., 2015).
2.3. Microarray data analysis

The microarray acquisition and analysis software, GenePix� Pro
6, was utilized to perform a pre-analysis on spotted microarray
slides. The data was then normalized and processed using the
Microprep software program, which was developed in-house
(van Hijum et al., 2003). Statistical analysis were executed as
depicted previously (van Hijum et al., 2005). Cyber-T integration
of a variant of t-test was performed (https://bioinformatics.biol.
rug.nl/cybert/index.shtml) and FDRs (False Discovery Rates) were
measured as mentioned before (van Hijum et al., 2003). A fold shift
cut-off 1.5, FDR < 0.05 and Bayesian p-value of < 0.001were applied
to categorize differentially expressed genes. PePPER software pack-
age was utilized to perform additional computer research on the
data in order to forecast regulatory networks and data mining
(de Jong et al., 2012).
2.4. Analysis of protein–protein interaction (PPI) network

The protein–protein interaction (PPI) network was built and
visualized via STRING with the default threshold of a combined
score > 0.4 (Szklarczyk et al., 2017). Moreover, nodes denote bio-
logical molecules and the nodes are connected by the edges to
show their interaction. The important nodes in the PPI network
were identified using their connection degrees.
2

2.5. Functional enrichment analysis

Functional annotation analysis was executed using the Search
Tool for the identification of associated Genes to further investigate
biological processes of genes expressing in numerous ways in
involvement of paracetamol (Szklarczyk et al., 2017). With p-
values < 0.05, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathways were considered enriched.
3. Results

3.1. Transcriptomic response of S. Pneumoniae to paracetamol

Paracetamol is one of the WHO’s (World Health Organization)
essential medicines, that are considered to be the most effective
and the safest medicines required in a health system and usually
used for mild to moderate pain relief (Lee, 2017). It could be used
in conjunction with opioid pain medications for intense pain, such
as cancer suffering and post-surgery pain (Scottish Intercollegiate
Guidelines Network, 2008). In this study, we tested the exposure
of the paracetamol on the whole transcriptome of wild-type of S.
pneumoniae D39. Comparisons of microarrays of S. pneumoniae
D39 grown in CDMwith (5 mM) and without paracetamol was per-
formed. A variety of genes/gene clusters was expressed in numer-
ous ways in the involvement of paracetamol (Table 1). 54 genes
were positively regulated during involvement of paracetamol, as
opposed to negative regulation of 20 genes. Based on the proposed
functions of the related proteins, these genes are additionally clas-
sified into COG functional classes (Table 2).

The expression of glnA-glnR, glnPQ and gdhAwas downregulated
in the administration of paracetamol. In the vicinity of a nitrogen
source, the expression of these genes has been shown to be down-
regulated (Kloosterman et al., 2006). GlnR regulon genes play a role
in pneumococcal pathogenesis, with glnA participating to blood
colonization and resilience, and glnP crucial for lung survival and
probably essential for effective transfer from the lungs to the blood
(Kloosterman et al., 2006). An important iron operon spd-1650–2
(piuABC) was found to be downregulated under our tested condi-
tions. This system is among three major iron transport systems
in pneumococcus and codes for an ABC transporter (Brown et al.,
2002). This ABC transporter has specific roles in respiratory colo-
nization and disease and is believed to be important for virulence
in S. pneumoniae (Kadioglu et al., 2008).

A mannose-specific phosphotransferase system (manLMN) and
a couple of genes (malPQ) programming for maltose utilization
proteins were also expressed in numerous ways in the involve-
ment of paracetamol. Maltose genes are positively regulated dur-
ing involvement of paracetamol in the medium, whereas the
mannose transporter genes are downregulated. Several gens were
upregulated in the presence of paracetamol including a group of
genes normatively encoding chaperones and heat-shock proteins
and few genes participated in production and conversion of energy.
Moreover, some amino acid utilization and transport genes were
negatively regulated in the presence of paracetamol in the
medium.

fab genes (genes for biosynthesis of fatty acids) were negatively
regulated in involvement of paracetamol. A fab gene cluster is
located in pneumococcal genome along with another system for
synthesis of unsaturated fatty acids and enoyl-ACP reduction
(Marrakchi et al., 2002). The study of the regulatory mechanisms
and interactions of the fab genes in the involvement of paracetamol
is necessary because they are important in modulating lipid home-
ostasis of the bacterial membrane, and are the potential candidates
for new antibacterial therapies. Furthermore, changes in the
expression of genes encoding for biosynthesis of fatty acid may
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Table 1
Summary of genes showing differential expression in S. pneumoniae D39 wild-type grown in CDM with
and without 5 mM paracetamol.

aD39 Tag (spd) bFunction cRatio

Upregulated genes
0420 Formate acetyltransferase, PflB 1.8
0458 HrcA 1.5
0459 GrpE 1.6
0460 DnaK 1.9
0461 DnaJ 1.5
0458 Heat-inducible transcription repressor HrcA 1.5
0701 CiaR 1.6
0702 CiaH 1.7
0775 Function Unknown 2.4
0868 Protease maturation protein, putative 2.0
0913 Hypothetical protein 2.0
1375 NADPH-dependent FMN reductase, putative 1.7
1402 Non-heme iron-containing ferritin 1.7
1439 Ribosomal protein S15, RpsO 1.6
1506 Acetyl xylan esterase, putative 1.8
1834 Alcohol dehydrogenase, iron-containing 4.2
1932 Maltodextrin phosphorylase, MalP 1.8
1933 4-alpha-glucanotransferase, MalQ 1.6
1965 PcpA 1.5
2033 YfiA 1.5
2069 SpoJ 2.2

Down-regulated Genes
0161 Hypothetical protein �1.9
0195 rplW �1.5
0197 rpsS �1.5
0262 Mannose/fructose/sorbose family PTS system �1.5
0263 ManM �1.6
0264 ManL �1.5
0317 Cps2C �1.6
0334 AliA �2.1
0378 Enoyl-CoA hydratase/isomerase family protein �2.0
0379 MarR family Transcriptional regulator �1.6
0380 FabH �1.8
0381 AcpP �1.9
0382 FabK �2.2
0383 FabK �2.2
0384 FabK �1.9
0385 FabK �2.2
0386 AccB �2.3
0387 FabK �2.3
0388 AccC �2.0
0389 AccD �2.1
0390 AccA �1.9
0404 IlvB �2.4
0405 IlvN �2.2
0406 IlvC �2.4
0407 Function Unknown �2.3
0408 Function Unknown �2.3
0409 IlvA �2.1
0447 GlnR �2.3
0448 GlnA �1.8
0646 Function Unknown �1.6
0655 LivG �1.5
0686 Efflux transporter �1.5
0749 IlvE �1.6
0750 Function Unknown �1.9
0751 Function Unknown �1.8
0752 Function Unknown �1.7
0753 Pcp �1.5
0900 Asd �1.6
0901 DapA �1.6
1098 GlnP �1.7
1099 GlnQ �1.5
1158 NADP-specific glutamate dehydrogenase, GdhA �1.6
1217 Function Unknown �1.6
1524 Transcriptional regulator, GntR family protein �2.1
1525 ABC transporter, ATP-binding protein �2.4
1526 Function Unknown �3.6
1611 Function Unknown �1.6
1650 Iron-compound ABC transporter, permease protein �1.5
1651 Iron-compound ABC transporter, ATP-binding protein �1.5
1652 Iron-compound ABC transporter, iron-compound-binding protein �1.6

(continued on next page)
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Table 1 (continued)

aD39 Tag (spd) bFunction cRatio

1671 AmiA �1.5
1726 Pneumolysin, Ply �1.5
1728 Function Unknown �1.6
2045 MreC �1.6

a S. pneumoniae D39 locus tags. bS. pneumoniae D39 gene names/annotation (Lanie et al. 2007), cRatio
(>1.5 or < -1.5) represents the fold increase/decrease in gene expression in the presence of paracetamol
in CDM.

Table 2
Number of differentially expressed genes in S. pneumoniae D39 wild-type grown in
CDM with and without 5 mM paracetamol in CDM. Cut off ratio for gene to be
included in the analysis was selected to be 1.5.

Functional categories Total Up Down

C: Energy production and conversion 2 – 2
E: Amino acid transport and metabolism 11 11 –
F: Nucleotide transport and metabolism – – –
G: Carbohydrate transport and metabolism 5 3 2
H: Coenzyme transport and metabolism 1 1 –
I: Lipid transport and metabolism 8 8 –
J: Translation, ribosomal structure, and biogenesis 4 2 2
K: Transcription 6 3 3
L: Replication, recombination, and repair – – –
M: Cell wall/membrane/envelope biogenesis 4 4 –
O: Posttranslational modification, protein turnover,

chaperones
5 1 4

P: Inorganic ion transport and metabolism 5 4 1
Q: Secondary metabolites biosynthesis, transport, and

catabolism
2 1 1

R: General function prediction only 4 2 2
S: Function unknown 5 4 1
T: Signal transduction mechanisms 2 1 1
U: Intracellular trafficking, secretion, and vesicular

transport
– – –

V: Defense mechanisms 1 1 –
Others 9 8 1
Total number of genes 74 54 20
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result in modifications in the cell membrane that promote cell sur-
vival in involvement of paracetamol.

A gene coding for alcohol dehydrogenase (AdhE) was positively
regulated during involvement of paracetamol. S. pneumoniae D39
strain is susceptible to alcohols which positively regulates AdhE
(Luong et al., 2015). Colonization, virulence and hemolytic activity
of S. pneumoniae, as well as the pro-inflammatory cytokine secre-
tion, inflammation and host cell myeloperoxidase activity were
substantially reduced in DadhE compared to D39 wild-type
(Luong et al., 2015), suggesting AdhE to be a pneumococcal viru-
lence factor (Luong et al., 2015). These genes that expressed in
numerous ways could be used as potential vaccination candidates
or as therapeutic targets.

The expression of the ciaR-H operon was altered in the presence
of paracetamol. The CiaRH system is a two-component signal
transduction system (TCS) and CiaR acts as repressor the compe-
tence genes in S. pneumoniae (Guenzi et al., 1994). The CiaRH sys-
tem is vital for providing resistance against cell wall inhibitors and
helps maintaining cell integrity (Mascher et al., 2006). Similar find-
ings were observed when pneumococcal transcriptomic response
to penicillin was studied (Rogers et al., 2007). These findings imply
that stimulation of the CiaRH system and (consequent down-
regulation of competence genes) may be a mechanism by which
S. pneumoniae fights itself against penicillin-induced cell wall
damage.

In our gene expression analysis, we see significant upregulation
of genes involved in the modulation of misfolded proteins (hrcA,
grpE, dnaK and dnaJ). This result may be expected as a drug (parac-
etamol in our case) can induce as protein mistranslation and that is
4

why the expression of the genes involved in the regulation of mis-
folded proteins will be enhanced.

3.2. PPI network analysis of the differentially expressed genes

PPI networks have been utilized to study health and disease of a
certain body and can be very handy for comparison of systems
across diverse conditions. The STRING database was used to build
PPI networks in order to better understand the connections of dif-
ferentially expressed genes. As shown in Fig. 1A, the hub genes
with node degree greater than or equal to 10 fatty acid biosynthe-
sis and metabolism genes. These genes include spd-0378, acpP,
fabH, fabK, fabD, fabF, fabG, accB, accC, fabZ, accD and accA. Another
network that was prominent in our analysis was the one consisting
of genes involved in the biosynthesis of antibiotics. This network
includes fabD, fabG, accA, accB, accC, accD, spd-1834 (adhE), dapA,
asd, ilvA, ilvB, ilvC, ilvE and ilvN. Both fatty acid biosynthesis and
metabolism genes and antibiotics biosynthesis genes’ networks
have been shown in separate figures (Fig. 1B and 1C, respectively).

3.3. KEGG pathways analysis of the differentially regulated genes

These genes pertain to several metabolic pathways including
the fatty acid biosynthesis and metabolism pathways (Table 3).
The pathway involved in the biosynthesis of antibiotics was also
significantly affected under our tested conditions. Moreover, sev-
eral pathways involved particularly in leucine, valine and isoleu-
cine biosynthesis, pyruvate metabolism, 2-Oxocarboxylic acid
metabolism, propanoate and butanoate metabolism, biosynthesis
of secondary metabolites and quorum sensing were significantly
altered in under our tested conditions (Table 3). These results indi-
cate that paracetamol have diverse effects on several pathways in
pneumococcus.

4. Discussion

Growing drug resistance is a major challenge in treating pneu-
mococcal throughout the last few decades. Presently, 15–30 % of
the pneumococcal strains are categorized as resistant to multiple
drugs (Lynch and Zhanel, 2009). Most common drug treatments
of pneumococcus involves macrolides, b-lactams, or fluoro-
quinolones individually or in group (Weiss et al., 2004; Waterer
and Rello, 2006). The use of antibiotic combinations broadens the
range of bacteria that can be targeted while also increasing effi-
cacy, decreasing the inception and propagation of resistance bacte-
ria. Understanding the response of pneumococci to commonly
used drugs may provide novel therapeutic targets and important
insights into the adaptive techniques required to interact with
the host environment during infection (Leonard and Lalk, 2018).
Using paracetamol as a part of combination therapy may be useful.
We investigated the relation of S. pneumoniae to paracetamol to
identify the potential candidates for drugs against pneumococcus.
This research will aid in the knowledge of pneumococcal physiol-
ogy and response to a commonly used drug. To unveil pneumococ-



Fig. 1. Protein-protein interaction (PPI) differential network analysis of the
pneumococcal transcriptome in response to 5 mM paracetamol in the medium
(A). PPI differential network analysis of the fatty acid genes (B) and the antibiotic
biosynthesis genes (C).

Table 3
List of Significantly Enriched Pathways.

Pathway name Observed
gene count

FDR

Fatty acid biosynthesis 11/13 6.07E-09
Fatty acid metabolism 10/11 1.40E-08
Biosynthesis of antibiotics 15/113 0.00056
Valine, leucine, and isoleucine biosynthesis 5/9 0.00096
2-Oxocarboxylic acid metabolism 5/10 0.0011
Pyruvate metabolism 6/19 0.0015
Propanoate metabolism 5/12 0.0016
Butanoate metabolism 4/7 0.0023
Metabolic pathways 26/345 0.0023
Pantothenate and CoA biosynthesis 4/11 0.0071
Biotin metabolism 3/5 0.0088
Biosynthesis of secondary metabolites 13/138 0.0099
Microbial metabolism in diverse environments 10/91 0.0106
Quorum sensing 7/53 0.0168
Biosynthesis of amino acids 8/76 0.0299
Monobactam biosynthesis 2/4 0.0465
Nitrogen metabolism 2/4 0.0465

Enrichment analysis was performed using the pathway enrichment tool (STRING,
version 10.5, https://www.string-db.org/). The observed gene count indicates how
many genes match the predicted metabolic pathways. FDR, false discovery rate.
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cal adaptation to a commonly used drug, paracetamol, pneumo-
cocci were grown in CDM in the presence of 5 mM paracetamol.
The response of strain D39 to paracetamol is complex, comprising
a network of genes involved in fatty acid metabolism and biosyn-
thesis, nutrition and waste transport, environmental stress detec-
tion, and antibiotic production.

Fatty acid biosynthesis and metabolism gene cluster was signif-
icantly downregulated in the presence of paracetamol. The
antibacterial effect of fatty acids on the potential of S. pneumoniae
to induce disease is poorly understood. Fatty acid synthase system
type II (FASII) manufactures pneumococcal fatty acids which are
needed for the cell membrane (Zhang and Rock, 2008), which is
encoded by the fab gene cluster. This cluster’s transcription is reg-
ulated by the MarR-type transcriptional regulator FabT, which sup-
presses the cluster responsible for fab-transcription when fatty
acids attach to it (Jerga and Rock, 2009). The pneumococcus can
integrate fatty acids that are produced outside (exogenous) into
its membrane via the FakA/B system, in complement to de novo
synthesis by the FASII system (Parsons et al., 2015). Exogenous
fatty acids have been shown to reduce pneumococcal colonization
5

in investigations, while the molecular mechanism for this antibac-
terial activity of free fatty acids is unknown (Bomar et al., 2016).
The distinct pneumococcal SpFakB3 can be used due to its special
polyunsaturates. To bind the fatty acid carbonyl and normalize the
protein, pneumococcal FakB3 uses a distinct hydrogen bond net-
work than other FakBs (Gullett et al., 2019). Deletion of fakB3 in
S. pneumoniae strain JMG1 led to reduction in linoleate incorpora-
tion from human serum confirms the significance of fakB3 in this
process. FakB3 (spd-0646) was one of the genes that was downreg-
ulated in our transcriptomic analysis in the presence of paraceta-
mol, which might suggest that fakB3can be a very important
target for paracetamol and further studies will be needed for deep
research. Moreover, the fab genes were shown to be downregu-
lated in pneumococcus in the presence of penicillin (Rogers et al.,
2007). These genes may share a stress response to cell wall inhibi-
tors since they respond similarly to paracetamol and vancomycin,
with some of them potentially important in shielding the cell from
their effects.

Iron has a pivotal role in the pathogenesis of S. pneumoniae. To
successfully support infections and survival, pneumococcus has
diversified three transporters named ABC, PiuABC, PiaABC, and
PitABC, with lipoproteins PiuA PiaA, and PitA as proteins that binds
to substrate to uptake iron (Yang et al., 2016). In our microarray
findings, piuABC was downregulated in the existance of paraceta-
mol. These findings were in contrast to a gene expression analysis
based on microarray in S. pneumoniae which demosnstarted that
the fluoroquinolone levofloxacin induced an positive regulation
of the piuABC operon (Ferrándiz and de la Campa, 2014). They fur-
ther suggested that upregulation of piuABC would cause a rise in
intracellular iron, which would then activate the Fenton reaction,
resulting in an increase in reactive oxygen species (Ferrándiz and
de la Campa, 2014).

Genes (glnRA and glnPQ) involved in glutamine synthesis and
uptake were among the downregulated ones in the presence of
paracetamol. Penicillin therapy increases intracellular glutamine
concentrations, according to a recent study (El Khoury et al.,
2017). When culture media was supplemented with glutamine, it
provided protection against penicillin (El Khoury et al., 2017).
The glnA-encoded glutamine synthetase catalyzes the conversion
of ammonium and glutamate into glutamine, and its chemical inhi-
bition by the L-methionine sulfoximine (inhibitor) has been
demonstrated to make S. pneumoniae susceptible to penicillin, even
in penicillin-resistant clinical isolates (El Khoury et al., 2017).

https://www.string-db.org/
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Therefore, we believe that paracetamol (by altering glutamine
genes express) Interacts with glutamine metabolism, implying
techniques that might be employed in standard treatment or to
reverse resistance in future.

A couple of sugar systems manLMN and malPQ were also
expressed in numerous ways in the presence of paracetamol.
ManLMN is typically a major glucose transporter that has alos
the ability of transporting a varying number of other carbohydrate
substrates including mannose, fructose, galactose and N-acetyl glu-
cosamine (Bidossi et al.,). manLMN is repressed by both the CcpA
and CiaR, the response regulator of the conserved TCS CiaRH impli-
cated in competence, autolysis and b-lactam resistance (Halfmann
et al., 2007; Carvalho et al., 2011). In S. pneumoniae D39, inactiva-
tion of manM encoding the PTS EIIC component, resulted in a mild
growth defect in glucose, and more severely reduced growth in N-
acetyl glucosamine, mannose, and galactose (Bidossi et al.,). In con-
trast to D39, ManLMN was found to be essential for growth on five
non-preferred carbohydrates in TIGR4, and required to induce
expression of downstream metabolic genes (Fleming and Camilli,
2016). malPQ are the maltose utilization genes and have been
shown to be regulated by MalR (Afzal et al., 2015). They code for
a maltodextrin phosphorylase and a 4-alpha-glucanotransferase,
respectively. These maltose genes have been demonstrated to be
positively regulated during involvement of cellobiose as well
(Shafeeq et al., 2013). Our b-galactosidase assays with PmalP-lacZ
in the presence of cellobiose showed that the activity of PmalP
was significantly higher in the presence of cellobiose as compared
that in glucose (data not shown). This might indicate about the
complexity of the role of malPQ in the life-style of pneumococcus
and differential expression of malPQ in the presence of paraceta-
mol corroborates our observation. Moreover, both these manLMN
and malPQ systems have been shown to be differentially expressed
in the presence of penicillin and vancomycin in S. pneumoniae
(Rogers et al., 2007; Haas et al., 2004).

We discovered genes of S. pneumoniae that are differently
expressed in reaction to paracetamol exposures in our investiga-
tion. Several of these genes have been connected to drug resistance
or tolerance in the past, demonstrating that their altered expres-
sion is part of a stress-protective response in this situation. Such
genes could be used as therapeutic targets to improve the effec-
tiveness of paracetamol against this pathogen. Other gene expres-
sion changes discovered here could also point to potential
paracetamol resistance mechanisms. In this context, more research
on these genes is required.
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