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Tuberculosis (TB) is of one the most infectious disease caused by Mycobacterium tuberculosis which
remains a serious public health problem. Emergence of multi-drug resistant strains of M. tuberculosis
led to development of new and more potent anti-tuberculosis agents. The aim of this study was to cor-
relate the chemical structures of the inhibitory compounds with their experimental activities. In this
study, analogs of 2,4-disubstituted quinoline derivatives as potent anti-tubercular agents was subjected
to quantitative structure–activity relationship (QSAR) analysis in order to build a QSAR model for predict-
ing the activities of these compounds. In order to build the regression model, Genetic Function
Approximation (GFA) and Multi-linear Regression approach were used to predict the activities of inhibi-
tory compounds. Based on the prediction, the best validation model was found to have squared correla-
tion coefficient (R2) of 0.9367, adjusted squared correlation coefficient (R2 adj) value of 0.9223 and cross
validation coefficient (Q2

cv ) value of 0.8752. The chosen model was subjected to external validations and
the model was found to have (R2 test) of 0.8215 and Y-randomization Coefficient (cR2

p) of 0.6633. The pro-
posed QSAR model provides a valuable approach for designing more potent anti-tubercular agents.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tuberculosis still remains a major infectious disease which
causes human mortality. World Health Organization (WHO) esti-
mates a marked increase in TB infections of 1.5 million deaths in
2014. Moreover, a marked increase of 6% in the TB incidence was
reported in 2014 compared with the numbers reported in 2013
(Organization, 2016).

The widespread use of chemotherapeutics has resulted in the
emergence of drug-resistant mutants that pose a continuing chal-
lenge to design new active compounds. The resistances of the M.
tuberculosis toward the current drugs; isoniazid, rifampicin and
enthambutol led to development of new approach that is fast
and precise which could able to predict the biological activity for
the new compounds against M. tuberculosis.

Quantitative structure activity relationships (QSARs), one of the
most widely used computational method help in drug designing
and prediction of drugs activities (Hansch et al., 2001). QSARmodel
is a mathematical linear equation which relates the molecular
structures of the compounds and their biological activities. In this
research, a data set of 2,4-diquinoline derivatives which had been
synthesized and evaluated as anti-mycobacterium tuberculosis
(Nayyar and Jain, 2008) have been selected for QSAR study. Few
researchers; (Eric et al., 2016, n.d.; Joshi et al., 2014; Ogadimma
and Adamu, 2016; Sharma et al., 2012) have carried QSAR studies
to established relationship between some inhibitory compounds
like Quinolone, chalcone, pyrrole and 7-methyijuglone. However
QSAR study has not been established to relate the structures and
activities of 2,4-disubstituted quinoline derivatives as potent
anti-tubercular agents. Therefore, this study aimed to build a valid
QSAR model that could predict the activities of 2,4-diquinoline
derivatives against mycobacterium tuberculosis.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2018.08.010&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Materials and methods

2.1. Data collection

Analogs of molecules of 2,4-disubstituted quinoline derivatives
as potent anti-tubercular agents that were used in this studies
were gotten from the literature (Nayyar and Jain, 2008).
2.2. Biological activities (pEC50)

The Biological activities of 2,4-disubstituted quinoline deriva-
tives as potent anti-tubercular agents were initially expressed in
percentage (%) and then converted to logarithm unit using Eq. (1)
below in order to increase the linearity and approach normal dis-
tribution of the activity values. The observed structures and the
biological activities of these compounds were presented in Table 1.

pBA¼ log
Molecularweight g=molð Þ

Dose g=molð Þ

� �
percentageð%Þ

100�percentageð%Þ
� �� �

ð1Þ
2.3. Optimization

The chemical structures of the molecules were drawn with
Chemdraw ultra Version 12.0 The molecular structures of the com-
pounds were optimized in order to achieve a stable conformer for
the inhibitory compounds by employing Density Function Theory
(B3LYP/6-31G*) utilizing Spartan 14 Version 1.1.4 software.
2.4. Descriptor calculation

Molecular descriptor is a numerical value that gives chemical
information about the molecule. Molecular descriptors for all the
forty (40) molecules were calculated utilizing the PaDEL-
Descriptor software Version 2.20. A total of 1875 molecular
descriptors were calculated.
2.5. Normalization and data pretreatment

The calculated descriptors for the data set that made up the
molecules were normalized using Eq. (1) in order to give each vari-
able the same chance at the onset to influence the model (Singh,
2013).

X ¼ X1 � Xmin

Xmax � Xmin
ð2Þ

where X1 is the numeric value of each descriptor for a given mole-
cule, Xmax and Xmin are the maximum and minimum value for
each column of descriptors X. The normalized data were then sub-
jected to pretreatment using Data Pretreatment software obtained
from Drug Theoretical and Cheminformatics Laboratory (DTC Lab)
in order to remove redundant data (Adeniji et al., 2018).
2.6. Data division

In order to generate a robust QSAR model that could predict the
activity of the inhibitor against Mycobacterium tuberculosis, Ken-
nard and Stone’s algorithm was employed to divided the data set
into training set and test set (Kennard and Stone, 1969). The train-
ing set is made up of 70% of the data set which were used to build
the QSAR model while the remaining 30% of the data set (test set)
were used to confirm the built model.
2.7. Generation of the model

The training set generated was imported to Material studio soft-
ware version 8 to build the model by employing the Genetic Func-
tion Approximation and Multi-linear Regression (GFA-MLR)
method.

2.8. Internal validation of model

Estimation of the validation parameter to access the built model
was achieved with the aid of Material studio software version 8.
Internal validation parameters calculated are as follows;

2.8.1. Friedman formula (LOF)
This parameter measures the fitness score of the model. LOF is

defined as; (Friedman, 1991)

LOF ¼ SEE

1� Nþp�k
M

� �2 ð3Þ

N is the number of terms in the model, k is the number of descrip-
tors, p is the user-defined smoothing parameter, and M is the num-
ber of compounds that made up the training set (Khaled, 2011).

The Standard Error of Estimation (SEE) is equivalent to the mod-
els standard deviation. It measures the model quality and a model
is said to be a robust model if it has low SEE value. SEE is defined by
equation below;

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yexp � Ypred

	 
2
N � P � 1

s
ð4Þ

Yexp and Ypred are the experimental activity and the predicted activ-
ity in the training set respectively (Tropsha et al., 2003).

2.8.2. The correlation coefficient (R2)
Correlation coefficient (R2) defines the fraction of the entire vari-

ation in the model. As the value of R2 approaches 1.0, the stronger
the model generated. R2 is expressed as:

R2 ¼ 1�
P

Yexp�Ypred

� �2

P
Y

exp�Y
�
training

� �2

2
6664

3
7775 ð5Þ

Y
�
training Yexp, and Ypred are the mean experimental activity,

experimental activity and the predicted activity in the training
set, respectively (Adeniji et al., 2018)

2.8.3. Adjusted R2

Correlation coefficient (R2) value varies directly with the
increase in number of descriptors thus; R2 is not reliable parameter
to measure the robustness and stability of the model. Therefore, R2

is adjusted in order to have a stable and reliable model. The R2
adj is

defined as:

R2adj ¼ R2 � k n� 1ð Þ
n� pþ 1

ð6Þ

where k is the number of descriptors in the model and n is number
compounds that made up the training set (Adeniji et al., 2018)

2.8.4. The cross-validation coefficient (Q2
cv )

The predictive ability of the QSAR model to predict the activity
of inhibitor was determined using cross validation test. The cross-
validation coefficient (Q2

cv ) is defined as:



Table 1
Molecular structures of inhibitor compounds and their derivatives as anti-tubercular agents.

S/N IUPAC name Molecular structure Activity (%) Activity (pA)

1a (E)-N-phenyl-2-(2-(pyridin-4-ylmethylene)
hydrazinyl)quinoline-4-carboxamide

14 6.9809

2 (E)-N-phenyl-2-(2-(pyridin-3-ylmethylene)
hydrazinyl)quinoline-4-carboxamide

10 6.8150

3 (E)-2-(2-(furan-2-ylmethylene)hydrazinyl)-N-
phenylquinoline-4-carboxamide

10 6.8018

4 a (E)-N-phenyl-2-(2-(thiophen-2-ylmethylene)
hydrazinyl)quinoline-4-carboxamide

26 7.3209

5 a (E)-2-(2-(2-methylpropylidene)hydrazinyl)-N-
phenylquinoline-4-carboxamide

11 6.8191

6 (E)-N-phenyl-2-(2-propylidenehydrazinyl)
quinoline-4-carboxamide

12 6.8418

7 a (E)-2-(2-benzylidenehydrazinyl)-N-
phenylquinoline-4-carboxamide

11 6.8601

8 a (E)-2-(2-(4-methoxybenzylidene)hydrazinyl)-N-
phenylquinoline-4-carboxamide

99 9.4979

9 (E)-2-(2-(4-methoxybenzylidene)hydrazinyl)-N-
phenylquinoline-4-carboxamide

14 6.9772

10 (E)-N-benzyl-2-(2-(pyridin-3-ylmethylene)
hydrazinyl)quinoline-4-carboxamide

23 7.2608

(continued on next page)
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Table 1 (continued)

S/N IUPAC name Molecular structure Activity (%) Activity (pA)

11 (E)-N-benzyl-2-(2-(furan-2-ylmethylene)
hydrazinyl)quinoline-4-carboxamide

20 7.1707

12 a (E)-N-benzyl-2-(2-(thiophen-2-ylmethylene)
hydrazinyl)quinoline-4-carboxamide

30 7.4233

13 (E)-2-(2-(anthracen-9-ylmethylene)hydrazinyl)-
N-benzylquinoline-4-carboxamide

20 7.2838

14 (E)-N-benzyl-2-(2-((4-methoxynaphthalen-1-
yl)methylene)hydrazinyl)quinoline-4-
carboxamide

16 7.1472

15 (E)-N-benzyl-2-(2-(2-methylpropylidene)
hydrazinyl)quinoline-4-carboxamide

42 7.6035

16 (E)-N-benzyl-2-(2-propylidenehydrazinyl)
quinoline-4-carboxamide

27 7.2938

17 (E)-N-benzyl-2-(2-benzylidenehydrazinyl)
quinoline-4-carboxamide

99 9.6090

18 (E)-N-benzyl-2-(2-(4-methoxybenzylidene)
hydrazinyl)quinoline-4-carboxamide

21 7.2630

19 (E)-N-(5-phenylpentyl)-2-(2-(pyridin-4-
ylmethylene)hydrazinyl)quinoline-4-
carboxamide

30 7.4772

20 (E)-N-(5-phenylpentyl)-2-(2-(pyridin-3-
ylmethylene)hydrazinyl)quinoline-4-
carboxamide

10 6.8909
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Table 1 (continued)

S/N IUPAC name Molecular structure Activity (%) Activity (pA)

21 (E)-2-(2-(furan-2-ylmethylene)hydrazinyl)-N-
(5-phenylpentyl)quinoline-4-carboxamide

15 7.0807

22 (E)-N-(5-phenylpentyl)-2-(2-(thiophen-2-
ylmethylene)hydrazinyl)quinoline-4-
carboxamide

21 7.2747

23 (Z)-2-(2-(anthracen-9-ylmethylene)hydrazinyl)-
N-(5-phenylpentyl)quinoline-4-carboxamide

23 7.4091

24 (E)-2-(2-((4-methoxynaphthalen-1-yl)
methylene)hydrazinyl)-N-(5-phenylpentyl)
quinoline-4-carboxamide

40 7.7412

25 a (E)-2-(2-(2-methylpropylidene)hydrazinyl)-N-
(5-phenylpentyl)quinoline-4-carboxamide

42 7.6688

26 a (E)-2-(2-benzylidenehydrazinyl)-N-(5-
phenylpentyl)quinoline-4-carboxamide

21 6.2688

27 (E)-2-(2-(4-methoxybenzylidene)hydrazinyl)-N-
(5-phenylpentyl)quinoline-4-carboxamide

40 7.6970

28 (E)-(2-(2-((4-methoxynaphthalen-1-yl)
methylene)hydrazinyl)quinolin-4-yl)
(morpholino)methanone

7 6.7741

29 (E)-(2-(2-benzylidenehydrazinyl)quinolin-4-yl)
(morpholino)methanone

3 6.2513

(continued on next page)
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Table 1 (continued)

S/N IUPAC name Molecular structure Activity (%) Activity (pA)

30 (E)-(2-(2-(4-methoxybenzylidene)hydrazinyl)
quinolin-4-yl)(morpholino)methanone

10 6.8414

31 a (E)-(4-methylpiperazin-1-yl)(2-(2-(pyridin-3-
ylmethylene)hydrazinyl)quinolin-4-yl)
methanone

1 5.8000

32 (E)-(4-methylpiperazin-1-yl)(2-(2-(pyridin-4-
ylmethylene)hydrazinyl)quinolin-4-yl)
methanone

28 7.3673

33 (E)-(2-(2-(furan-2-ylmethylene)hydrazinyl)
quinolin-4-yl)(4-methylpiperazin-1-yl)
methanone

21 7.1891

34 (E)-(4-methylpiperazin-1-yl)(2-(2-(thiophen-2-
ylmethylene)hydrazinyl)quinolin-4-yl)
methanone

10 6.8291

35 (E)-(2-(2-(anthracen-9-ylmethylene)hydrazinyl)
quinolin-4-yl)(4-methylpiperazin-1-yl)
methanone

10 6.9253

36 a (E)-(2-(2-((4-methoxynaphthalen-1-yl)
methylene)hydrazinyl)quinolin-4-yl)(4-
methylpiperazin-1-yl)methanone

18 7.2022

37 (E)-(4-methylpiperazin-1-yl)(2-(2-(2-
methylpropylidene)hydrazinyl)quinolin-4-yl)
methanone

52 7.7696

38 a (E)-(4-methylpiperazin-1-yl)(2-(2-
propylidenehydrazinyl)quinolin-4-yl)
methanone

6 6.5216

580 S.E. Adeniji et al. / Journal of King Saud University – Science 32 (2020) 575–586



Table 1 (continued)

S/N IUPAC name Molecular structure Activity (%) Activity (pA)

39 (E)-(2-(2-benzylidenehydrazinyl)quinolin-4-yl)
(4-methylpiperazin-1-yl)methanone

9 6.7716

40 (E)-(2-(2-(4-methoxybenzylidene)hydrazinyl)
quinolin-4-yl)(4-methylpiperazin-1-yl)
methanone

30 7.4420

Where superscript a represent the test set.
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Q2
cv ¼ 1�

P
Ypred�Yexp

	 
2
P

Y
exp�Y

�
training

� �2

2
6664

3
7775 ð7Þ

Y
�
training Yexp, and Ypred are the mean experimental activity, experi-

mental activity and the predicted activity in the training set respec-
tively (Adeniji et al., 2018)

2.9. External validation of the model

Model built was validated to assessed R2
test value. As the value of

R2
test approaches 1.0, the robust the model generated. The R2

test is
defined by as;

R2
test ¼ 1�

P
Ypredtest � Yexptest

	 
2
P

Ypredtest � Y
�
training

� �2 ð8Þ

where Ypredtest and Yexptest are the predicted and experimental activ-

ity test set. While Y
�
training is the training set mean values of the

experimental activity (Tropsha et al., 2003).
The external validation test for the developed QSAR model was

further subjected to Golbraikh and Tropsha criteria listed below:

a. |r0^2 � r00^2| (Threshold value < 0.3)
b. r2 � ro2/r2 (Threshold value < 0.1)
c. r2 � r0o2/r2 (Threshold value < 0.1)
d. k (Threshold value 0.85 � k � 1.15)
e. k0 (Threshold value 0.85 � k � 1.15) (Roy et al., 2013;

Tropsha et al., 2003)

where r2 is the square correlation coefficients of the plot of exper-
imental activity against predicted activity values, ro2 is the square
correlation coefficients of the plot of experimental activity against
predicted activity values at zero intercept, r0o2 is the square correla-
tion coefficients of the plot of predicted activity against experi-
mental activity at zero intercept, k is the slope of the plot of
experimental activity against predicted activity values at zero
intercept and k0 is the slope of the plot of predicted against exper-
imental activity at zero intercept.

2.10. Y-Randomization test

Y-randomization test was carried out on the training set in
order to confirmed that the built QSARmodel is strong, robust, reli-
able and not gotten by chance (Tropsha et al., 2003). For the devel-
oped QSAR model to reliable and robust, the model is expected to
have a low R2 and Q2 values for numbers of trials. Coefficient of
determination (cR2

p) for Y-randomization test is another external
validation parameter with (Threshold value >0.5) for passing this
test.

cR2
p ¼ R� R2 � Rrð Þ2

h i2
ð9Þ

R is determination coefficient for Y-randomization and Rr is average
‘R’ of random models (Tropsha et al., 2003).
2.11. Determination of outlier and influential molecule

The applicability domain approach was employed to determi-
nation of outlier and influential molecule. Any compound outside
the applicability domain space of �3 is said to be an outlier. The
leverage approach was employed in defining and describing the
applicability domain of the built QSAR models (Veerasamy et al.,
2011). Leverage of a given molecule hi, is defined as;

hi ¼ Xi XTX
� ��1

XT
i ð10Þ

Xi is training set matrix of i. X is the n � k descriptor matrix of the
training set compound and XT is the transpose of the training set
(X). XT

i is the transpose matrix Xi used to build the mode. The warn-
ing leverage h* is the limit values to check for influential molecule.
The warning leverage h* is defined as;

h� ¼ 3
jþ 1ð Þ
m

ð11Þ

where j is the number of descriptors in the build model andm is the
number of compounds that made up the training set.
2.12. Intelligent consensus prediction

An intelligent consensus prediction is performed on multiple
QSAR models developed against a particular response and com-
pares them with the prediction quality obtained from the individ-
ual models. Further, the quality of predictions is judged based on
several external validation metrics such as Q2

F1, Q2
F2, Q2

F3, CCC, rm2

and MAE that might help in improving the quality of prediction for
a query molecule. The optimum settings can be fixed using the avail-
able QSAR models and corresponding external set compounds with
known response values, while the same setting can be later
employed for predictions of newly designed query molecules (Roy
et al., 2018).
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2.13. Assessment of the built model

The robustness, reliability, fitness, stability, and predictability of
the generated models were evaluated by subjecting the model to
validation parameters. The minimum Threshold value for internal
and external validation parameters for a generally acceptable QSAR
model (Veerasamy et al., 2011) is presented in Table 2.
3. Results and discussion

QSAR approach was used to predict the activities of 2,4-
disubstituted quinoline derivatives as potent inhibitor against
Mycobacterium tuberculosis. The data set which comprises of 40
compounds were divided into a training set of 28 compounds
and test set 12 compounds by employing Kennard-Stone algo-
rithm. The training set compounds were used to build the model
while the test set compounds were used to validate the built
model.

Descriptive analysis of the training set and the test set were
reported in Table 3. This shows that the mean value and the stan-
dard deviation value of the training set were similar to that of test
Table 2
Generally accepted value for the validation parameters for a given QSAR model.

Validation
Parameter

Definition Threshold
value

R2 Coefficient of determination �0.6
P (95%) Confidence interval at 95% confidence

level
<0.05

Q2
cv

Cross validation coefficient >0.5

R2 � Q2
cv Difference between R2 and Q2

cv
�0.3

Next. test set Minimum number of external test set �5

cR2
p

Coefficient of determination for Y-
randomization

>0.5

Table 3
Descriptive statistics of the inhibition data.

Statistical parameters Activity

Training set Test set

Number of sample points 28 12
Range 3.5617 1.8688
Maximum 6.2513 8.2854
Minimum 4.7441 4.9074
Mean 7.339114 6.498873
Median 7.19905 6.1213
Variance 0.609039 0.866467
Standard deviation 0.78041 0.93084
Mean absolute deviation 0.5672 0.703515
Skewness 2.323993 0.87066
Kurtosis 6.13018 0.153415

Table 4
Validation parameters for each model using Genetic Function Approximation (GFA).

Internal Validation Parameters Model 1 M

Friedman LOF 0.214357 0
R-squared 0.936651 0
Adjusted R-squared 0.922254 0
Cross validated R-squared 0.875177 0
Significant Regression Yes Y
Significance-of-regression F-value 65.05654 4
Critical SOR F-value (95%) 2.684036 2
Replicate points 0 0
Computed experimental error 0 0
Lack-of-fit points 22 2
Min expt. error for non-significant LOF (95%) 0.175074 0
set. Thus, Kennard-Stone algorithm used in dividing the dataset
generate a test set compounds that is a good reflection of the train-
ing set compounds

The Genetic Function Algorithm (GFA) was employed in this
study to select the best descriptor that could better predict the
activities of the inhibitory compounds while Multi-linear Regres-
sion (MLR) method was used as modeling technique in generating
the QSAR model. GFA-MLR led to selection of five descriptors and
five QSAR models.

Model 1
pBA = �6.515153698 * AATS5e + 0.056593117 * VR3_Dzp

+ 0.001891166 * VR1_Dzi
+ 0.000132807 * VR1_Dzs � 6.230058484 * SpMin7_Bhe
+ 61.731402188.

Model 2
pBA = �5.983214203 * AATS5e + 0.065340929 * VR3_Dzp

+ 0.001930689 * VR2_Dzi
+ 0.004049607 * VR1_Dzs � 6.084763724 * SpMin7_Bhe
+ 57.265328066.

Model 3
pBA = �6.738118716 * AATS5e + 0.008743880 * VR3_Dzv

+ 0.001819903 * VR1_Dzi
+ 0.000135235 * VR1_Dzs � 5.680009813 * SpMin7_Bhe
+ 63.776142838.

Model 4
pBA = �6.148961522 * AATS5e + 0.077745375 * VR3_Dzp

+ 0.058288135 * VR1_Dzi
+ 0.000140171 * VR2_Dzs � 5.605672315 * SpMin7_Bhe
+ 57.795782473.

Model 5
pBA = �6.730758918 * AATS5e + 0.008667299 * VR3_Dzv

+ 0.001822324 * VR1_Dzi
+ 0.004064233 * VR1_Dzs � 5.596564878 * SpMin7_Bhe
+ 63.634320925.

Internal validation parameters to confirm that the built QSAR
model is stable and robust were reported in Table 4. These param-
eters were in agreement with validation parameters presented in
Table 2. Based on these validation parameters, model one was
selected as the optimum model and used to predict the activities
of 2,4-disubstituted quinoline derivatives.

The QSAR model generated in this research was compared with
the model obtained in the literature (Shola et al., 2018; Ogadimma
and Adamu, 2016) as shown below;

pBA = �0.307001458(AATS7s) + 1.528715398(nHBint3)
+ 3.976720227(minHCsatu) + 0.016199645(TDB9e)
+ 0.089381479 (RDF90i) � 0.107407822(RDF110s) + 4.057082751
Ntrain = 35, R2 = 0.92023900, Radj = 0.91017400, Q2

cv = 0.89538600
and the external validation for the test set was found to be R2-
pred = 0.8842 (Shola et al., 2018).

pIC50 = �2.040810634 * nCl � 19.024890361 * MATS2m
+ 1.855704759 * RDF140s + 6.739013671 Ntrain = 27, R2 = 0.9480,
odel 2 Model 3 Model 4 Model 5

.31676 0.32802 0.33227 0.33506

.90639 0.90306 0.90181 0.90098

.88511 0.88103 0.87949 0.87848

.79575 0.77394 0.76346 0.74815
es Yes Yes Yes
2.6022 40.9893 40.4092 40.0358
.684036 2.684036 2.684036 2.684036

0 0 0
0 0 0

2 22 22 22
.21282 0.21657 0.21796 0.21888



Table 5
Experimental, Predicted and Residual values for 2,4-disubstituted quinoline
derivatives.

Molecule Experimental Activity Predicted Activity Residual

1 6.9809 6.971917 0.008983
2 6.815 7.035605 �0.2206
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Radj = 0.9350, Q2
cv = 0.87994 and R2pred = 0.76907. (Ogadimma and

Adamu, 2016).
From the above models the validation parameters reported in

this work and those reported in the literature were all in agree-
ment with parameters presented in Table 2 which actually con-
firmed the robustness of the model generated.
3 6.8018 6.835969 �0.03417
4 7.3209 7.405311 �0.08441
5 6.8191 6.812504 0.006596
6 6.8418 6.794876 0.046924
7 6.8601 7.14979 �0.28969
8 9.4979 9.780245 �0.28235
9 6.9772 6.981565 �0.00436
10 7.2608 7.023143 0.237657
11 7.1707 7.447515 �0.27682
12 7.4233 7.223165 0.200135
13 7.2838 7.473957 �0.19016
14 7.1472 7.201502 �0.0543
15 7.6035 7.567027 0.036473
16 7.2938 7.373105 �0.0793
17 9.6090 9.116462 0.4925
18 7.813 7.55099 0.26201
19 7.4772 7.22946 0.24774
20 6.8909 6.854689 0.036211
21 7.0807 7.201935 �0.12124
22 7.2747 7.265469 0.009231
23 7.4091 7.611252 �0.20215
24 7.7412 7.249363 0.491837
25 7.6688 7.666948 0.001852
26 6.2688 6.399172 �0.13037
27 7.697 7.838932 �0.14193
28 6.7741 6.4254 0.3487
29 6.2513 6.153244 0.098056
30 6.8414 7.044018 �0.20262
31 5.8 5.750218 0.049782
32 7.3673 7.102889 0.264411
33 7.1891 7.133475 0.055625
34 6.8291 6.94336 �0.11426
35 6.9253 6.907757 0.017543
36 7.2022 6.641454 0.560746
37 7.7696 7.382345 0.387255
38 6.5216 6.814865 �0.29327
39 6.7716 6.792383 �0.02078
40 7.442 7.501349 �0.05935
3.1. Interpretation of descriptors in the built model

AATS5e is Average Broto-Moreau autocorrelation – lag 5/
weighted by I-state auto-correlation descriptor. It’s based on spa-
tial dependent autocorrelation function which measures the
strength of the relationship between observations (atomic or
molecular properties) and space separating them (lag). This
descriptor is obtained by taking the molecule atoms as the set of
discrete points in space and an atomic property as the function
evaluated at those points. When this descriptor is calculated on
molecular graph, the lag coincides with the topological distance
between any pair of the vertices. AATS5e is defined on the molec-
ular graphs using atomic masses (m), Sanderson electronegativity
(e) and inductive effect respectively of pairs of atoms 5 bond apart
as the weighting scheme. These observations suggested that
atomic masses and electronic distribution of atoms that made up
the molecule had significant effect on the anti-tubercular activity
of the dataset. In addition, the signs of the regression coefficients
for each descriptor indicated the direction of influence of the
descriptors in the models such that, negative regression coefficient
associated to a descriptor will diminish the activity of the
compound.

VR1_Dzi is Randic-like eigenvector-based index from Barysz
matrix/weighted by first ionization potential while VR1_Dzs is
Randic-like eigenvector-based index from Barysz matrix/weighted
by I-state. From the model generated in this study, these descrip-
tors have positive coefficient and positive mean effect value. Thus,
the interpretation of this model shows that each of this descriptor
with positive coefficient is directly proportional to the activities of
these molecules. Descriptor VR3_Dzp (Logarithmic Randic-like
eigenvector-based index from Barysz matrix/weighted by polariz-
abilities) with positive mean effect also contribute positively to
the activities of the inhibitory compounds.

SpMin7_Bhe is one of the Burden modified eigen values
descriptors. The SpMin7_Bhe descriptors have been proposed as
chemical structure descriptors derived from a new representation
of molecular structure. SpMin7_Bhe is the smallest absolute eigen-
value of Burden modifiedmatrix – n 1/weighted by relative van der
Waals volumes. The SpMin7_Bhe mean effect has a positive sign.
This sign suggests that the anti-tubercular activity is directly
related to this descriptor.

Experimental activities, predicted activities of the inhibitors
and the residual values were reported in Table 5. The low residual
values between experimental activities and predicted activities
indicate that the model generated has a high predictive power
(Adeniji et al., 2018).

Calculated descriptors for training set and test set in generating
Model 1 were reported in Tables 6 and 7. The statistical parameters
that influences the selected descriptors used in generating the
QSAR model were reported in Table 8. Standard regression coeffi-
cient (bs

j Þ and the mean effect (ME) values reported in Table 8 pro-
vides vital information on the effect of the descriptors and the
degree of influence in the developed model. The signs and the mag-
nitude of these descriptors combined with their mean effects indi-
cate their individual strength and direction in influencing the
activity of a compound. Variance Inflation Factor (VIF) calculated
for all the five descriptors in the model were all less than 4 which
shows that the descriptors selected were orthogonal and model
generated was significant. The P-values less than 0.05 shows that
there is significant relationship between the descriptors used to
build the model and the activities of the inhibitory molecules.

Pearson’s correlations of the five descriptors selected in build-
ing the QSAR Model were reported in Table 9. The low correlation
coefficient indicates that there is no significant inter-correlation
among the selected descriptors.

The test set was subjected to external validation in order to val-
idate the model built. Model 1 passed all the validation parameters
reported in Table 10. This can be infer that the model developed is
robust and reliable to predict the activities of 2,4-disubtituted
quinoline.

Y-Randomization test was reported in Table 11. The low R2 and
Q2 values for numbers of trials confirm that the built QSAR model
is robust, stable, and reliable. While the Coefficient of determina-
tion cR2

p value greater than 0.5 guaranteed that the built model is
powerful and not inferred by chance.

Intelligent consensus prediction performed on multiple QSAR
models developed against a particular response compared with
the prediction quality obtained from the individual models has
been analyzed and reported. The quality of the predictions judged
based on several external validation metrics such as Q2

F1, Q2
F2, Q2

F3,
CCC, rm2 and MAE that might help in improving the quality of predic-
tion for a query molecule were reported in Table 12.

Graphical representations for internal and external validation
test were shown in Fig. 1 and Fig. 2 respectively. The squared



Table 6
Calculated descriptors for training set in generating Model 1.

Molecule AATS5e VR3_Dzp VR1_Dzi VR1_Dzs SpMin7_Bhe Predicted Activity

10 7.7372 17.70549 511.3397 642.028 1.0157 7.023143
11 7.791068 17.47607 962.9099 309.0707 1.025939 7.447515
13 7.608921 21.68556 870.1052 873.1568 1.226739 7.473957
14 7.659644 20.41834 627.2396 3328.826 1.18583 7.201502
15 7.739571 20.32523 238.2739 219.4391 0.857759 7.567027
16 7.713336 14.36154 211.4342 208.8292 0.843563 7.373105
17 7.723033 17.69381 522.9963 524.6427 1.01531 7.116462
18 7.652887 18.32748 1468.024 1691.794 1.01613 9.55099
19 7.573325 21.86432 404.1937 380.1573 1.14638 7.22946
2 7.840335 15.98099 517.8681 688.3532 0.898044 7.035605
20 7.564849 21.84717 200.1304 380.1454 1.151469 6.854689
21 7.596019 19.21292 881.1454 449.1 1.251748 7.201935
23 7.520498 31.07208 669.6331 605.408 1.320635 7.611252
24 7.542017 26.40663 635.8836 544.9153 1.297562 7.249363
27 7.536545 27.71683 518.8696 391.9847 1.180847 7.838932
28 7.727577 19.4227 344.8825 537.3151 1.085863 6.4254
29 7.817869 15.1251 398.1442 782.1284 1.018928 6.153244
3 7.907036 16.80212 520.6419 433.798 0.869388 6.835969
30 7.735461 16.0337 546.1729 1172.182 1.018928 7.044018
32 7.711552 16.12091 508.9688 1034.445 1.018928 7.102889
33 7.745807 20.73024 526.963 316.0941 1.018928 7.133475
34 7.712288 15.85823 480.0661 421.0379 1.018928 6.94336
35 7.595979 20.95833 382.0186 591.7095 1.164737 6.907757
37 7.702071 14.90617 597.3325 222.4993 0.979925 7.382345
39 7.689397 16.46417 250.0237 1282.517 1.018928 6.792383
40 7.631576 16.87745 474.5457 558.9262 1.018928 7.501349
6 7.823736 18.6672 253.5776 210.2844 0.888366 6.794876
8 7.734472 16.85365 479.7148 18835.13 0.948795 9.780245

Table 7
Calculated descriptors for test set in generating Model 1.

Molecule AATS5e VR3_Dzp VR1_Dzi VR1_Dzs SpMin7_Bhe Predicted Activity

1 7.852957 17.18093 400.8908 527.9417 0.86626 6.971917
12 7.751904 17.26382 674.0365 408.3237 1.012727 7.223165
22 7.567618 19.01451 834.7073 743.5662 1.270478 7.265469
25 7.560045 16.95123 544.0738 292.8519 1.097381 7.666948
26 7.589404 14.07973 258.4521 233.0907 1.156111 6.399172
31 7.789627 14.02771 123.6455 675.4873 1.018928 5.750218
36 7.641038 19.59175 364.7305 583.3535 1.153024 6.641454
38 7.704655 15.62959 245.2209 200.6652 0.978235 6.814865
4 7.798773 16.07059 477.8878 694.5818 0.870197 7.405311
5 7.848879 15.28019 316.6029 346.5946 0.849395 6.812504
7 7.824782 16.21208 532.6217 511.4705 0.898009 7.14979
9 7.748697 17.71338 511.449 635.1386 1.014425 6.981565

Table 8
Statistical parameters that influence the model.

Descriptor Standard regression coefficient (bj) MeanEffect (ME) P-Value (Confidence interval) VIF Standard Error

AATS5e �0.2769 �0.31421 0.000527 1.8931 7.19166E�06
VR3_Dzp 0.67675 0.153246 3E�12 1.2779 1.53188E�07
VR1_Dzi 0.987436 0.58264 8.84E�11 3.6622 1.56739E�09
VR1_Dzs 0.338438 0.351968 4.48E�06 1.3493 1.11976E�10
SpMin7_Bhe 1.097495 �0.34097 3.25E�10 3.0968 6.03594E�06

Table 9
Pearson’s correlation coefficient for the descriptor used in the QSAR model.

Inter-correlation

AATS5e VR3_Dzp VR1_Dzi VR1_Dzs SpMin7_Bhe

AATS5e 1
VR3_Dzp �0.07133 1
VR1_Dzi �0.15418 0.10971 1
VR1_Dzs 0.071375 �0.11793 0.015657 1
SpMin7_Bhe �0.52256 0.0747094 0.301044 �0.11617 1
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Table 10
External validation parameters to validate the built QSAR model.

External Validation Parameter Threshold value Model 1 Model 2 Model 3 Model 4 Model 5

K 0.85 < k < 1.15 1.00018 1.00234 1.03762 1.08732 1. 10,234
K0 0.85 < k < 1.15 0.9989 0.93229 0.89233 0.85423 0.84292

=r20 � r
0 2
0=

<0.3 0.01487 0.06523 0.06234 0.18766 0.32566

r2�r20
r2

<0.1 0.00363 0.007632 0.08341 0.92301 0.14938

r2�r
0 2
0

r2
<0.1 0.02176 0.05478 0.08432 0.92310 0.16738

R2 test >0.6 0.8215 0.7145 0.6822 0.6734 0.6598

Table 11
Y-Randomization Parameters test.

Model R R^2 Q^2

Original 0.85791 0.736009 0.361481
Random 1 0.263469 0.069416 -0.42957
Random 2 0.634931 0.403137 -3.21615
Random 3 0.44027 0.193838 -1.71176
Random 4 0.45403 0.206144 -0.7079
Random 5 0.642442 0.412732 -4.71577
Random 6 0.116309 0.013528 -0.3569
Random 7 0.24943 0.062215 -0.2046
Random 8 0.296007 0.08762 -0.42455
Random 9 0.270977 0.073429 -0.37515
Random 10 0.351074 0.123253 -0.38131

Random Models Parameters
Average r: 0.371894
Average r^2: 0.164531
Average Q^2: -1.25236
cRp^2: 0.663262

R² = 0.9367
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Fig. 1. Plot of predicted activity against experimental activity of training set.
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Fig. 2. Plot of predicted activity against experimental activity of test set.
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correlation coefficient (R2) of 0.9367 for training set and (R2test) of
0.8215 for test set reported in this study were in agreement with
Genetic Function Approbation (GFA) derived R2 value reported in
Table 2 and Table 10. This confirmed the stability, robustness
and reliability of the model. The dataset used in this study were
within the limit range of �2.5 as shown in Fig. 3. This indicates that
dataset were evenly distributed.

In order to determine the outliers and influential compound in
the dataset standardized residual for the all the compounds that
made up the dataset were plotted against their leverage values.
The Williams plot of the standardized residuals against the lever-
age values is an evident that all the compounds were within the
square space �3 as shown in Fig. 4. Therefore no compound is said
to be an outlier. It is also an evident that no compound is said to be
an influential compound since all their leverage values are less
than the warning leverage (h* = 0. 64).
Table 12
Intelligent consensus predictions compared with the prediction quality obtained from the individual (MLR) models.

Type of Model N
Comp
Ext

Q2f1
(100%)

Q2f2
(100%)

Q2f3
(100%)

CCC
(100%)

Avg Rm2
(100%)

Delta Rm2
(100%)

MAE
(100%)

MAE
(95%)

PRESS
(100%)

PRESS
(95%)

SDEP
(100%)

SDEP
(95%)

Individual Model 1 12 0.8915 0.8185 0.9218 0.9056 0.7506 0.05595 0.1366 0.0980 0.5512 0.2368 0.2143 0.1467
Individual Model 2 12 0.8883 0.8132 0.9195 0.8957 0.7197 0.15706 0.1463 0.1085 0.5675 0.2509 0.2175 0.1510
Individual Model 3 12 0.7801 0.632 0.8415 0.7901 0.4998 0.26599 0.2417 0.2118 1.1172 0.7922 0.3051 0.2684
Individual Model 4 12 0.7664 0.6092 0.8316 0.7709 0.562 0.12429 0.2456 0.2112 1.187 0.7976 0.3145 0.2693
Individual Model 5 12 0.7466 0.5761 0.8173 0.7469 0.4125 0.32315 0.2553 0.2266 1.2877 0.9618 0.3276 0.2957
CM0 (Average;

Original)
12 0.8657 0.7754 0.9032 0.8667 0.6188 0.19871 0.1725 0.1378 0.6822 0.3748 0.2384 0.1846

CM 1 (Average;
Modified)

12 0.8657 0.7754 0.9032 0.8667 0.6188 0.19871 0.1725 0.1378 0.6822 0.3748 0.2384 0.1846

CM 2 (Weighted
Average)

12 0.8701 0.7828 0.9064 0.8740 0.6442 0.18763 0.1619 0.1263 0.6599 0.3534 0.2345 0.1792

CM 3 (Using Best
Model)

12 0.8924 0.820 0.9224 0.9145 0.7740 0.05941 0.1577 0.1209 0.5469 0.2303 0.2135 0.1447
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4. Conclusion

This study generates a QSAR model for a dataset of 2,4-
disubstituted quinoline derivatives as potent inhibitors against
Mycobacterium tuberculosis. The internal and external validation
test confirmed that the built QSAR model is significant, robust
and reliable. From the results, it is concluded that 2,4-
disubstituted quinoline derivatives can be modeled using molecu-
lar descriptors; AATS5e, VR3_Dzp, VR1_Dzi, VR1_Dzs and
SpMin7_Bhe. The built QSAR model will be useful for pharmaceu-
tical as well as medicinal chemists to design and synthesis new
drugs with better activities against M. tuberculosis.
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