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In the present paper, the primary resonance of a special type of nonlinear Duffing oscillator with
fractional-order derivative is studied by the averaging method. First, the parametric amplitude-
frequency equation is obtained, and then, the effects of the some parameters such as fractional order,
nonlinear coefficients and force amplitude on the system dynamics are investigated. Moreover, experi-
mental test were performed on the case study and a suitable model is identified. The obtained results
are very useful in the nonlinear identification field.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction in many researches. The calculation of the fractional-order deriva-
Fractional-order derivative was first introduced in the late
1700 s, since then, many investigations on the theory and applica-
tion of this method have been published by many authors (Samko
et al., 1993; Kiryakova, 1994; Lakshmikanthama and Vatsalab,
2008; Kilbas et al., 2006; Podlubny, 1998). In recent years, accord-
ing to the various applications in the fields of engineering and phy-
sics, growing interest is devoted to the fractional differential
equations (West et al., 2003). Many significant phenomena in con-
trol engineering (Li et al., 2010; Das, 2008), signal processing (Chen
et al., 2012), fluid mechanics (Chen et al., 2011), vibrations and
dynamics (Padovan and Sawicki, 1998; Metzler and Klafter;
2000; Li et al., 2001; Shen et al., 2012a; Zhang et al., 2009) are sim-
ulated by fractional-order differential equations. The fractional
derivative without singular kernel is an appropriate tool for mod-
eling the thermal problems (Yang et al., 2016a,c,b; Atangana and
Baleanu, 2016; Yang, 2016). Atangana and Koca (2016), Alkahtani
(2016) and Gómez-Aguilar (2017) proposed a new operator with
fractional-order based upon the Mittag-Leffler function, in which
the derivative has no singular kernel.

The effect of the fractional-order derivative on the behavior of
nonlinear dynamical system is very interesting and it is addressed
tive has been studied using different analytical and numerical
techniques including averaging method (Shen et al., 2014b,a),
multiple-scale approach (Xu et al., 2013), the homotopy analysis
method (Ghazanfari and Veisi, 2011; Mishra et al., 2016), the dif-
ferential transform method (Arikoglu and Ozkol, 2007) and some
numerical methods (Atanackovic and Stankovic, 2008; Cao et al.,
2010; Sheu et al., 2007).

In the current literature, despite the existence of many valuable
researches in this field, only some important nonlinear techniques
would be introduced. Shen et al. (2012b) and Shen et al. (2012c)
investigated the Duffing oscillator with fractional-order derivative
using the averaging method and Shen et al. (2016) used harmonic
balance method for studying the Duffing oscillator. In this paper,
we investigated a special type of Duffing oscillator with an addi-
tional nonlinear term, which governs the nonlinear vibration of
the structures with large deflection. Accordingly, an experimental
case study is tested and suitable parameters for the nonlinear
model are identified. The proposed approach is useful for research-
ers in the field of mathematical model identification.

2. An approximate analytical solution for a special type of
Duffing oscillator

The considered special type of Duffing oscillator with fractional-
order derivatives is established as

m€xðtÞ þ c _xðtÞ þ kxðtÞ þ C2xðtÞ _x2ðtÞ þ C3x3ðtÞþK1D
p½xðtÞ� ¼ F cosðxtÞ

ð1Þ
where m, c, k, C2, C3, F and x are the system mass, linear viscous
damping coefficient, linear stiffness coefficient, inertial nonlinearity
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coefficient, nonlinear stiffness coefficient, excitation amplitude, and
excitation frequency, respectively. As can be seen, Eq. (1) is a special
kind of Duffing equation due to the existence of inertial nonlinear
term (xðtÞ _x2ðtÞ). Dp½xðtÞ� is the p-order derivative of x(t)
(0 � p � 1), with the fractional coefficient of K1 (K1 > 0). Several def-
initions are proposed for fractional-order derivative; however, for a
wide class of functions, they are equivalent under some conditions.
In this paper, the Caputo’s definition is used (Shen et al. (2012b))

Dp½xðtÞ� ¼ 1
Cð1� pÞ

Z t

0

x0ðuÞ
ðt � uÞp du ð2Þ

where CðxÞ is Gamma function, which satisfies Cðxþ 1Þ ¼ xCðxÞ.
Using the coordinates transformation (this transformation satisfies,
formally, the averaging method requirement (Nayfeh and Mook,
1995; Sanders et al., 2007; Burd, 2007) as follows:

x0 ¼
ffiffiffiffiffi
k
m

r
; 2el ¼ c

m
; ec2 ¼ C2

m
; ec3 ¼ C3

m
; ek1 ¼ K1

m
;

ef ¼ F
m

Eq. (1) becomes:

€xðtÞ þ 2el _xðtÞ þx2
0xðtÞ þ ec2xðtÞ _x2ðtÞ þ ec3x3ðtÞ þ ek1Dp½xðtÞ�

¼ ef cosðxtÞ ð3Þ
In order to study the primary resonance of the oscillator; the

excitation frequency is considered close to the natural frequency,
i.e. x � x0., we have:

x2 ¼ x2
0 þ er ð4Þ

where r is the detuning factor. Eq. (3) can be rewritten in the fol-
lowing form:

€xðtÞ þx2xðtÞ ¼ e f cosðxtÞ þ rxðtÞ � 2l _xðtÞf
� c2xðtÞ _x2ðtÞ � c3x3ðtÞ � k1D

p½xðtÞ�� ð5Þ
Supposing Eq. (5) has the solution given by

xðtÞ ¼ a cosu ð6aÞ

_xðtÞ ¼ �ax sinu ð6bÞ
where the amplitude a and the generalized phase u (u ¼ xt þ h)
are slow-varying function of time. In accordance with the averaging
method, one could obtain:

_a ¼ �1
x

½P1ða; hÞ þ P2ða; hÞ� sinu ð6aÞ

a _h ¼ �1
x

½P1ða; hÞ þ P2ða; hÞ� cosu ð6bÞ

where

P1ða; hÞ ¼ e f cosðu� hÞ þ ra cosuþ 2laxsinu½
� c2a3x2 cosu sin2u� c3a3 cos3u

i
ð7aÞ

P2ða; hÞ ¼ �ek1Dp½a cosu� ð7bÞ
Also, applying the standard averaging procedure to Eq. (6) in

time interval [0, T] would lead to:

_a ¼ �1
Tx

Z T

0
P1ða; hÞ þ P2ða; hÞ½ � sinudu ð8aÞ

a _h ¼ �1
Tx

Z T

0
½P1ða; hÞ þ P2ða; hÞ� cosudu ð8bÞ

Based on the averaging method, one could select the time ter-
minal T as T = 2p if Piða; hÞ (i = 1,2) is a periodic function, or
T =1 if Piða; hÞ (i = 1, 2) is aperiodic one. Thereby, the simplified
forms of the first term of Eqs. (8a) and (8b) would be as:
_a1 ¼ �1
2px

Z 2p

0
P1ða; hÞ sinudu ¼ � ef

2x
sin h� ela ð9aÞ

a _h1 ¼ �1
2px

Z 2p

0
P1ða; hÞ cosudu

¼ � ef
2x

cos h� era
2x

� ec2a3x
4

þ 3ec3a3

8x
ð9bÞ

Substituting Eqs. (2) and (6b) into Eqs. (8a) and (8b), the second
part of these equations can be calculated as:

_a2 ¼ �lim
T!1

1
Tx

Z T

0
P2ða; hÞ sinudu

¼ lim
T!1

�ek1a
TCð1� pÞ

Z T

0

Z t

0

sinðxuþ hÞ
ðt � uÞp du

� �
sinudu ð10aÞ

a _h2 ¼ �lim
T!1

1
Tx

Z T

0
P2ða; hÞ cosudu

¼ lim
T!1

�ek1a
TCð1� pÞ

Z T

0

Z t

0

sinðxuþ hÞ
ðt � uÞp du

� �
cosudu ð10bÞ

Two important integrals formulae are introduced based on the
residue theorem and contour integration as follows (Shen et al.
(2012b)):

B1 ¼ lim
T!1

Z T

0

sinðxtÞ
tp

dt ¼ xp�1Cð1� pÞcos pp
2

� �
ð11aÞ

B2 ¼ lim
T!1

Z T

0

cosðxtÞ
tp

dt ¼ xp�1Cð1� pÞsin pp
2

� �
ð11bÞ

Using Eq. (11) and doing some complicated but standard com-
putation on Eq. (10), we have:

_a2 ¼ �eak1xp�1

2
sin

pp
2

� �
ð12aÞ

a _h2 ¼ eak1xp�1

2
cos

pp
2

� �
ð12bÞ

Combining Eq. (9) with Eq. (12), Eq. (8) can be written as:

_a ¼ � ef
2x

sin h� ela� eak1xp�1

2
sin

pp
2

� �
ð13aÞ

a _h ¼ � ef
2x

cos h� era
2x

� ec2a3x
4

þ 3ec3a3

8x
þ eak1xp�1

2
cos

pp
2

� �
ð13bÞ

Substituting the new parameters with the primary ones, Eq.
(13a) and Eq. (13b) becomes

_a ¼ � F
2mx

sin h� ca
2m

� aK1xp�1

2m
sin

pp
2

� �
ð14aÞ

a _h ¼ � F
2mx

cos h� era
2x

� C2a3x
4m

þ 3C3a3

8mx
þ aK1xp�1

2m
cos

pp
2

� �
ð14bÞ

Now, the steady-state solution, which is an important achieve-
ment in the vibration engineering (Den-Hartog, 1956; Timoshenko
et al., 1974), is investigated. Letting ??_= 0 and a _h = 0, and eliminat-
ing ?? from Eqs. (14a) and (14b), one could obtain the amplitude-
frequency equation as

ca
2m

þ aK1xp�1

2m
sin

pp
2

� �� 	2

þ era
2x

þ C2a3x
4m

� 3C3a3

8mx
� aK1xp�1

2m

�(

cos
pp
2

� ��2
�

¼ F2

ð2mxÞ2 ð15Þ

where a is the steady-state amplitude.
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3. Study on the amplitude-frequency equation parameters

Some illustrative example systems are studied herein as defined
by the system basic parameters: m = 1, x = 10, c = 0.1. Based on Eq.
(15), the effect of some parameters on the amplitude-frequency
curves could be achieved as shown in Figs. 1–5.

The effects of the fractional-order ?? and the fractional coeffi-
cient K1 on the amplitude–frequency curves are depicted in Figs. 1
and 2 respectively. Based on these Figs., the maximum amplitude
would be smaller for the larger values of p and K1. Accordingly,
these two parameters have damping effects on the dynamic behav-
ior of the system (Rossikhin and Shitikova, 1997). In addition, the
bending amplification of the amplitude-frequency curve is more
severe through the decrease in the fractional order p and the frac-
tional coefficient K1, because the stiffness becomes larger in this
nonlinear system. Therefore, the fractional-order derivative term
Fig. 1. Effect of the fractional order p on the amplitude-frequency curves
(C2 = 1.5 � 10�5, C3 = 1 � 10�4, K1 = 0.1 and F = 100).

Fig. 2. Effect of the fractional coefficient K1 on the amplitude-frequency curves
(C2 = 1.5 � 10�5, C3 = 1 � 10�4, p = 0.25 and F = 100).

Fig. 3. Effect of inertial nonlinearity coefficient C2 on the amplitude-frequency
curves (p = 0.25, C3 = 1 � 10�4, K1 = 0.1 and F = 100).

Fig. 4. Effect of nonlinear stiffness coefficient C3 on the amplitude-frequency curves
(p = 0.25, C2 = 1.5 � 10�5, K1 = 0.1 and F = 100).
affects the stiffness and damping of this dynamical system, which
is useful in system identification.

The effects of changing C2, C3 and F in Eq. (15) on the amplitude-
frequency curves are shown in Figs. 3–5, respectively. According to
the figures, unlike the p and K1 parameters, the C2 and C3 parame-
ters have no effect on the maximum amplitude.

Based on Figs. 3 and 4, the peaks of amplitude-frequency curves
move to the left and right by changing C2 and C3, which indicates
that these two parameters affect the stiffness of the nonlinear
oscillator. The sign of these two coefficients determine the soften-
ing nonlinearity (bends the amplitude-frequency curves to the left)
or hardening nonlinearity (and vice versa). Based on Fig. 5, three
values are selected for excitation amplitude. By increasing the exci-
tation amplitude, the curves are shifted upwardly.



Fig. 6. Test set-up.

Fig. 5. Effect of the excitation amplitude on the amplitude-frequency curves
(C2 = 1.5 � 10�5, C3 = 1 � 10�4, K1 = 0.1 and p = 0.25).
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3.1. Experimental case study

Based on the above results, a case study is investigated experi-
mentally. For this purpose, a slender beam element, which can be
considered as a highly flexible beam is selected. Thus, the Euler-
Bernoulli beam theory can be used for deriving the nonlinear equa-
tions of motion. The beam is vibrated by a harmonic excitation
force applied at the base. The equation of motion according to
the mentioned assumptions (in addition, the effect of axial inertia
of the beam is neglected) is in the form of Eq. (1) (Nayfeh and Pai,
2004). In the present study, the excitation frequency is also
selected very close to the beam second natural frequency (second
primary resonance), thus, only the second mode is excited and the
other modes are damped out due to the structural damping.

A cantilever Steel beam with a length of 600 mm, width of
30 mm and thickness of 1.17 mm is considered as an experimental
case study. The rigid supporting base of the beam is fixed to the
moving rod of an electrodynamics shaker Tira 5110 M, so the base
would be excited as shown in Fig. 6. The base acceleration was
recorded by a PCB B30 accelerometer attached to the beam base
and the tip response of the beam was recorded by a PCB B35
Fig. 7. Frequency responses of bea
miniature accelerometer. At first, a low level random excitation
was applied to the base of the beam and the linear FRF was mea-
sured for tip position. In Fig. 7, the FRF associated with the base
excitation is shown. The second natural frequency and associated
damping coefficient of the beam are 16.25 Hz and 0.004 N.s/m
respectively.
m tip at low level excitations.



Table 1
The identified nonlinear coefficients.

Coefficients C2 C3 K1 p

Value 6.9 � 10�7 1 � 10�6 0.3 0.13

Fig. 8. The amplitude-frequency curves of beam tip (F = 0.5 g).

Fig. 11. The amplitude-frequency curves of beam tip (F = 1.25 g).

Fig. 9. The amplitude-frequency curves of beam tip (F = 0.75 g).

Fig. 10. The amplitude-frequency curves of beam tip (F = 1.0 g).
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For a nonlinear beam, for second or higher modes, the inertia
nonlinearity is the dominant nonlinear term, whereas for the first
mode, the geometrical nonlinearity is the dominant nonlinear term
(Pai and Nayfeh, 1990). It has been also shown that the geometrical
nonlinearity has a hardening effect, while, in contrast, the inertia
nonlinearity has a softening effect (Pai and Nayfeh, 1990). These
effects can be seen clearly from the experimental results. The force
and response signals are recorded and then, the linearized FRF dia-
gram was plotted using a curve fitting on the measured data close
to the resonance point. In order to perform a complete identifica-
tion of the nonlinear beam, a parametric approach is used based
on the unknown coefficient of Eq. (1). Finding the optimum values
for the unknown coefficient besides achieving the minimum error
between theoretical and experimental approaches is the basis of
the identification process in this research.

The identified parameters are given in Table 1. The amplitude-
frequency curves obtained from the identified model and the
experiments are given in Figs. 8–11. It is concluded that by consid-
ering the fractional-order derivative nonlinear model, a good
agreement between theoretical and experimental results would
be achieved.

The obtained results indicate the accuracy of the developed
model based on Eq. (1), at the resonance point and after that (see
Tables 2 and 3). Also, the jump phenomena and softening effect
are predicted properly. According to the results, a deviation
between the experimental data and theoretical solution is seen
only in the unstable region. This deviation is reasonable, because
in this region, the jump phenomena occurs in the experiments
but in theoretical solution, bending of the amplitude-frequency



Fig. 12. Typical amplitude-frequency curves of beam tip in F = 1.0 g, jump
phenomena (the experimental point of view-the path marked with arrow) and
the dashed line for unstable solution (the mathematical point of view-multivalued
amplitudes).

Table 3
Comparison between theoretical and experimental results (amplitude-stable solution) near the peak of amplitude-frequency curves (F = 1.0 g & 1.25 g).

F = 1.0 g F = 1.25 g

er Experimental Theoretical Error (%) er Experimental Theoretical Error (%)

�3.079 32.30 32.17 0.402 �3.707 36.37 36.17 0.550
�3.016 32.10 32.05 0.156 �3.644 36.12 36.15 0.083
�2.953 31.87 31.98 0.329 �3.581 35.98 36.08 0.278
�2.890 31.65 31.88 0.727 �3.518 35.72 35.98 0.728
�2.827 31.38 31.76 1.211 �3.456 35.58 35.86 0.787
�2.513 30.47 30.98 1.674 �3.393 35.37 35.73 1.018
�2.199 29.34 30.06 2.436 �3.330 35.13 35.59 1.309

Table 2
Comparison between theoretical and experimental results (amplitude-stable solution) near the peak of amplitude-frequency curves (F = 0.5 g & 0.75 g).

F = 0.5 g F = 0.75 g

er Experimental Theoretical Error (%) er Experimental Theoretical Error (%)

�1.571 23.15 23.11 0.173 �2.262 27.51 27.50 0.036
�1.508 23.06 23.09 0.130 �2.199 27.31 27.42 0.402
�1.445 22.97 22.99 0.087 �2.136 27.21 27.31 0.367
�1.382 22.7 22.85 0.660 �2.073 27.12 27.17 0.184
�1.319 22.33 22.68 1.567 �2.010 27.00 27.02 0.074
�1.257 22.01 22.50 2.226 �1.948 26.84 26.85 0.037
�0.942 20.62 21.44 3.976 �1.885 26.55 26.68 0.489
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curves leads to multi valued amplitudes mathematically (see
Fig. 12).

One of the most valuable results of the current research is
extracting the new nonlinear model, which can be used in any geo-
metrically nonlinear structure. Although a single frequency excita-
tion force was used for the identification of the current model, but
there is no limitation on the loading condition; and the identified
model can be used for predicting the nonlinear response in differ-
ent loading condition.
4. Conclusions

The special kind of Duffing oscillator with fractional-order
derivative is studied by the averaging method, and the approxi-
mately analytical solution is obtained. The effects of the fractional
coefficient, the fractional-order, inertial and geometrical nonlinear
coefficients and excitation amplitude on the solution are deter-
mined by the amplitude-frequency curves. Also, for an experimen-
tal case study, the model and the nonlinear coefficients are
identified. The obtained results are valuable in nonlinear systems
identification.

References

Alkahtani, B.S.T., 2016. Chua’s circuit model with Atangana-Baleanu derivative with
fractional order. Chaos Solitons Fractals 89, 547–551.

Arikoglu, A., Ozkol, I., 2007. Solution of fractional differential equations by using
differential transform method. Chaos Solitons Fractals 34, 1473–1481.

Atanackovic, T.M., Stankovic, B., 2008. On a numerical scheme for solving
differential equations of fractional order. Mech. Res. Commun. 35, 429–438.

Atangana, A., Baleanu, D., 2016. New fractional derivatives with non-local and non-
singular kernel: theory and application to heat transfer model. Therm. Sci. 20,
763–769.

Atangana, A., Koca, I., 2016. Chaos in a simple nonlinear system with Atangana-
Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454.

Burd, V., 2007. Method of Averaging for Differential Equations on an Infinite
interval: Theory and Applications. Taylor & Francis Group, New York.

Cao, J., Ma, C., Xie, H., Jiang, Z., 2010. Nonlinear dynamics of Duffing system with
fractional order damping. J. Comput. Nonlinear Dyn. 1, 2–6.

Chen, X., Wei, L., Sui, J., Zhang, X., Zheng, L., 2011. Solving fractional partial
differential equations in fluid mechanics by generalized differential transform
method. 2nd International Conference on Multimedia Technology (ICMT’11),
pp. 2573–2576.

Chen, Z., Peng, Y.L., Wang, S.W., Yin, F.L., 2012. From discrete to continuous-
fractional signal processing theories, methods and applications. Acta
Electronica Sinica 40, 2282–2289.

Das, S., 2008. Functional Fractional Calculus for System Identification and Controls.
Springer-Verlag, Berlin.

Den-Hartog, J.P., 1956. Mechanical Vibrations. McGraw-Hill, New York.
Ghazanfari, B., Veisi, F., 2011. Homotopy analysis method for the fractional

nonlinear equations. J. King Saud Univ. Sci. 23, 389–393.
Gómez-Aguilar, J.F., 2017. Irving-Mullineux oscillator via fractional derivatives with

Mittag-Leffler kernel. Chaos Solitons Fractals 95, 179–186.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., 2006. Theory and applications of fractional

differential equations. Elsevier, Amsterdam.
Kiryakova, V., 1994. Generalized Fractional Calculus and Applications. Longman-

Wiley, New York.
Lakshmikanthama, V., Vatsalab, A.S., 2008. Basic theory of fractional differential

equations. Nonlinear Anal. 69, 2677–2682.
Li, D.Z., Cao, J., Guan, S.T., Tan, T.W., 2010. Research and implementation of a

fractional predictive controller. Control Theory App. 27, 658–662.
Li, G., Zhu, Z., Cheng, C., 2001. Dynamical stability of viscoelastic column with

fractional derivative constitutive relation. Appl. Math. Mech. 22, 294–303.

http://refhub.elsevier.com/S1018-3647(17)30111-8/h0005
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0005
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0010
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0010
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0015
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0015
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0020
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0020
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0020
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0025
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0025
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0030
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0030
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0035
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0035
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0040
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0040
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0040
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0040
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0045
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0045
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0045
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0050
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0050
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0055
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0060
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0060
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0065
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0065
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0070
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0070
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0075
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0075
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0080
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0080
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0085
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0085
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0090
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0090


20 M. Kavyanpoor, S. Shokrollahi / Journal of King Saud University – Science 31 (2019) 14–20
Metzler, R., Klafter, J., 2000. The random walk’s guide to anomalous diffusion: a
fractional dynamics approach. Phys. Rep. 339, 1–77.

Mishra, V., Das, S., Jafari, H., Ong, S.H., 2016. Study of fractional order Van der Pol
equation. J. King Saud Univ. Sci. 28, 55–60.

Nayfeh, A.H., Mook, D.T., 1995. Nonlinear Oscillations. Wiley-Interscience, New
York.

Nayfeh, A.H., Pai, P.F., 2004. Linear and Nonlinear Structural Mechanics. Wiley-
Interscience, New York.

Padovan, J., Sawicki, J.T., 1998. Nonlinear vibrations of fractionally damped systems.
Nonlinear Dyn. 16, 321–336.

Pai, P.F., Nayfeh, A.H., 1990. Non-linear non-planar oscillations of a
cantilever beam under lateral base excitations. Int. J. Non-Linear Mech. 25,
455–474.

Podlubny, I., 1998. Fractional Differential Equations. Academic, London.
Rossikhin, Y.A., Shitikova, M.V., 1997. Application of fractional derivatives to the

analysis of damped vibrations of viscoelastic single mass systems. Acta Mech.
120, 109–125.

Samko, S.G., Kilbas, A.A., Marichev, O.I., 1993. Fractional Integrals and Derivatives,
Theory and Applications. Gordon and Breach, Yverdon.

Sanders, J.A., Verhulst, F., Murdock, J., 2007. Averaging Methods in Nonlinear
Dynamical Systems. Springer Science+Business Media, New York.

Shen, Y., Wei, P., Sui, C., Yang, S.P., 2014a. Subharmonic resonance of van der pol
oscillator with fractional-order derivative. Math. Prob. Eng., 17

Shen, Y.J., Wei, P., Yang, S.P., 2014b. Primary resonance of fractional-order van der
Pol oscillator. Nonlinear Dyn. 77, 1629–1642.

Shen, Y.J., Wen, S.F., Li, X.H., Yang, S.P., Xing, H.J., 2016. Dynamical analysis of
fractional-order nonlinear oscillator by incremental harmonic balance method.
Nonlinear Dyn. 85, 1457–1467.
Shen, Y.J., Yang, S.P., Xing, H.J., 2012a. Dynamical analysis of linear single degree-of-
freedom oscillator with fractional-order derivative. Acta Physica Sinica 61.

Shen, Y.J., Yang, S.P., Xing, H.J., Gao, G., 2012b. Primary resonance of Duffing
oscillator with fractional-order derivative. Commun. Nonlinear Sci. Numer.
Simul. 17, 3092–3100.

Shen, Y.J., Yang, S.P., Xing, H.J., Ma, H.X., 2012c. Primary resonance of Duffing
oscillator with two kinds of fractional-order derivatives. Int. J. Non-Linear Mech.
47, 975–983.

Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M., 2007. Chaotic dynamics of the
fractionally damped Duffing equation. Chaos Solitons Fractals 32, 1459–1468.

Timoshenko, S., Young, D.H., Weaver, W., 1974. Vibration Problems in Engineering.
John Wiley, New York.

West, B.J., Bolognab, M., Grigolini, P., 2003. Physics of Fractal Operators. Springer,
New York.

Xu, Y., Li, Y., Liu, D., Jia, W., Huang, H., 2013. Responses of Duffing oscillator with
fractional damping and random phase. Nonlinear Dyn. 74, 745–753.

Yang, A.M., Han, Y., Li, J., Liu, W.X., 2016a. On steady heat flow problem involving
Yang-Srivastava-Machado fractional derivative without singular kernel. Therm.
Sci. 20, 717–721.

Yang, X.J., 2016. Fractional derivatives of constant and variable orders applied to
anomalous relaxation models in heat-transfer problems. Therm. Sci.

Yang, X.J., Srivastava, H.M., Machado, J.A.T., 2016b, A new fractional derivative
without singular kernel, Application to the modelling of the steady heat flow, v.
20(0), 753–756.

Yang, X.J., Zhang, Z.Z., Srivastava, H.M., 2016c. Some new applications for heat and
fluid flows via fractional derivatives without singular kernel. Therm. Sci.

Zhang, W., Liao, S.K., Shimizu, N., 2009. Dynamic behaviors of nonlinear fractional-
order differential oscillator. J. Mech. Sci. Technol. 23, 1058–1064.

http://refhub.elsevier.com/S1018-3647(17)30111-8/h0095
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0095
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0100
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0100
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0105
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0105
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0110
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0110
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0115
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0115
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0120
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0120
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0120
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0125
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0130
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0130
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0130
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0135
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0135
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0140
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0140
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0145
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0145
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0150
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0150
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0155
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0155
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0155
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0160
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0160
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0165
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0165
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0165
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0170
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0170
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0170
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0175
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0175
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0180
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0180
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0185
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0185
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0190
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0190
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0195
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0195
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0195
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0200
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0200
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0210
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0210
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0215
http://refhub.elsevier.com/S1018-3647(17)30111-8/h0215

	Dynamic behaviors of a fractional order nonlinear oscillator
	1 Introduction
	2 An approximate analytical solution for a special type of Duffing oscillator
	3 Study on the amplitude-frequency equation parameters
	3.1 Experimental case study

	4 Conclusions
	References


