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In this paper, we develop a local discontinuous Galerkin (LDG) method for numerically solving the non-
local one-way water wave equation. Based on the features of fractional derivative, the considered model
is first coupled into a classical first derivative and a nonlocal fractional integral. Then LDG algorithm is
used in space discretization by properly choosing the numerical fluxes. Numerical examples are provided
to show the accuracy and effectiveness.
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1. Introduction Applying the inverse the Laplace-Fourier transform, in physical
The study of water waves governed by Euler equations has
interested researchers over many years. Under appropriate
assumption, the irrotational Euler equations with zero surface ten-
sion reduces to the following water wave equation (Wu, 1997;
Jennings, 2012; Beale et al., 1993)

utt þ @xHuðx; tÞ ¼ Fðu; tÞ; x 2 R; t > 0; ð1:1Þ
where H denotes the Hilbert transform

HðuÞðxÞ ¼ 1
p

p:v:
Z þ1

�1

uðyÞ
x� y

dy; ð1:2Þ

and the nonlinear term F consisting of the nonlinear terms. The lin-
earized form of model (1.1) gives

utt þ @xHuðx; tÞ ¼ 0; x 2 R; t > 0: ð1:3Þ
In frequency space, nonlocal model (1.3) has the dispersion relation

2pwð Þ2 ¼ j2pkj, which means

w ¼ �sgnðkÞ
ffiffiffiffiffiffiffi
jkj
2p

r
: ð1:4Þ
space, Eq. (1.4) becomes two one-way water wave equations

ut � 1ffiffiffiffiffiffiffi
2p

p @x

Z þ1

�1

uðy; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffijx� yjp dy

 !
¼ 0; ð1:5Þ

where the ðþÞ corresponds to right-going waves and the ð�Þ to left-
going waves. Recalling the left Riemann-Liouville integral
(Podlubny, 1999)

�1D�1=2
x uðx; tÞ ¼ 1ffiffiffiffi

p
p

Z x

�1

uðy; tÞffiffiffiffiffiffiffiffiffiffiffi
x� y

p dy;

and the right Riemann-Liouville integral (Podlubny, 1999)

xD
�1=2
þ1 uðx; tÞ ¼ 1ffiffiffiffi

p
p

Z þ1

x

uðy; tÞffiffiffiffiffiffiffiffiffiffiffi
y� x

p dy;

the nonlocal model (1.5) can be expressed as

utðx; tÞ � 1ffiffiffi
2

p @x �1D�1=2
x þ xD

�1=2
þ1

� �
uðx; tÞ ¼ 0: ð1:6Þ

Numerical studies of nonlocal water waves equation have been
performed in recent works (Chen et al., 2012; Jennings, 2012;
Jennings et al., 2014; Li and Zhao, 2016). The LDG method has been
intensively studied and successfully applied to solve various linear
and nonlinear partial differential equations since it was first intro-
duced by Cockburn and Shu (1998). We refer to Hesthaven and
Warburton, 2008, Shu (2016) and references cited therein for the
development of LDG methods. Recently, there has been a growing
interest in LDG methods for space fractional diffusion problems (Ji
and Tang, 2012; Deng and Hesthaven, 2013; Xu and Hesthaven,
2014; Mao and Kamiadakis, 2017). The numerical test results show
that the LDG method provides a very effective numerical method
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for solving nonlocal fractional diffusion equations. Recently, in
view of conservative form (1.5), Jennings et al. present a semi-
discrete finite volume scheme for (1.5) by using piecewise polyno-
mial reconstruction. Motivated by the work (Ji and Tang, 2012), we
will design a highly accurate local discontinuous Galerkin method
for the nonlocal conservative form (1.5). The LDG method is con-
structed by using choosing numerical flux instead of using polyno-
mial reconstruction.

The content of the paper is organized as follows. In Section 2,
we present the formulation of the semi-discrete LDG methods for
model (1.5). To verify the effectiveness of the proposed LDG
scheme, the extensive numerical results are presented in Section 3.
Concluding remarks is summarized in Section 4.

2. Formulation of local discontinuous Galerkin method

We design the LDG method for model (1.6) in finite domain
½a; b�, and we always assume that the solution of model (1.6) has
support on ½a; b�. To design the LDG method for model (1.6), we
introduce auxiliary variable vðx; tÞ, then the model (1.6) can be
rewritten as

utðx; tÞ � @xvðx; tÞ ¼ 0;

vðx; tÞ � 1ffiffi
2

p aD
�1=2
x þ xD

�1=2
b

� �
uðx; tÞ ¼ 0:

(

Let a ¼ x1
2
< x3

2
< � � � < xNþ1

2
¼ b be any regular partition of ½a; b� with

mesh step hj ¼ xjþ1
2
� xj�1

2
and h ¼ max16j6Nhj. Denote

xjþ1
2
¼ 1

2 xj þ xjþ1
� �

and Ij ¼ ½xj�1
2
; xjþ1

2
�. The piecewise polynomials of

degree at most k over the subintervals Vh on the cell Ij is defined

as Vh ¼ fv : v 2 PkðIjÞ; x 2 Ijg. The semi-discrete LDG scheme is
defined as follows. Find uhð�; tÞ 2 Vh and vhð�; tÞ 2 Vh, such that for
any / 2 Vh and w 2 Vh,

uht;/ð ÞIj þ vh;/xð ÞIj � v̂h/j
x�
jþ1

2
xþ
j�1

2

¼ 0;

vh;wðxÞð ÞIj � 1ffiffi
2

p aD
�1=2
x uþ xD

�1=2
b u;wðxÞ

� �
Ij
¼ 0;

uhðx;0Þ;/ðxÞð ÞIj ¼ u0ðxÞ;/ðxÞð ÞIj ;

8>>>>><
>>>>>:

ð2:1Þ

where v̂h denotes the numerical flux. We use the alternating direc-
tion flux (Cockburn and Shu, 1998), defined as

ûjþ1
2
¼ u�

jþ1
2
; v̂ jþ1

2
¼ vþ

jþ1
2
; 0 6 j 6 N � 1:

or

ûj ¼ uþ
jþ1

2
; v̂ jþ1

2
¼ vþ

jþ1
2
; 0 6 j 6 N � 1:

where u�ðxjÞ ¼ limx!x�
j
uðxÞ, ½u� ¼ uþ � u�. For the numerical flux at

the boundary, we use the flux introduced in Castillo et al. (2003),
in the form

ûNþ1
2
¼ uðb; tÞ; v̂Nþ1

2
¼ v�

Nþ1
2
þ c
h
½uNþ1

2
�:

or

û1
2
¼ uða; tÞ; v̂1

2
¼ v�

1
2
þ c
h
½u1

2
�;

where c is a positive constant. Let ftngNt
n¼0 be a partition of time

interval ½0; T� with the time step size Dt. Denote vector uh be the
unknown coefficients of numerical solutions, then the discrete
ODE system (2.1) can be written as

duh

dt
¼ Lðuh; tÞ; ð2:2Þ
where L is produced by (2.1). For the time discretization of system
(2.2), we use the third order explicit total variation diminishing
(TVD) Runge-Kutta method (Gottlieb et al., 2001)

uð1Þ
h ¼ un

h þ DtL un
h; tn

� �
;

uð2Þ
h ¼ 4

3
un
h þ

1
4
uð1Þ
h þ 1

4
DtL uð1Þ

h ; tn þ Dt
� �

;

unþ1
h ¼ 1

3
un
h þ

2
3
uð2Þ
h þ 2

3
DtL uð2Þ

h ; tn þ 1
2
Dt

� �
:

ð2:3Þ
3. Numerical results

In this section, we present two numerical examples to show the
accuracy and the performance of the method for the considered

model. In our examples, the condition Dt 6 Chðkþ1Þ=3 ð0 < C < 1Þ
is used to fulfill the stability. In the first example, we examine

the accuracy with piecewise Pk polynomial approximations. The
errors are measured by L2 and L1 norms. The computed conver-
gence order are calculated by

order ¼ log EðhÞð Þ � log Eðh=2Þð Þ
logð2Þ ;

where EðhÞ is the L2 or L1-error calculated in the spatial step h. The
second example, we simulate the propagation of left and right one-
way water wave equations with a special wave packet.

Example 1. Consider the one-way left-going water wave Eq. (1.6)
on the finite domain x 2 ð0;1Þ, t 2 ½0;1�. We chose

uðx; tÞ ¼ e�tx6ð1� xÞ6 as the exact solution of problem (1.6), and
add a source term f ðx; tÞ on the right side of (1.6). The initial-
boundary conditions are determined by the exact solution.

Tables 1–2 report the numerical errors and convergence orders
for the discrete solutions computed by numerical scheme (2.1). We
observe that the accuracy of the LDG scheme are of order kþ 1=2
for k ¼ 1;2, is of order kþ 1 for k ¼ 3 in both L2 and L1 norms. In
the numerical flux at the boundary, we take c ¼ 0:05 in our com-
putation. To test the stability of the numerical scheme, we rewrite
the discrete ODE system (2.2) as

duhðtÞ
dt

¼ AuhðtÞ; ð3:1Þ

where the iterate matrix A is dense due to the nonlocal term of
scheme (2.1). Let fkkg be the eigenvalues of matrix A. We compute
their by numerical method because the analytically form can’t
obtain. To check the numerical stability of TVD Runge-Kutta
method, we denote gðzÞ be the amplification factor of the scheme
(2.3). If the numerical scheme (2.3) is stable, we require

max
k

g mkkð Þj j 6 1; ð3:2Þ

where m ¼ hffiffiffiffi
Dt

p . The Eigenvalues of A for k ¼ 1, k ¼ 2, and k ¼ 3 are

plotted in Fig. 1. The distribution of maxk g mkkð Þj j for k ¼ 1, k ¼ 2
and k ¼ 3 are given in Figs. 2, 3 and 4, respectively.

Example 2. Consider the problem (1.6) with the wave packet
(Jennings, 2012; Jennings et al., 2014)

uðx;0Þ ¼ cos6 p
6 20 x� 1

2

� �	 

sin 5p

6 20 x� 1
2

� �	 

; 0:35 < x < 0:65;

0; otherwise:

(

ð3:3Þ



Fig. 1. Eigenvalues of A for k ¼ 1, k ¼ 2, and k ¼ 3.

Fig. 3. The distribution of maxk g mkkð Þj j for k ¼ 2.

Fig. 4. The distribution of maxk g mkkð Þj j for k ¼ 3.Fig. 2. The distribution of maxk g mkkð Þj j for k ¼ 1.

Table 1
The L2 errors and convergence orders of u computed by the numerical scheme (2.1) for Example 1.

P1 P2 P3

h L2 error order L2 error order L2 error order

1/5 1.1881e�05 2.4200e�06 2.0483e�06
1/10 3.9638e�06 1.5837 4.0077e�07 2.5942 1.0216e�07 3.8646
1/20 1.3638e�06 1.5393 6.4181e�08 2.6426 5.7122e�09 4.3255
1/40 4.6965e�07 1.5380 1.0403e�08 2.6251 4.4589e�10 3.6793

Table 2
The L1 errors and convergence orders of u computed by the numerical scheme (2.1) for Example 1.

P1 P2 P3

h L1 error order L1 error order L1 error order

1/5 3.7583e�05 7.3163e�06 5.0434e�06
1/10 1.4405e�05 1.3835 1.4028e�06 2.3828 3.7335e�07 3.7558
1/20 5.2161e�06 1.4655 2.3655e�07 2.5681 1.9811e�08 4.2362
1/40 1.7632e�06 1.5648 3.5806e�08 2.7239 1.3744e�09 3.8494
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Table 3
The L2 errors and convergence orders of left going wave u computed by the LDG
method for Example 2.

P1 P2

h L2 error order L2 error order

1/40 8.9960e�02 1.1279e�01
1/80 4.1771e�02 1.1068 4.0618e�02 1.4734
1/160 1.4719e�02 1.5048 6.5961e�03 2.6624
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The exact solution of (1.6) in not available. To test the effective
rate of convergence, we chose uexact as the ‘‘exact” solution which is
computed at a fine grid h ¼ 1=200. The errors and orders of accu-
racy for numerical solutions are reported in Table 3. We observe

that the method with Pk elements gives a uniform almost
ðkþ 1Þth order of accuracy for LDG solutions in L2 norm.

We test the wave propagation of the problem (1.6) with wave
packet (3.3). The simulation of wave propagation for left and right
-going waves are listed in Figs. 5–8. We take ½0;1� as the computa-
tional domain and use the P2 element with N ¼ 40 in our compu-
tation. We can see that the moving wave profile is resolved very
well. From Figs. 7–8, we can see that the same results can be
obtained by using less mesh girds points compared with the
method given in Jennings et al. (2014).
Fig. 5. The evolution of left (a) and right (b) going one-

Fig. 6. The evolution of left (a) and right (b) going one-
Finally, we discuss the long time behavior of solutions to the
one way water wave (1.6) using the LDG method (2.1). It is proved
that the solutions of (1.6) decays at the rate
maxxjuðx; tÞj ¼ Oðt�1=2Þ; t ! 1. We compute the solution on the
domain ð0;1Þ until time t ¼ 6. For n ¼ 1 to 100, we compute
maxxjuðx; tÞj. Fig. 9 shows n plotted versus maxxjuðx; tÞj. From
Fig. 9, we can see the numerical solution decays at the rate
Oðt�1=2Þ, which confirms the theoretical results given by Jennings
et al. (2014).

4. Conclusion

Inspired by the nature of fractional derivative, we present a
local DG methods for the nonlocal one-way water wave equation.
The main idea of our method are that the fractional derivative is
splitted into a classical first derivative and a nonlocal fractional
integral, then the semi-discrete LDG method is designed by care-
fully choosing the numerical flux. The semi-discrete system is
computed by the third order TVD Runge-Kutta method. The
numerical scheme is verified for the smooth solution, and some
numerical solutions is simulated. Numerical results show that

the method with Pk elements don’t give an optimal kþ 1 order of
accuracy. We will carry out the details of error estimates in our
next work. Finally, numerical simulation shows that our LDG
method works well for the one-way water wave equation.
way water wave equations with wave packet (3.3).

way water wave equations with wave packet (3.3).



Fig. 7. Wave profile for left one-way water waves (a) and boxed region (b) computed by piece wise linear polynomial with wave packet (3.3).

Fig. 9. The decay rate of left-going one-way water waves (a) and boxed region (b) computed with initial data (3.3).

Fig. 8. Wave profile for right one-way water waves (a) and boxed region(b) computed by piece wise linear polynomial with wave packet (3.3).
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