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KEYWORDS Abstract An algorithm for approximating solutions to fractional differential equations (FDEs) in
Bernstein polynomials; a modified new Bernstein polynomial basis is introduced. Writing x — x* (0 < « < 1) in the oper-
Fractional differential equa- ational matrices of Bernstein polynomials, the fractional Bernstein polynomials are obtained and
tion; then transformed into matrix form. Furthermore, using Caputo fractional derivative, the matrix
Error analysis form of the fractional derivative is constructed for the fractional Bernstein matrices. We convert

each term of the problem to the matrix form by means of fractional Bernstein matrices. A basic
matrix equation which corresponds to a system of fractional equations is utilized, and a new system
of nonlinear algebraic equations is obtained. The method is given with some priori error estimate.
By using the residual correction procedure, the absolute error can be estimated. Illustrative exam-
ples are included to demonstrate the validity and applicability of the presented technique.
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1. Introduction Abdulaziz et al., 2008). In this paper, we consider the frac-

tional differential equations (FDEs) of the form:

Fractional. differen.tial eq.uations hav'e sev.eral applications in D*y(x) = g(x) + g(x)y(x) + z(x) (»(x))", 0<x< 1. (0
mathematical physics, fluid flow, engineering and other areas o
of applications (Miller and Ross, 1993; Podlubny, 1999; under the conditions

Jafari and Momani, 2007; Daftardar and Jafari, 2007; y(0) =By, »(1) =B, (2)
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Figure 1 The absolute error, the estimated absolute error and the corrected absolute error to Example 1, for the case n = 3,m =9 and
o =0.75.
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Here, y(x) is an unknown function; g(x), ¢(x) and z(x) are the
functions that are defined in [0, 1].

Numerical and analytical methods are applied to solve frac-
tional differential equation such as homotopy perturbation
method (Hosseinnia et al., 2008), Modification of homotopy
perturbation methods (Odibat and Momani, 2008), Taylor col-
location method (Cenesiz et al., 2010), Jacobi operational
matrix method (Kazem, 2013), Variational iteration method
(Odibat and Momani, 2006), Legendre functions method
(Kazem et al., 2013), Tau methods (Rad et al., 2014), A new
operational matrix method (Saadatmandi and Dehghan,

2010). Yang et al. (2015) presented local fractional derivative
operators and local integral transforms to solve fractional
differential equations. Rostamya et al. (2013) proposed anew
efficient basis to solve fractional partial differential equations.

Fractional Riccati differential equations have been solved
by many efficient techniques such as Adomian’s decomposi-
tion method (Gejji and Jafari, 2007; Momani and
Shawagfeh, 2006) and new spectral wavelets methods (Abd-
Elhameed and Youssri, 2014).

One of the most important numerical methods for solving
linear and nonlinear equations is Bernstein polynomials which
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o= 0.90.

The absolute error, the estimated absolute error and the corrected absolute error to Example 1, for the case n = 3,m =9 and
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have been used by many authors. Pandey and Kumar (2012)
used Bernstein operational matrix of differentiation to solve
Lane-Emden type equation. Besides that Bhatti and Bracken
(2007) solved the differential equations by using Galerkin
method based on the Bernstein polynomial basis. Yousefi
and Behroozifar (2010) presented an operational matrix
method based on Bernstein polynomials for the differential
equations. Recently, Yiming et al. (2014) solved a variable
order time fractional diffusion equation using Bernstein poly-
nomials. Alshbool and Hashim (2016) presented multistage
Bernstein polynomials which is a new modification of

Bernstein polynomials to find the solutions of fractional order
stiff systems.

In the present paper, we utilize a new operational matrices
method based on the Bernstein polynomials to solve linear and
non-linear fractional differential equations. We generalize r for
€ Ny, also the absolute error is estimated and corrected, as
well as the addition of the roots of Chebyshev polynomials is
used to reduce the interpolation error. The suggested method
shows that this approach can solve the problem effectively.

This article is structured as follows. In Section 2, the defini-
tions and properties of the fractional calculus are given. In
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o =0.75.

The absolute error, the estimated absolute error and the corrected absolute error to Example 1, for the case n = 5,m =9 and
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Section 3, our method and its applications are explained. In
Section 4, an error analysis of the method and estimation of
the error are presented, as well as the corrected absolute error.
In Section 5, our numerical findings, exact solution and
demonstration of the validity, accuracy and applicability of
the operational matrices by considering numerical examples
are reported. Section 6, consists of brief summary and
conclusion.

2. Preliminaries and notations

In this section, we provide some definitions and properties of
the fractional calculus (Diethelm et al., 2005; Podlubny, 1999).
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Definition 2.1. A real function f{x),x > 0, is said to be in the
space Cy, u € R, if there exists a real number p > p, such that
S(x) = xf,(x), where f,(x) € C(0,00), and it is said to be in
the space C), if and only if ) ¢ C,,neN.

Definition 2.2. The Riemann—Liouville fractional integral
operator (J*) of order o > 0, of a function f€ Cp,u = —1,
is defined as

I = s | o s (o 0),

Jf(x) = flx), 3)
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Figure 4 The absolute error, the estimated absolute error and the corrected absolute error to Example 1, for the case n = 5,m = 9 and

o= 0.90.
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o=1.

where I'(x) is well-known gamma function. Some of the
properties of the operator J*, which we will need here, are as
follows: For fe€ C,,u = —1,0,f > 0and y > —1:

L J P f(x) = TP f(x),
2. AP f(x) =TI f (%),

ayy — _TO+D oty
3.0 = e

Definition 2.3. The fractional derivative (D*) of f(x), in the
Caputo sense is defined as

D) = o | (= " (s, @

I'n—ua

The absolute error, the estimated absolute error and the corrected absolute error to Example 1, for the case n = 5,m = 9 and

forn—1l<a<nneNx>0feC",.

The following are two basic properties of the Caputo frac-
tional derivative (Miller and Ross, 1993):

1. Let f € C"|,n € N. Then D*f,0 < « < nis well defined and
Df e C.
2. Lletn—1<a<nn€Nand f€C;,u> -1 Then

n—1 ’Ck
(" D*)f(x) = flx) - Zf"") ) 57 ©)

For the Caputo derivative we have
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D*c =0, (cconstant), (6)
for fe Ny and f< o],

0,
D*xl =
* {r{;ﬁl)@xl’“, for feNy and B = [a] or B> |a].
(7)

We note that the approximate solutions will be found by using
the Caputo fractional derivative and its properties in this
study.

3. Description of the method

To solve (1), (2) by developing the Bernstein polynomial
approximation with the help of the matrix operations, the col-
location method and the caputo fractional derivative are used.

We obtain an approximate solution of the problem (1), (2) in
the form of

1) = Y By (v ) ®)

Here 0 < alpha < 1,¢,,k=0,1,2,...,n are the unknown
Bernstein coefficients, n is chosen for any positive integers,
and B} ,(x) are obtained by putting x — x* in Bernstein poly-
nomials as defined by

n\ xk(R —x)"*
B, = =0,1,2,... R
/x.n(x) (k) Rn ) k 07 ) &y ,n XE[O, }7
i=0,1,...,n
it becomes
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a=1

a=1|

[----- 0=0.75 — — 0:=0.90

Compare between 0=0.75,0=0.90 and o=1 to

Figure 7

w00 (})
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X

Example 1, for the case n=3

(R — X7y
Rn )

i=0,1,....,n

so that

V) =D aBly(x — ) = CT¢' (x).
k=0

where

d)* (x) = [Bgtn(x)v B (X)7 s 735,11()()]—[7 CT

= [co, ¢, - - -

Here, the expression (¢"(x)) in (11) can be written as

¢'(x) = AX
Where

oo doy

day  dn
A=

ano  dn
and

1y <
ay=9 * \i

So that
A9 (x) = X.

In

G-

1
Aon o
Ain
20
) X=|~x
nn X

i>]j

k=0,1,2,...,n x€]0,R],

©)

(10)

(11)

(12)

(13)

(14)

0 0.2 0.4 0.6 0.8 1

Compare between 0=0.75,0=0.90 and a=1 to

Example 1, for the case n=5

Compare between o = 0.75,0 = 0.90 and o = 1 to Examples 1, for the case n = 3, and n = 5.

By using the Caputo fractional derivative (7) and applying it
on Eq. (12), the ath order fractional derivative of ¢*(x) can
be written as

d
D*¢p*(x) = A—X. 15
B(x) = A (15)
D" (x) = AX". (16)
where
0
I(ae+1)
[(20+1) g
X = T(at1)
[ (na+1) n—1)a
T((n—1)a+1) X( g

We can write (16) as

D*¢*(x) = AQX. (17)
Where
0 0 0 0
0 T(at1) 0 0 0
(1) 1
CQ20+1) _ "
Q= 0 0 T(a+1) 0 , X= X
' I‘(n;+1) (n=1)a
0 0 0 I((n—1)o+1) *
(18)

Similarly, the D* fractional derivative of ¢(x) is given by the
recurrence relation

D ¢ (x) = AQPX. (19)
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Figure 8 The error function, the absolute of error function, the corrected error function and the absolute corrected error function to

Example 2, for the case n =3,m =9 and a = 0.75.

Where
00 0O
1 000
y—|0 1 0 0
001 0

We place relation (14) into Eq. (19) and then we get
D*¢p*(x) = AQPA™" ¢ (x). (20)

Finally, we obtain D* as

D* = AQ¥A™". (21)

Note that every matrix is in the dimension of (n + 1) x (n+ 1).
Substituting (D*) in Eq. (10) we obtain

D*y(x) ~ D" (). (22)

To obtain the solution of (1), the methods that are applied are:
Firstly, Eq. (10) is applied to approximate (y,,(x))" and

g(x) as
(a(2))" = (CT" (x))' (23)

8(x) = G'¢(x), (24)
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Figure 9  The error function, the absolute of error function, the corrected error function and the absolute corrected error function to

Example 2, for the case n = 3,m =9 and o = 0.90.

where the vector GT = [g,(x), g,(x), . ..,g,(x)]", represents the
non-homogenous term. By substituting the Eqs. (22)-(24), in
Eq. (1) we obtain
D" (x) = G " (x) + ¢(x)CT 9" (x)

+2(x)(CT¢"(x)) (25)
it can be written as
CTD*¢"(x) = ¢(x)CT¢"(x) — 2(x) (CTP"(x))" = G (x) =0,

(26)

The interpolation error may be reduced by using the roots of
Chebyshev polynomials

1 1

LI .
2 sy o O0h

X; ,n—1, (27)
By substituting these roots in Eq. (26), we obtain n— 1 of
equations where the unknowns are ¢; and each equation equals
zero. Nonlinear equations can be solved by using Newton’s
iteration method. Consequently y(x) which is given in Eq.
(10) can be calculated, and this method (collocation method)

is used to avoid the difficulty of integration.

4. Error analysis and estimation of the absolute error

In this section,we present the error analysis of the method
used. Residual correction procedure which may estimate the
absolute error will be assigned for the problem.
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Example 2, for the case n = 5,m =9 and « = 0.75.

Let y,,(x) and y(x) be the approximate solution and the
exact solution of (1), respectively. The following procedure,
residual correction can be assigned to the estimation of the
absolute error (Celik, 20006).

First, adding and subtracting the term

R = D"y, ,(x) + q(x)1,,(x) + 2(x) (0,,,(x))" + g(x), (28)
to (1) yield the following differential equation
De, () + q(x)ens(x) + 2(x) (ena(x))" = g(x) — R, (29)

with the conditions

e(0) =0, e(1)=0, or e(0) = 0. (30)

where ¢,(x) = y(x) — y,,(x). For a given value m let ¢ (x) be

the approximate solution of (29), where m is a polynomials
degree of (29) and m > n.

Corollary 1. Let y, ,(x) be the approximate solution of (1) and

ey (x) is the approximate solution of (29). Then y, ,(x) + e}, (x)

m
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Example 2, for the case n = 5,m =9 and o = 0.90.

is also an approximate solution of (1) and its error functions is
enq(X) — eh (X).

We term the approximate solution y, ,(x)+ ey (x) as the
corrected approximate solution. Note that if |e,(x) — e},(x)||
<€, then the absolute error can be estimated by e (x).
Moreover, if  |lena(x) —ep ()| < [[¥(x) =y, (), then
Vnu(X) + ey, (x) is a more accurate solution than y, ,(x) in any
given norm.

5. Illustrative examples

To illustrate the effectiveness of the presented method, the fol-
lowing examples of linear and non-linear fractional differential
equations (FDEs) are provided.

Example 1. Consider the fractional differential equation which
has been considered by Saadatmandi and Dehghan (2010).

D'y(x)+y(x)=0, yp0)=1, 0<a<l.

the exact solution of this problem is

B (—Xa)k
) = Zr(ak+ 0

k=0

(31)

In this problem ¢(x) = —1,z(x) =0,g(x) =0 and r =1, we

approximate the solution as

Vua(X) = DB x =) = CT¢" (x). (32)
k=0

By applying the method which is developed in Section 3 with
n=3and n=>5fora =0.75,0 = 0.9 and o = 1, a good result
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Figure 14  The error function, the absolute of error function, the corrected error function and the absolute corrected error function to

Example 3, for the case n =3,m =9 and « = 0.90.

with a tiny error is obtained. We use the method in Section 4 to
estimate the error and correct our approximate solution. The
absolute errors and their estimations obtained from residual
correction procedure for m =9 are plotted in Figs. 1-6. In
addition, the corrected approximate solutions y, ,(x) + ¢} (x)
are represented in the same figures. It is noticed from the
figures that residual correction procedure works well and the
corrected approximate solutions are better than the approxi-
mate solutions. Note that when o« = 1, the exact solution is

given as  y(x) =exp(—x). Comparisons  between
0=0.750=090 and o« =1 to Examples 1, for the case
n =13, and n =5 are plotted in Fig. 7.

Example 2. Consider the nonlinear fractional differential
equation which has been considered by Yiizbasi (2013).

d'y(x)

; 1.
e 0<a<

+x) =1, »(0)=0, (33)
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Figure 15  The error function, the absolute of error function, the corrected error function and the absolute corrected error function to

Example 3, for the case n =3,m =9 and « = 1.

In this problem ¢(x) =0,z(x) = —1,g(x) =1 and r =2, by
applying the method developed in Section 3 with n =3 and
n=>5for «a=0.750=0.9 and o = 1, good result is obtained
with a slight error. The method is used in Section 4 to estimate
the error and correct our approximate solution. In this
example there is no exact solution, so we find error function
and the corrected error function by residual correction proce-
dure for m =9, and all the results are plotted in Figs. 8-12.
Comparisons between o = 0.75,0 = 0.90 and « = 1 to Exam-
ples 1, for the case n = 3, and n = 5 are plotted in Fig. 13.

Example 3. Consider the nonlinear fractional differential
equation which has been considered by Yiizbasi (2013).

D 2y - ) 41,

y(0)=0, 0<a<l. (34)

The exact solution for the problem for o = 1 is given by

y(x) = 1+ Vv2tanh <\/§>‘c+%log (ﬁ:)) (35)
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Figure 16  The error function, the absolute of error function, the corrected error function and the absolute corrected error function to

Example 3, for the case n = 5,m =9 and o = 0.90.

In this problem ¢(x)=2,z(x)=1,g(x)=1 and r=2, we
approximate the solution as

PuaX) =Y _aBr(x = ¢) = CT" (x), (36)

We present the solution with » =3 and n =5 for « = 0.9 and
o = 1. We use the method in Section 4 to estimate the error
and correct our approximate solution. In this example there
is no exact solution, so we find the error function and the cor-
rected error function by residual correction procedure for
m = 9. All the results are plotted in Figs. 14-17. Comparisons
between o = 0.75,0 = 0.90 and o = 1 to Examples 1, for the
case n =3, and n = 5 are plotted in Fig. 18.

6. Conclusions

In this paper, the Bernstein operational matrix of derivative
was applied to solve linear and non-linear fractional differen-
tial equations. Different from other numerical techniques,
the few D* matrices are obtained. These matrices are used to
approximate the numerical solution of fractional differential
equations. It can be clearly noticed that the proposed method
performs well even on a few number of terms of the Bernstein
polynomials. The method is presented with some error analy-
sis, and residual correction procedure is extended for this prob-
lem. The subjects of our future works can be exemplified by
applying the presented technique for solving system of frac-



Solution of fractional-order differential equations

17

0.006

0.004+

0.002+

-0.002

-0.004+

-0.006

Error function for n=5 and o=1.

0.00002

0.00001+

-0.00001

-0.00002

0.2 0.4 0.6 0.8 1
X

Corrected of error function for n=5, m=9 and o=1.

o

Figure 17  The error function, the absolute of error function, the corrected error function and the absolute corrected error function to
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[---- 0=0.75 — — 0=0.90 — a=1]

0.006

0.005

0.004+

0.003

0.002+

0.0014

0% T T T T T
0 0.2 0.4 0.6 0.8 1
X

Absolute error function for n=5and a=1.

0.000025+

0.000020-

0.000015

0.000010;

0.000005

0% T T : T T 7
0 0.2 0.4 0.6 0.8 1
X

Absolute Corrected of error function for n=5, m=9 and a=1.

0¥ ‘ ‘ ‘ . ‘

0 . . . ; ;
0 02 04 0.6 0.8 1
X

Compare between 0=0.75,0=0.90 and 0=1 to
Example 3, for the case n=3

0 0.2 0.4 0.6 0.8 1
X

Compare between 0=0.75,0=0.90 and o=1 to

Example 3, for the case n=5

Figure 18 Compare between o = 0.75,0 = 0.90 and « = 1 to Examples 3, for the case n =3, and n = 5.



18

M.H.T. Alshbool et al.

tional differential equations and fractional partial differential
equations.
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