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Brassica napus is an oilseed plant that is mostly used to produce edible oils, industrial oils, modified lipids
and biofuels. The number of varieties/cultivars is high for the species, owing to their higher level of eco-
nomic use. The aim of this study is to assess the use of visible-near infrared (Vis-NIR) spectroscopy in
combination with multiple chemometric methods that have been explored for the discrimination of eight
Brassica napus varieties in Korea. In this study, the spectra from leaves of the eight B. napus varieties were
measured in the Vis-NIR spectra in the range of 325–1075 nm with a stepping of 1.5 nm in reflectance
mode. The spectral data were preprocessed with three different preprocessing methods and eight differ-
ent chemometric analyses were used for effective discrimination. After the outlier detection, the samples
were split into two sets, one serving as a calibration set and the remaining one as a validation set. When
using multiple preprocessing and chemometric methods for the discrimination, the maximum classifica-
tion accuracy was witnessed in the combination of standard normal variate and support vector machine
up to 98.2 %. The use of Savitzky-Golay filter smoothing as a preprocessing method had the best and most
satisfactory discrimination of all other chemometric methods. The results suggest that the use of hand-
held Vis-NIR spectroscopy in combination with chemometric approaches can be used as an effective tool
for the discrimination of B. napus varieties in the field.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Brassica napus, also known as rapeseed, oilseed rape and canola,
is one of the most important oil seed crop; globally, it ranks third in
oilseed production next to palm and soybean (Rahaman et al.
2017). It belongs to the family Brassicaceae, which comprises 419
genera and 4,130 species. Further, the number of varieties in B.
napus is massive and each variety was cultivated for its own char-
acteristics. The innovative use of germplasm resources is strongly
intertwined with rapeseed breeding and industrial growth (Hu
et al. 2021). Cultivation of different varieties/cultivars simultane-
ously in nearby fields may lead to complications in identification.
Traditionally, morphological characters have been used to identify
varieties. However, due to modern breeding technologies, a lack of
phenotypic variation makes traditional morphological methods
difficult to identify varieties (Xu et al. 2009; Sohn et al. 2021a,
2021b). Furthermore, current crop production necessitates rapid
discrimination technologies. In recent years, much research has
been done on various techniques for realizing a robust identifica-
tion method, such as molecular markers and gene expression pro-
filing, but these methods are not competent for field level
assessment and they are both costly and time-consuming (Sohn
et al. 2021a). Hence, it is imperative to find a rapid method for
the identification of plant varieties in the environment.

Near-infrared spectroscopy has rapidly progressed from a labo-
ratory technique to a main tool for a wide range of qualitative and
quantitative analysis applications. In general, modern NIR
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spectroscopy, combined with chemometrics, has the advantages of
speed, high efficiency, low cost, and non-destructiveness
(Cozzolino, 2014; Sohn et al. 2021a). It has been used in various
industrial applications, including the food industry, petroleum
chemical engineering, medicine, etc. However, their usage in agri-
cultural industry is important for quality assessment and discrim-
ination of plants and weeds. Hitherto, it has been used for the
discrimination of plant varieties and species, and it has also been
used for several agricultural and food characterizations
(Cozzolino et al. 2003; Sohn et al. 2021a). Generally, visible near
infrared (Vis-NIR) spectroscopy is used for discriminating plants
by measuring the amount of light absorbed by functional groups
over the Vis-NIR region (due to vibrations produced from stretch-
ing and bending of H bonds associated with C, O, and N, etc.)
(Martens and Naes, 1989). The samples are grouped based on their
spectral similarity and thus used for species discrimination and
adulterations in foods. The main aim of this study was to use
Vis-NIR reflectance spectroscopy for the discrimination of eight
commercial B. napus varieties in South Korea. The precise goals
were (1) to assess the potential of handheld Vis-NIR spectroscopy
to discriminate the plant varieties and (2) to compare the eight
chemometric methods and their combinations with different pre-
processing techniques for the effective discrimination of different
B. napus varieties.
2. Materials and methods

2.1. Plant materials

Eight varieties of oilseed rape belonging to the B. napus L. vari-
ety were selected from the Korean penisula with the following
local names: ‘Youngsan’ ‘Hanla’ ‘Joongmo 70020 Joongmo70010

‘Naehan’ ‘Tamla’ ‘Tammi’. A commercial variety, ‘Westar’ (Fig. 1)
was also procured from the National Agrobiodiversity Center,
Jeonju, Republic of Korea. All the varieties were grown in soil pots
at the greenhouse of the National Institute of Agricultural Sciences,
Jeonju, Republic of Korea, during May–July 2020. A total of 80
plants were used in this study, 10 samples from each of the eight
varieties (8 � 10 = 80).
Fig. 1. The representative figures of eight Brassica napus varieties used in the study. A,
Tammi; H, Hanla.

2

2.2. Vis-NIR spectral data collection

The Vis-NIR diffuse reflectance spectra of intact leaves of eight
B. napus varieties were acquired using a handheld integrated por-
table spectrum analyzer (FieldSpec HandHeld 2, ASD Inc., Long-
mont, CO, USA) in the range of 325–1075 nm with a stepping of
1.5 nm in reflectance mode (log/R). The spectra were taken on
the fully inflated leaves’ adaxial surface, which may easily capture
light. In each group, 10 spectra were acquired from three distinct
sections of the leaf blade. Each group yielded a total of 300 spectra
(3 � 10 � 10 = 300) to use for further investigation. To remove
unnecessary noise, the Vis-NIR device’s optical window was placed
directly on the leaf’s face during each spectrum capture, ensuring
that the sensor window was entirely covered.
2.3. Preprocessing and chemometric analysis

In general, the background signals appeared in the raw spectra
of samples due to the system settings and external noise. Hence, to
minimize spectral noise and increase the accuracy of modeling
approaches, different preprocessing methods, namely, normaliza-
tion (area), standard normal variate (SNV), and derivatives (Sav-
itzky–Golay (first differentiation)) were applied. The effectiveness
of preprocessing methods was compared with raw spectra.
Unscrambler X software, version 10.5.1, was used to execute the
preprocessing computations (CAMO ASA, Oslo, Norway).

Several machine learning approaches were utilized and com-
pared for effective visualisation and discrimination of spectral
data. RapidMiner Studios Version 9.0.002 (RapidMiner, Inc., Bos-
ton, MA, USA) was used for the modeling. In this study, deep learn-
ing, decision tree, support vector machine (SVM), random forest,
generalized linear model, rapid large margin, Naive Bayes, and lin-
ear discriminant analysis were employed to discover the optimal
modeling strategy with the highest classification accuracy. The
Aquap2 package developed by Pollner and Kovacs, (2014) was also
used to apply the different preprocessing techniques and to per-
form linear discriminant analysis in R-studio. The inputs for each
method were the spectral data points, and the classes were the
identifying labels for eight B. napus varieties. For the reliability of
Westar; B, Naehan; C, Youngsan; D, Joongmo 7001; E, Joongmo 7002; F, Tamla; G,
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the models in predicting multiple sample types, cross-validation
was performed. The data was divided into two sets for this pur-
pose: a training set and a validation set. The training set had
two-thirds of the data and the rest was used as the validation
set. The data splitting was done three times in order to make sure
that each sample was tested at least once in the calibration and
validation set.

2.4. Statistical analysis

The influence of (1) the scatter correction method, (2) the eight
machine learning methods, and (3) the interaction between pre-
processing and machine learning methods was determined using
one-way analysis of variance (ANOVA). Tukey’s range test was
employed as a mean comparison procedure with a significance
level of p � 0.05.

3. Results and discussion

3.1. Spectral analysis and preprocessing

Fig. 2 shows the average Vis-NIR spectra obtained from the
eight B. napus varieties. That includes raw spectra and prepro-
cessed with three different preprocessing methods. The raw spec-
tra (Fig. 2A) are the spectra with no changes. However, other
spectra (Fig. 2B-2D) were preprocessed with three different meth-
ods, namely Savitzky–Golay, standard normal variate and normal-
ization, respectively. There are numerous crossovers and
overlapping across the eight samples (Fig. 2); in other words, the
Fig. 2. Average raw and preprocessed spectra of eight B. napus varieties. Average raw (A)
standard normal variate (C), and normalization (D).
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spectra of each variety are quite similar to those of other varieties.
Consequently, discrimination of varieties directly based on absor-
bance spectra is difficult. Therefore, it is necessary to use machine
learning methods for the effective discrimination of eight varieties.
From 325 to 550 nm, the spectral curve is flat and between 550 and
600 nm there is a small peak before dropping back to their normal
position. This demonstrates that the leaves actively absorb blue
(400–500 nm) and red (680 nm) light while reflecting green light
(550 nm) in the visible range (Li and He, 2008) which is responsible
for chlorophylls and carotenoids (Xu et al. 2009; Smith et al. 2017).
From 650 to 750 nm, there was a sharp increase in the peak that
remained the highest absorbance value; later, there were no vari-
ations in the remaining wavelength until 1200 nm. The spectra
were preprocessed to reduce systemic noise and emphasize differ-
ences between samples. Using a number of preprocessing methods
simultaneously will help us obtain a greater degree of classification
accuracy and will allow us to select the best preprocessing
approach for each sample (Feng et al. 2017; Sohn et al. 2022). It
is difficult to discriminate the plant varieties only with the spectra
shown in Fig. 2. For effective discrimination, Vis-NIR spectroscopy
was combined with several models and machine learning methods
such as discriminant analysis and principal component analysis
(PCA) (Sohn et al. 2021a). To investigate the qualitative differences
between the eight B. napus varieties, PCA analysis was performed
using raw spectra. PCA analysis is a powerful data mining tech-
nique. The principle of PCA is to determine the linear combinations
of the initial variables that contribute to the differences between
samples (Li et al. 2007). These combinations are referred to as prin-
cipal components (PCs). As shown in Fig. 3A, all of the different PCs
and preprocessed with different preprocessing methods, namely Savitzky–Golay (B),



Fig. 3. Principal component analyses based on the Vis-NIR spectra of eight B. napus varieties. Raw spectra have been used. (A) Paired blot; (B) axes are first and second
principal components.
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showed the same slight pattern of separation for the different sam-
ples in the PCA paired plot from PC1 to PC6, but PC1 vs PC2
(Fig. 3B) showed the most visual differences. Therefore, outlier
detection was performed using these two PCs before initiating pre-
processing for the machine learning methods. Generally, the com-
puterized iterations make PC1 have the maximum amount of
information and PC2 have the maximum share of residual informa-
tion (Li et al. 2007).

3.2. Chemometric analysis for discrimination of eight B. napus
varieties

The potential of visible-NIR spectroscopy to discriminate or
identify plant varieties is based on leaf spectral properties related
to biochemical composition and structure, which are influenced
by a variety of factors such as plant species, leaf development or
microclimate position of the plant, etc. (Jacquemoud and Ustin,
2001; Xu et al. 2009). To determine the most accurate method
for distinguishing eight B. napus varieties, the classification accu-
racy of various chemometric methods combined with different
preprocessing methods was assessed. Table 1 shows a summary
of the classification accuracy for the various methods. The classifi-
cation accuracy of the various methods ranged from 22.0 to 98.2 %.
Both raw and preprocessed spectra analyzed using chemometric
methods demonstrated effective discrimination with diverse clas-
sification accuracies.

In most chemometric analyses, however, preprocessed spectra
were found to have a higher classification accuracy than raw spec-
tra. In some cases, the use of raw spectra yielded very less classifi-
cation accuracy with the use of Decision tree (21 %), Random Forest
(22 %) and Naïve Bayes (28.9 %). The maximum classification accu-
racy (98.2 %) was achieved with the preprocessing method SNV in
combination with SVM. As shown in Table 1, among different pre-
processing methods, Savitzky-Golay found to have higher classifi-
cation accuracy with the combination of all other chemometric
methods with a range of 55.6 to 97.9 %. Among the different
chemometric analyses, SVM, deep learning, linear discriminant
analysis and fast large margin were found to have higher levels
of classification accuracy (SVM/SNV, 98.2 %; deep learning/SG,
97.9 %; SVM-SG, 96.8 %; LDA-SNV, 95.2 %; FLM/SG, 95.1 %). Even
4

when using the raw spectrum without preprocessing the data,
the SVM model had a high accuracy of 78.8 %. The SVM is particu-
larly well suited to high-dimensional data because the value of
each attribute is arbitrary (Gaye et al. 2021). Overall, the combina-
tion of SVM and SNV was found to be more effective in the discrim-
ination of eight B. napus varieties. The preprocessing method
Savitzky-Golay (97.9 %) was the best preprocessing method for
use with multiple chemometric methods. Previously, several
reports used multiple preprocessing and chemometric methods
for discriminating between of plant varieties. For the discrimina-
tion of potato tuber varieties, Yee et al. (2006) used NIR spectra
in combination with LDA analysis, resulting in a classification accu-
racy of 93 %. Chen et al. (2007) studied the differentiation of three
tea varieties using SVM. Similarly, Vis-NIR spectroscopy combined
with artificial neural networks (ANN) discriminated tea plant vari-
eties with an accuracy of 77.3 % (Li and He, 2008). Xu et al. (2009)
used PCA, LDA, and discriminant partial least squares (DPLS)
regression methods for the on-site discrimination of tomato vari-
eties. The LDA plot for the discrimination of eight B. napus varieties
is shown in Fig. 4. The variety ‘‘Hanla” was completely separated
from the clusters of other varieties, while other clusters of the
other seven varieties were closely placed. This suggests that the
other seven varieties share a higher level of similarity in their bio-
logical composition, whereas ‘‘Hanla” shares very little with the
other varieties. Previously, the LDA analysis has been used for
the discrimination of several plant varieties, such as sprouted
mung bean (Tjandra et al. 2021) and melon varieties (Li et al.
2019).

3.3. Selection of significant preprocessing and chemometric methods
for discrimination

The efficiency of preprocessing and machine learning
approaches were statistically analyzed (Table 2). After cross-
validation, the mean percentage of classification accuracy of each
chemometric method combined with various preprocessing meth-
ods revealed the significant modeling for the discrimination of
eight B. napus varieties (Table 2). The statistical analysis using
ANOVA (Table 3) revealed that the sum of square and mean sum
of square values had statistical significance at p � 0.0001. However,



Table 1
Classification accuracy of the combinations of preprocessing and machine learning methods for reflectance spectra from eight different B. napus varieties.

S. No Model Preprocessing Average Accuracy (%) Run Time
(ms)

1. Linear
Discriminant analysis

Raw spectra 74.91 –
Normalization (Area) 85.60 –
Standard Normal Variate 92.52 –
Derivative (Savitzky-Golay) 95.24 –

2. Deep Learning Raw spectra 77.4 8908.1
Normalization (Area) 85.6 8694.4
Standard Normal Variate 94.5 8930
Derivative (Savitzky-Golay) 97.9 9131.4

3. Support
Vector Machine

Raw spectra 78.8 68415.6
Normalization (Area) 50.1 174966.3
Standard Normal Variate 98.2 50676.3
Derivative (Savitzky-Golay) 96.8 75943.9

4. Generalized
Linear Model

Raw spectra 42.6 8715.3
Normalization (Area) 49.3 8714.7
Standard Normal Variate 63.1 8773
Derivative (Savitzky-Golay) 92.2 8692.8

5. Decision Tree Raw spectra 21 9010.1
Normalization (Area) 16.7 8465.8
Standard Normal Variate 29.3 8027.8
Derivative (Savitzky-Golay) 55.6 8524.6

6. Naive Bayes Raw spectra 28.9 10248.9
Normalization (Area) 30.6 9261.2
Standard Normal Variate 42.2 10134.1
Derivative (Savitzky-Golay) 72 9816.8

7. Fast
Large Margin

Raw spectra 66.2 49314.1
Normalization (Area) 45.8 43485.6
Standard Normal Variate 92.7 43439.6
Derivative (Savitzky-Golay) 95.1 43831.2

8. Random Forest Raw spectra 22 9512.3
Normalization (Area) 38.8 10036.9
Standard Normal Variate 39.6 9060.4
Derivative (Savitzky-Golay) 64.5 11601.5

Fig. 4. Linear discriminant analysis for the effective discrimination of eight B. napus varieties without confidence circles (A) and with confidence circles (B).
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when a combination of preprocessing and multiple machine learn-
ing approaches was used, there was no significance at p � 0.0001 (p
value of 0.0003). The confusion matrix illustrates the degree of
error in the identification of the assessed plants, suggesting that
SNV combined with SVM was the most accurate classification
method (Table 4). Similar results were witnessed by the use of
Vis-NIR spectroscopy in the discrimination of Amaranthus sp.
(Sohn et al. 2021b).
5

4. Conclusions

In conclusion, a simple and rapid discrimination method for B.
napus varieties was established using Vis-NIR spectroscopy com-
bined with different machine learning methods. Among the differ-
ent combinations of preprocessing and machine learning methods
used, the combination of SNV and SVMwas found to be more accu-
rate with higher classification accuracy (98.2 %) followed by deep



Table 4
Confusion matrix from the execution with the best accuracy.

SNV/ Classified as

SVM Westar Naehan Youngsan Joongmo701 Joongmo7002 Tamla Tammi Hanla True positive (%)

Westar 100 0 0 0 0 0 0 0 100
Naehan 0 98.37 0 0 0 1.63 0 0 98.37
Youngsan 0 0 100 0 0 0 0 0 100
Joongmo701 0 0 0 100 0 0 0 0 100
Joongmo702 0 0 0 1.86 97.22 0.92 0 0 97.22
Tamla 0 0 0.47 0 0 99.53 0 0 99.53
Tammi 0 1.25 0 5.67 0 0 93.08 0 93.08
Hanla 0 0.87 0.44 0.87 0 0 0.44 97.38 97.38
SNV/ Classified as
LDA Westar Naehan Youngsan Joongmo701 Joongmo7002 Tamla Tammi Hanla True positive (%)
Westar 93.55 0 0 0 0 0.33 0 0 93.55
Naehan 0 91 0 0 0 0.33 0 0 91.00
Youngsan 0 0 93 0 0 0 0 0 93.00
Joongmo701 0 2.33 0 98.33 0 0 8.33 0 98.33
Joongmo702 2.15 0 0 0 99.67 0.33 1.33 0 99.67
Tamla 4.31 0 3 1.67 0.33 99.01 0.67 0 99.01
Tammi 0 0 0 0 0 0 89.67 0 89.67
Hanla 0 6.67 4 0 0 0 0 100 100
SGolay/ Classified as
SVM Westar Naehan Youngsan Joongmo701 Joongmo7002 Tamla Tammi Hanla True positive (%)
Westar 100 0 0 0 0 0 0 0 100
Naehan 0 99.46 0.54 0 0 0 0 0 99.46
Youngsan 0 0 99.48 0 0 0 0 0.52 99.48
Joongmo701 0 0 0 92.89 0 0 6.34 0.47 92.89
Joongmo702 0 0 0 0 99.03 0 0.97 0 99.03
Tamla 0 0.45 1.38 0 0.45 97.27 0.45 0 97.27
Tammi 0 0 0 2.22 0 0 97.78 0 97.78
Hanla 0 0.40 4.75 0.40 0.80 0 0.40 93.25 93.25

Table 2
Means of percentage of correctly classified eight B. napus varieties using four different preprocessing and eight different classification model using reflectance spectra.

Model Species accuracy (%±SE)

Raw spectra Normalization
(Area)

Derivative
(Savitzky-Golay)

SNV significance

Naive Bayes 23.7 ± 6.4B c 33.7 ± 9.8B b 73.4 ± 2.6 A bc 41.8 ± 8.7B cd **
Generalized Linear Model 46.6 ± 5.8C bc 60.8 ± 6 BC ab 92.3 ± 1.8 A ab 66.1 ± 4.6B bc **
Fast Large Margin 78.1 ± 9.3 A ab 51.2 ± 6.6B b 95.6 ± 1.1 A ab 92.7 ± 1.7 A ab **
Deep Learning 79.5 ± 3.3C ab 87.9 ± 3.6 BC a 98 ± 1.1 A a 95.1 ± 1.4 AB ab **
Decision Tree 21.7 ± 10B c 2.1 ± 2.1B c 61.3 ± 12.2 A c 29.1 ± 12.6 AB d **
Random Forest 40.3 ± 14.1c 47.8 ± 7.4b 74.7 ± 7 abc 52.6 ± 10.9 cd ns
Support Vector Machine 85.4 ± 5.7 A a 56 ± 6.1B b 97.4 ± 1 A a 98.2 ± 0.8 A a **
significance ** ** ** **

ns; not significant, *; significant with the P � 0.05; Different alphabetical small and capital letters shows the significance of the value in the order of column and row
respectively.

Table 3
Analysis of variance of percentage of correctly classified eight B. napus varieties using four different preprocessing and eight different classification model using reflectance
spectra.

Source df SS MS F-value P-value

Preprocessing (P) 3 4.42549073 1.47516358 37.49 �0.0001
Model (M) 6 10.01502715 1.66917119 42.43 �0.0001
P � M 18 1.62062017 0.09003445 2.29 �0.003
Error 196 7.71132541 0.0393435
Total 223 23.77246347
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learning and Savitzky-Golay (97.9 %). However, the Savitzky-Golay
smoothing also performed well with other chemometrics com-
pared to SNV, suggesting that it has more potential for discrimina-
tion when using multiple chemometric methods. Therefore, it is
concluded that this nondestructive method of using handheld
Vis-NIR spectroscopy in combination with chemometric methods
can be used in the field for the discrimination of plant varieties
for rapid identification. It is also suggested that a database be cre-
ated with large-scale germplasm collections of B. napus and/or
6

other plant varieties for the effective utilization of the technology
globally.
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