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Abstract The aim of this paper is to apply homotopy perturbation method (HPM) to solve delay

differential equations. Some examples are presented to show the ability of the method. The results

reveal that the method is very effective and simple.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Neutral functional–differential equations with proportional de-
lays represent a particular class of delay differential equation.
Such functional–differential equations play an important role

in the mathematical modeling of real world phenomena (Bellen
and Zennaro, 2003). These equations have been investigated by
some authors and several efficient numerical and analytical
methods have been designed to approximate their solutions

Ishiwata and Muroya used the rational approximation method
nt of Mathematics, Faculty of

38 Rasht, Iran.

om (J. Biazar), b.ghanbary@

y. Production and hosting by

Saud University.

lsevier
(Ishiwata and Muroya, 2007) and the collocation method
(Ishiwata et al., 2008), Wang et al. obtained approximate solu-

tions by continuous Runge–Kutta methods (Wang et al., 2009)
and one-leg h-methods (Wang and Li, 2007; Wang et al., 2009).

Very recently, Chen and his collaborator applied the varia-
tional iteration method for solving a neutral functional–differ-

ential equation with proportional delays (Chen and Wang,
2010).

In this paper, we apply the homotopy perturbation method

(HPM in short) to solve neutral differential equation with pro-
portional delays as considered in Chen and Wang (2010),

ðuðtÞ þ aðtÞuðpmtÞÞ
ðmÞ ¼ buðtÞ þ

Xm�1
k¼0

bkðtÞuðkÞðpktÞ þ fðtÞ;

t P 0; ð1Þ
with the initial conditions

uðkÞð0Þ ¼ kk; k ¼ 0; 1; . . . ;m� 1:

where a and bk (k= 0,1, . . . ,m � 1) are known analytical
functions, and b,pk,cik,kk are given constants with
0 < pk < 1 for k= 0,1, . . . ,m.

This paper is organized as follows: In Section 2, basic idea of
HPM is presented. Applying HPM to solving (1) is discussed in
Section 3. Section 4 is devoted to numerical comparisons
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between the results obtained by HPM in this work and some

existing methods. Finally, conclusions are stated in the last
section.

2. Basic idea of He’s homotopy perturbation method

The topic of the He’s homotopy perturbation method (He,
2004, 2005, 2006) has been rapidly growing in recent years.

In this method the solution of functional equations is consid-
ered as the summation of an infinite series usually converging
to the solution.

Considerable research works have been conducted recently
in applying this method to a class of linear and nonlinear equa-
tions. For example, nonlinear Schrodinger equations (Biazar

and Ghazvini, 2007), integral equations (Abbasbandy, 2006),
nonlinear oscillators with discontinuities (He, 1999), nonlinear
wave equations (He, 2000). To see more applications of this

method we refer the interested readers to He (2004, 2005,
2006, 1999, 2000), Biazar and Ghazvini (2007), Abbasbandy
(2006) and references therein.

To illustrate the basic ideas of this method, we consider the

following nonlinear differential equation:

AðuÞ � fðrÞ ¼ 0; r 2 X; ð2Þ

with the boundary conditions

B u;
@u

@n

� �
¼ 0; r 2 C;

where A is a general differential operator, B a boundary oper-
ator, f(r) a known analytical function and C is the boundary of

the domain X.
The operator A can be divided into two parts, which are L

and N, where L is a linear, but N is nonlinear. Eq. (2) can be,

therefore, rewritten as follows:

LðuÞ þNðuÞ � fðrÞ ¼ 0:

By the homotopy technique, we construct a homotopy
U(r,p):X · [0,1] fi R, which satisfies:

HðU; pÞ ¼ ð1� pÞ½LðUÞ � Lðu0Þ� þ p½AðUÞ � fðrÞ�;
p 2 ½0; 1�; r 2 X; ð3Þ

or

HðU; pÞ ¼ LðUÞ � Lðu0Þ þ pLðu0Þ þ p½AðUÞ � fðrÞ�;
p 2 ½0; 1�; r 2 X; ð4Þ

where p 2 [0,1] is an embedding parameter, u0 is an initial
approximation of Eq. (1), which satisfies the boundary condi-
tions. Obviously, from Eqs. (3) and (4) we will have

HðU; 0Þ ¼ AðUÞ � Lðu0Þ ¼ 0;

HðU; 1Þ ¼ AðUÞ � fðrÞ ¼ 0:

The changing process of p form zero to unity is just that of

U(r,p) from u0(r) to u(r). In topology, this is called homotopy.
According to the (HPM), we can first use the embedding
parameter p as a small parameter, and assume that the solution

of Eqs. (3) and (4) can be written as a power series in p:

U ¼ U0 þ pU1 þ p2U2 þ p3U3 þ � � �

Setting p= 1, results in the approximate solution of Eq. (1)

u ¼ lim
p!1

U ¼ U1 þU2 þU3 þ � � �
3. Method of solution

For solving Eq. (1), by homotopy perturbation method we

construct a homotopy as follows:

Hðv; pÞ ¼ ð1� pÞ½vðmÞðtÞ � u
ðmÞ
0 ðtÞ�

þ p

�
vðmÞðtÞ þ aðtÞvðmÞðpmtÞ � bvðtÞ

�
Xm�1
k¼0

bkðtÞvðkÞðpktÞ � fðtÞ
#
; t P 0: ð5Þ

Suppose the solution of Eq. (2) has the form

v ¼ v0 þ pvþ p2v2 þ � � � ; ð6Þ

where vi’s are functions yet to be determined.
Whereas series (6) be a convergent series at p = 1, the exact

solution of (1), reads as:

v ¼ v0 þ v1 þ v2 þ � � �

Substituting (6) into (5) and arranging the coefficients powers
of p following initial value problems

p0 : v
ðmÞ
0 ðtÞ � u

ðmÞ
0 ðtÞ ¼ 0; v

ðkÞ
0 ð0Þ ¼ kk; k ¼ 0; 1; . . . ;m� 1;

p1 : v
ðmÞ
1 ðtÞ þ u

ðmÞ
0 ðtÞ þ aðtÞuðmÞ0 ðpmtÞ � bu0ðtÞ �

Xm�1
k¼0

bkðtÞuðkÞ0 ðpktÞ;

v
ðkÞ
1 ð0Þ ¼ 0; k ¼ 0; . . . ;m� 1;

..

.

pn : vðmÞn ðtÞ þ aðtÞuðmÞn�1ðpmtÞ � bun�1ðtÞ �
Xm�1
k¼0

bkðtÞuðkÞn�1ðpktÞ;

vðkÞn ð0Þ ¼ 0; k ¼ 0; 1; . . . ;m� 1:

ð7Þ

Identifying the components vk’s, the nth approximation of the

exact solution can be obtained, as:

un ¼ v0 þ v1 þ v2 þ � � � þ vn:
4. Illustrative examples

In this part, some examples are provided to illustrate perfor-
mance of proposed method. For the sake of comparing pur-

poses, we consider the same examples as used in Chen and
Wang (2010).

Example 1. Consider the following first-order neutral func-
tional–differential equation with proportional delay:

u0ðtÞ ¼ �uðtÞ þ 1
2
u t

2

� �
þ 1

2
u0 t

2

� �
; t 2 ½0; 1�

uð0Þ ¼ 1;

(

Exact solution u(t) = e�t.

In this example, starting with u0(t) = 1, 7th order of HPM
approximate solutions is obtained, as:

u7ðtÞ ¼ 1� 127

128
tþ 8001

16384
t2 � 82677

524288
t3 þ 1240155

33554432
t4

� 1736217

268435456
t5 þ 1736217

2147483648
t6 � 248031

4294967296
t7: ð8Þ



Figure 1 Comparison of the approximate solutions with the

exact solution for Example 1.

Figure 2 Comparison of the approximate solutions with the

exact solution for Example 2.
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The graphs of (8) and the exact solution are contained in
Fig. 1. Also, we compare the absolute errors of homotopy per-
turbation method with the ones for the variational iteration

method (Chen and Wang, 2010) and the two-stage order-one
Runge–Kutta method of Wang et al. (2009) and the one-leg
h-method of Wang and Li (2007), Wang et al. (2009) with

h = 0.8 using h = 0.01, in Table 1.

Example 2. Let us have the following first-order neutral
functional–differential equation with proportional delay

u0ðtÞ ¼ �uðtÞ þ 0:1uð0:8tÞ þ 0:5u0ð0:8tÞ
þð0:32t� 0:5Þ expð�0:8tÞ þ expðtÞ; t P 0

uð0Þ ¼ 0;

8><
>:
which has the exact solution u(t) = te�t.

Considering the 5th order of HPM approximate solutions

with u0(t) = 0, we made comparison of such approximation
with the exact solution in Fig. 2.

Comparing Table 2, it can be seen that the approximation

solutions by HPM agree with the exact solution.
Table 1 Comparison of the absolute errors for Example 1.

t Two-stage order-one

Runge–Kutta method

One-leg h-method

with h = 0.8

0.1 4.55e�4 2.57e�3
0.2 8.24e�4 8.86e�3
0.3 1.12e�3 1.72e�2
0.4 1.35e�3 2.66e�2
0.5 1.52e�3 3.63e�2
0.6 1.66e�3 4.85e�2
0.7 1.75e�3 5.47e�2
0.8 1.81e�3 6.29e�2
0.9 1.84e�3 7.02e�2
1.0 1.85e�3 7.66e�2
Example 3. As another example, let us consider the second-
order neutral functional–differential equation with propor-

tional delay

u00ðtÞ ¼ u0 1
2
t

� �
� 1

2
tu00 1

2
t

� �
þ 2; t 2 ½0; 1�

uð0Þ ¼ 1; u0ð0Þ ¼ 0:

(

Starting with u0(t) = 1 in (7), we have

u1ðtÞ ¼ t2;

unð0Þ ¼ 0; n P 2:

�

That is, we obtain u(t) = u0(t) + u1(t) = 1 + t2, which coin-
cides with the exact solution.

Example 4. In this example, we consider Eq. (1), as:

u00ðtÞ ¼ 3
4
uðtÞ þ u 1

2
t

� �
þ u0 1

2
t

� �
þ 1

2
u00 1

2
t

� �
� t2 � tþ 1; t 2 ½0; 1�

uð0Þ ¼ u0ð0Þ ¼ 0;

8><
>:
which enjoys exact solution u(t) = t2.
Variational iterative

method

Homotopy perturbation

method

n= 7 n= 8 n = 7 n= 8

7.43e�4 3.72e�4 6.73e�4 3.36e�4
1.42e�3 7.08e�4 1.16e�3 5.80e�4
2.02e�3 1.01e�3 1.50e�3 7.50e�4
2.58e�3 1.29e�3 1.73e�3 8.64e�4
3.07e�3 1.54e�3 1.86e�3 9.33e�4
3.52e�3 1.76e�3 1.94e�3 9.68e�4
3.93e�3 1.97e�3 1.95e�3 9.78e�4
4.30e�3 2.15e�3 1.93e�3 9.68e�4
4.64e�3 2.32e�3 1.89e�3 9.44e�4
4.94e�3 2.47e�3 1.82e�3 9.10e�4



Table 2 Comparison of the absolute errors for Example 2.

t Two-stage order-one

Runge–Kutta method

One-leg h-method

with h = 0.8

Variational iterative

method

Homotopy perturbation

method

n= 5 n = 6 n= 5 n= 6

0.1 8.68e�4 4.65e�3 2.62e�3 1.30e�3 2.17e�3 1.06e�3
0.2 1.49e�3 1.45e�2 4.36e�3 2.14e�3 2.87e�3 1.35e�3
0.3 1.90e�3 2.57e�2 5.40e�3 2.63e�3 2.63e�3 1.18e�3
0.4 2.16e�3 3.60e�2 5.89e�3 2.84e�3 1.83e�3 7.61e�4
0.5 2.28e�3 4.43e�2 5.96e�3 2.83e�3 7.76e�4 2.32e�4
0.6 2.31e�3 5.03e�2 5.71e�3 2.67e�3 3.33e�4 2.98e�4
0.7 2.27e�3 5.37e�2 5.23e�3 2.39e�3 1.35e�3 7.64e�4
0.8 2.17e�3 5.47e�2 4.59e�3 2.04e�3 2.20e�3 1.12e�3
0.9 2.03e�3 5.35e�2 3.84e�3 1.64e�3 2.82e�3 1.37e�3
1.0 1.86e�3 5.03e�2 3.04e�3 1.22e�3 3.21e�3 1.50e�3
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In this example, starting with u0(t) = 0, 5th order of HPM
approximate solutions is obtained, as:

u5ðtÞ ¼
31

32
t2 � 31

3072
t3 � 651

262144
t4 � 23095

37748736
t5

� 23095

37748736
t6 þ � � � ð9Þ

The approximate solution (9) and exact solution are illustrated
in Fig. 3.
Figure 3 Comparison of the approximate solutions with the

exact solution for Example 4.

Table 3 Comparison of the absolute errors for Example 4.

t Two-stage order-one

Runge–Kutta method

One-leg h-method

with h = 0.8

0.1 8.68e�3 6.10e�3
0.2 1.49e�3 2.58e�2
0.3 1.90e�3 6.47e�2
0.4 2.16e�3 1.37e�1
0.5 2.28e�3 2.81e�1
Similar to above, we compute the absolute errors for differ-
ent approaches, for example, 4 in Table 3.

Example 5. As last example, let’s try the following third-order
case of (1), as:

u000ðtÞ ¼ uðtÞ þ u0 1
2
t

� �
þ u00 1

3
t

� �
þ 1

2
u000 1

4
t

� �
� t4

� t3

2
� 4

3
t2 þ 21t; t 2 ½0; 1�

uð0Þ ¼ u0ð0Þ ¼ u00ð0Þ ¼ 0;

8><
>:
Variational iterative

method

Homotopy perturbation

method

n= 5 n = 6 n= 5 n= 6

3.34e�4 1.67e�4 3.33e�4 1.67e�4
1.43e�3 7.15e�4 1.42e�3 7.15e�4
2.45e�3 1.73e�3 3.44e�3 1.72e�3
6.58e�3 3.30e�3 6.57e�3 3.30e�3
1.11e�2 5.55e�3 1.10e�2 5.55e�3

Figure 4 Comparison of the approximate solutions with the

exact solution for Example 5.



Table 4 Comparison of the absolute errors for Example 5.

t Two-stage order-one

Runge–Kutta method

Variational iterative method Homotopy perturbation method

n = 4 n= 5 n= 6 n = 4 n= 5 n= 6

0.1 4.97e�5 2.46e�8 3.07e�9 9.09e�12 2.50e�8 3.12e�9 3.90e�12
0.2 4.43e�4 4.03e�7 5.04e�8 2.98e�10 4.09e�7 5.12e�8 6.40e�10
0.3 1.57e�3 2.09e�6 2.62e�7 2.33e�9 2.12e�6 2.66e�7 2.32e�8
0.4 3.85e�3 6.80e�6 8.49e�7 1.01e�8 6.90e�6 8.63e�7 1.07e�7
0.5 7.78e�3 1.71e�5 2.13e�6 3.20e�8 1.73e�5 2.16e�6 2.70e�7
0.6 1.39e�2 3.64e�5 4.55e�6 8.24e�8 3.69e�5 4.62e�6 5.78e�7
0.7 2.28e�2 6.96e�5 8.69e�6 1.85e�7 7.06e�5 8.83e�6 1.10e�6
0.8 3.53e�2 1.23e�4 1.53e�5 3.76e�7 1.24e�4 1.55e�5 1.94e�6
0.9 5.19e�2 2.03e�4 2.54e�5 7.09e�7 2.06e�4 2.57e�5 3.22e�6
1.0 7.34e�2 3.21e�4 4.01e�5 1.26e�6 3.25e�4 4.07e�5 5.09e�6
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In Fig. 4, we draw the diagrams of the 4th order of HPM
approximate results obtained by HPM with u0(t) = 0 and ex-

act solution u(t) = t2.

Furthermore, some result comparisons of this example are

reported in Table 4.

5. Conclusion

In this paper, He’s homotopy perturbation method has been
successfully applied to find the solutions of neutral func-

tional–differential equations. The efficiency and accuracy of
the proposed decomposition method were demonstrated by
some test problems. It is concluded from above tables and fig-
ures that the HPM is an accurate and efficient method to solve

neutral functional–differential equations.
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