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Flavonoids have been the subject of several studies for many years, particularly due to their high antiox-
idant activity. However, understanding the structure–activity relationships (SAR) of flavonoids is crucial
for optimizing their properties and designing new derivatives with enhanced activities. In this study, we
employed Quantitative Structure-Activity Relationship (QSAR) methods to analyze a group of 31 flavo-
noids with known biological activity. The Gaussian program was used to calculate the molecular descrip-
tors. Using statistical modeling techniques, such as multiple linear regression, we developed QSAR
models to correlate the molecular descriptors with the activity values. The models were rigorously val-
idated using appropriate procedures to ensure their reliability and predictive power with a correlation
coefficient R2pred = 0.86, and an absolute average relative error (AARE pred) of 0.06 for the test set.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Chemical pesticides are used to combat pathogens in plants.
Whereas, plants can establish their means of defense through the
synthesis of secondary metabolites such as alkaloids, flavonoids,
andphenolics (Zaynab et al.,2018).

The structure of flavonoids is based on a flavan core, consisting
of two benzene rings and a pyran ring(Dragan et al., 2007).The
majority of flavonoids are classified as a function of saturation
and oxidation of the pyran ring; their major sub-classes are fla-
vanols, flavonols, flavanonols, flavanones, flavones, isoflavones,
chalcones, and anthocyanidins (Banjarnahor et al., 2014; Dragan
et al., 2007)(Fig. 1).

Flavonoids are found mainly in the pigments of plants, that is
why a colored plate is a very healthy plate. They are abundant in
spinach, turmeric, apples, carrots, green beans, onion, and garlic
(Murphy et al., 2019).Honey also contains large varieties of flavo-
noid glycosides (Truchadoet al., 2011).

Flavonoids have several biological activities, theyare used as
anticancer (Veeramuthu et al., 2017), antioxidant (Daset al.,
2014), antileishmanial (Tasdemir et al., 2006), anti-inflammatory
(Chenet al., 2017), and antiaging compounds(Lumbinyet al.,2013).
However, current researches are very much interested in antioxi-
dant activity of flavonoids (Kruzlicova et al., 2012) since oxidative
stress is strongly related to several diseases (Peeret al., 2006).
Antioxidants act principally by delaying,preventing or suppressing
harmful effects on a target. Here are the main modes of action of
flavonoids:

� The majority of flavonoids have a potential for chelating trace
metal ions such as Fe2 + and Cu2 + that play a decisive role in
the formation of free radicals (Maleśevet al., 2007),

� The radical molecule will receive the hydrogen atom from the
labile hydroxyl group of flavonoids, and then a stabilized flavo-
noid phenoxy radical will be generated (Bubols et al., 2013).

� Flavonoids may act as an intracellular antioxidants by inhibiting
enzymes generating free radicals such as lipoxygenase,
cyclooxygenase, mitochondrial succinoxidase, and nicoti-
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Fig. 1. Sub-classes of flavonoids (Banjarnahor et al., 2014; Dragan et al., 2007).

S. Boudergua, S. Belaidi, M. Mogren AlMogren et al. Journal of King Saud University – Science 35 (2023) 102898
namide adenine dinucleotide phosphate hydrogen(NADPH)
oxidase.

Another potential mechanism by which flavonoids apply their
antioxidant activities is the induction of internal antioxidant
enzymes(Procházková et al., 2011).

There are several in silico methods to assess biological activity
and establish a qualitative or quantitative relationship between
structure and activity. Among these methods, we cite Drug-
likeness scoring, the QSAR method, molecular docking, and finally
molecular dynamics(Ansaria et al., 2022; Sarkaret al., 2023, (M.
Lahyaoui et al. 2023; Mouad Lahyaoui et al. 2023)).In this study,
we have chosen to elaborate a quantitative structure–antioxidant
activity relationship (QSAR)using astatistical method called the
Gaussian process (GP).The main advantage of this methodcom-
pared to other techniques currently used in QSAR studies is that
it does not increase the complexity of learning tests[18] (Dallaire
et al., 2010).

The supervised learning method has the particularity of being a
probability distribution in the space of functions. This property is
principally interesting because it opens the door to a Bayesian
treatment of uncertainty on unknown functions.

The antioxidant activity of the studied compounds (Table 1)
was measured by using the 2, 2-diphenyl 1-picrylhydrazyl (DPPH)
radical scavenging method (Okawa et al., 2001; Hu et al., 2017).

2. Computational methods

2.1. Descriptors calculation

Our approach consists in performing calculations on the studied
series, we have demonstrated that this approach provides a good
balance between precision and calculation time when describing
the properties of flavonoids. (Al Mogren et al., 2020;Almi et al.,
2015; Belaidi et al., 2013).

The molecular structures have been pre-optimized by molecu-
lar mechanics (Kerassa et al., 2016), with a force field (MM + ),
the latter is an extension of MM2, which was designed by Allinger-
and coworkersand was further optimizedby the PM3 semi-
2

empirical method implanted in the HyperChem, release 8.0.8
(HyperChem 8, 2009).In addition, we have reoptimized the struc-
tures with the DFT method in order to calculate quantum descrip-
tors used in the QSAR studies.

The molecular descriptor is either the outcome of somes-
tandardized experimentsor a mathematical technique that trans-
forms the encoded chemical data that symbolically represents
the molecule into a useful number.

Establishing models using a mathematical relationship between
the structures of molecules and biological activity (quantitative
structure–activity relationships, QSARs) is important for analyzing
chemical properties.

We have defined and calculated the following molecular
descriptors; heat of formation (HF), energy of hydration (HE),
molar weight (MW), coefficient ofoctanol-water partition (log P),
and volume (V).

After comparing the calculated data with the experimental
parameters of quercetin structure, we found that the Density Func-
tional Theory (DFT) method at the three parameter Becke, Lee-
Yang-Parr (B3-LYP) functional including the 6-31G basis sets is
the most suitable method to predict the structure equilibrium of
quercetin. To calculate the quantum descriptors of the flavonoids
derivatives, as the dipolar moment (DM), the lowest unoccupied
molecular orbital (LUMO), and the highest occupied molecular
orbital (HOMO), we used Gaussian program 09 (Frisch et al.,
2009) at B3LYP/6-31G level.

Finally, MarvinSketch software (MarvinSketch, Chemaxon,
2020, https://www.chemaxon.com)was used to calculate the
hydrogen bond donors (HD), the Hydrogen bond acceptors (HA),
the topological polar surface (TPSA), and the number of rotatable
bonds (RB).

2.2. Statistical analysis

2.2.1. Principal component analysis(PCA)
The principal component analysis (PCA) is a statistical tech-

nique,which is very useful when there is a sum of quantitative data
to be processed and interpreted(Boudergua, 2020; Jolliffe, 2002;
Nielsen, 2016).It is used to describe a dataset with many individu-
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als and quantitative variables. The analysis enables the extrac-
tionof pertinent information and synthesizes it into principal com-
ponents or new axes to describe the dataset.

When representing a dataset variation, it is preferable to lower
the number of original variables (Granato et al., 2018); PCA is
based on the principle of maximizing the value of the variance of
the combinations between variables of a set of data. In fact, PCA
refers to get the eigenvectors and eigenvalues of the covariance
matrix (Gatignon, 2014).

Thus, the aim of this procedure is to project the dataset into a
new space where its components aredecorrelatedas possible. The
number of the PCs is determined using various criterions,as:

� Selected PCs cover 80% or 90% of the data variation (Jolliffe,
2002).

� Kaiser’s rule (Kaiser, 1960) suggests preserving only PCs with
variances greater than 1.

� The number of PCs represents the elbow point in the scree plot.

PCA is considerably used as one of cluster analysis techniques
requiring a measure of similarity between each pair of observa-
tions (Jolliffe, 2002).

2.2.2. Hierarchical cluster analysis (HCA)
Hierarchical cluster analysis (HCA)is one of the most common

multivariate techniques of data analysis. It helps to simplify the
data on the base of its clusters and models (Ferreira,2002). The
hierarchical clustering assembles the samples into nested groups
(Dash et al., 2003). It is based on the rule of similarity between
samples (Ferreira, 2002).

2.2.3. Gaussian process (GP)
Due to its notable theoretical properties, Gaussian probability

distribution is one of the most commonly used probability laws
in applied sciences. A Gaussian process (GP)is resulting from Gaus-
Table 1
2D structures of the studied series and their experimental activities (Okawaet al., 2001; H

3

sian probability distribution with the difference that Gaussian
probability describes and studies random variables, but the Gaus-
sian process deals with a family of random variables.

GP is a nonparametric Bayesian simulation technique, so it is a
stochastic method (PoloskovandSoize, 2018), such that every finite
number of random variables collections has a joint Gaussian distri-
bution with a covariance function (K) and a mean function (l).
Generally, l equals zero and K is a kernel matrix (with hyper-
parameter h). The hyperparameter is optimized during the training
step (He et al., 2013).GP is used in many applications as regression,
classification as well as clustering (Boudergua, 2020;Rasmussen
and Williams, 2006).

Since the JMP 8.0.2 software (JMP 8.0.2, SAS Institute Inc., 2009)
allows users to research and explore data, we choose it to perform
PCA, HCA, and GP.
3. Results, analysis, and discussion

The main goal of our project consists of carrying out a mathe-
matical analysis based on the following methods:PCA, HCA, and
GP. We have chosen several steps to accomplish this project as
follows:

3.1. Benchmarks on quercetin

Quercetin (Fig. 2), also called vitamin P, is considered the most
beneficial flavonoid for human health.

In this part, we approached our research by optimizing the
equilibrium structure of quercetin, takenas an analogy to the stud-
ied data set, in order to define the most appropriate prediction
method for the rest of our calculations.

By comparing experimental findings with the computational
approach from the data listed in Table 2, we noticed that the DFT
method at the level of the B3LYP hybrid functional and the HF
method both show a good correlation with the experimental val-
u et al., 2017).



Table 1 (continued)

S. Boudergua, S. Belaidi, M. Mogren AlMogren et al. Journal of King Saud University – Science 35 (2023) 102898
ues, but the first is better, so we applied this method to calculate
the quantum descriptors.

3.2. Generation of Molecular Descriptors

Our calculations are applied to thirty-one flavonoids, which are
characterized by thirteen descriptors correlated with theirbiologi-
4

cal activities (pIC50).The objective of a QSAR study is to use a math-
ematical model for the prediction of the antioxidant activities of
newly synthesized analogous molecules and to sort out the
promisingmolecules before going to the experimental stage.Table 3
collects all the computed descriptors of the thirty-oneflavonoids.

Volume (Vol, Å3), hydration energy (HE, kcal/mol), octanol–wa-
ter partition coefficient (log P),polarizability (P, Å3), molar weight



Fig. 2. 3D Structure of Quercetin.

Table 2
Structural data of quercetin molecule.

Bond length (angstrom) Angle(degree)

HF
(6-31G)

DFT/B3LYP
(6-31G)

Exp.a HF
(6-31G)

DFT/B3LYP
(6-31G)

Exp.a

(1,2) 1.38 1.40 1.36 (1–2-3) 118.21 118.17 121.26
(1,6) 1.36 1.39 1.37 (1–2-11) 112.13 112.54 110.97
(2,3) 1.34 1.37 1.36 (3–2-11) 129.66 129.29 127.75
(2,11) 1.46 1.46 1.48 (2–3-18) 122.38 122.86 122.25
(3,4) 1.45 1.44 1.45 (4–3-18) 115.60 114.93 117.34
(3,18) 1.37 1.38 1.35 (3–4-5) 117.28 117.68 116.79
(4,5) 1.44 1.43 1.42 (5–4-17) 123.64 123.79 122.82
(4,17) 1.25 1.29 1.27 (4–5-10) 122.76 121.99 122.83
(5,6) 1.40 1.41 1.39 (6–5-10) 118.12 118.43 116.96
(5,10) 1.41 1.42 1.42 (1–6-7) 117.96 117.82 116.79
(6,7) 1.38 1.39 1.40 (5–6-7) 122.70 122.44 122.79
(7,8) 1.39 1.40 1.39 (6–7-8) 117.47 117.53 117.08
(7,23) 1.07 1.68 1.02 (6–7-8) 117.47 117.53 117.08
(8,9) 1.39 1.40 1.40 (8–7-23) 120.92 120.79 122.71
(8,20) 1.36 1.38 1.36 (7–8-20) 116.36 116.07 117.66
(9,10) 1.38 1.39 1.36 (9–8-20) 121.53 121.70 119.84
(9,24) 1.07 1.08 1.01 (8–9-24) 121.88 121.82 120.44
(10,19) 1.35 1.36 1.38 (5–10-9) 120.26 120.03 122.14
(11,12) 1.40 1.41 1.39 (5–10-19) 121.67 120.42 118.45
(11,16) 1.40 1.42 1.40 (9–10-19) 118.07 119.55 119.37
(12,13) 1.39 1.40 1.39 (2–11-12) 122.19 121.81 121.34
(12,25) 1.07 1.08 1.00 (2–11-16) 118.97 119.38 119.34
(13,14) 1.38 1.39 1.39 (11–12-13) 120.42 120.54 121.02
(13,26) 1.07 1.08 1.01 (11–12-25) 119.98 119.53 119.35
(14,15) 1.39 1.41 1.38 (13–12-25) 119.60 119.93 119.62
(14,22) 1.36 1.38 1.40 (12–13-14) 120.31 120.30 118.84
(15,16) 0.37 1.38 1.40 (15–14-22) 120.68 120.24 118.33
(15,21) 0.38 1.40 1.37 (14–15-21) 114.66 113.88 118.52
(16,27) 1.07 1.08 1.01 (16–15-21) 124.37 125.01 121.40
(18,28) 0.96 0.99 0.91 (3–18-28) 110.96 106.28 110.29
(19,29) 0.96 1.00 0.95 (10–19-29) 113.86 109.35 101.93
(20,30) 0.95 0.98 0.91 (8–20-30) 115.44 112.13 113.42
(21,31) 0.95 0.97 0.99 (15–21-31) 115.54 112.83 112.59
(22,32) 0.95 0.98 0.98 (14–22-32) 113.10 109.68 101.87

a : (Rossi et al., 1986).
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(MW, amu), Heat of formation (HF, kcal/mol), HOMOenergies
(EHOMO, au) and LUMO energies (ELUMO, au), dipole moment (DM,
Debye), number of rotatable bonds(RB), hydrogen bond donors
(HD), hydrogen bond acceptors (HA), and topological polar surface
area(TPSA,Å2).
5

3.3. Hierarchical clustering (HC)and principal component analysis
(PCA)

The main step of principal component analysis is to select the
most influential components. For this reason, we have used the



Table 3
Molecular descriptors used in this study.

No Vol. HE log P Pol. MW HF EHOMO ELUMO DM RB HD HA TPSA

1 1442.92 �47.61 �5.72 54.11 594.53 �553.82 �0.27308 �0.04987 7.80 6 10 15 256.29
2 1801.56 �57.78 �7.18 67.53 756.67 �759.21 �0.26527 �0.04146 6.21 9 13 20 335.44
3 1743.13 �51.53 �6.15 66.89 740.67 �710.11 �0.22100 0.00175 8.27 8 12 19 315.21
4 1817.18 �43.72 �7.04 74.75 800.72 �655.39 �0.14423 �0.14108 14.77 12 10 18 301.05
5 1112.70 �34.05 �3.44 40.77 446.37 �376.39 �0.22794 �0.04651 7.55 4 6 11 183.21
6 755.02 –32.68 �4.01 28.54 302.24 �225.02 �0.25302 �0.04606 4.26 1 5 7 127.45
7 737.08 �27.04 �2.99 27.90 286.24 �181.97 �0.25454 �0.04463 3.76 1 4 6 107.22
8 1480.17 �53.11 �5.91 54.75 610.53 �594.10 �0.26526 �0.03515 5.46 6 10 16 265.52
9 796.96 �35.31 �4.14 29.28 306.27 �251.56 �0.24548 0.01728 4.00 1 6 7 130.61
10 779.09 �31.10 �3.12 28.65 290.27 �209.06 �0.25234 0.00795 3.20 1 5 6 110.38
11 1393.96 �52.08 �6.97 56.52 578.53 �406.53 �0.23910 �0.00041 6.39 3 10 12 220.76
12 1353.53 �50.33 �6.27 55.75 576.51 �396.04 �0.24712 0.00521 4.17 2 9 12 209.76
13 1077.51 �31.80 �2.49 40.05 416.38 �298.59 �0.24421 �0.01044 6.91 4 5 9 145.91
14 1096.72 �35.65 �3.52 40.69 432.38 �340.25 �0.23790 �0.00567 4.37 4 6 10 166.14
15 1154.98 –32.24 �3.49 42.52 446.41 –332.21 �0.24770 �0.01768 3.30 5 5 10 155.14
16 695.89 �19.27 �1.03 26.63 254.24 �91.86 �0.24242 �0.00687 5.33 1 2 4 66.76
17 709.90 �24.68 �2.05 27.27 270.24 �141.38 �0.24776 �0.03413 3.26 1 3 5 86.99
18 773.34 �19.97 �2.02 29.10 284.27 �127.56 �0.24124 �0.00586 1.77 2 2 5 75.99
19 797.68 �19.11 �1.60 29.29 286.28 �147.23 �0.24342 �0.00751 2.77 2 2 5 75.99
20 718.51 �17.37 �0.53 26.74 242.27 �84.41 �0.24625 0.01462 3.54 1 2 3 49.69
21 1206.15 �37.98 �4.95 46.87 482.44 �328.56 �0.24934 �0.05253 3.76 4 6 10 166.14
22 1178.42 �41.82 �5.44 43.80 478.41 �424.64 �0.26574 �0.04158 9.53 5 7 12 195.60
23 746.42 �28.66 �2.59 28.10 288.26 �202.56 �0.25682 �0.03066 3.92 1 4 6 107.22
24 1145.30 �39.96 �4.05 41.52 450.40 �404.53 �0.24626 �0.00343 5.94 4 7 11 186.37
25 721.73 –23.85 �2.09 27.27 270.24 �142.79 �0.26369 �0.02437 5.16 1 3 5 86.99
26 740.32 �29.49 �3.11 27.90 286.24 �185.85 �0.26617 �0.02590 4.86 1 4 6 107.22
27 797.46 –23.32 �3.08 29.74 300.27 �176.55 �0.26297 �0.02516 5.05 2 3 6 96.22
28 886.63 �26.81 �4.97 32.85 346.29 �252.05 �0.25055 �0.04583 3.80 3 4 8 125.68
29 883.77 �29.04 �4.97 32.85 346.29 �249.37 �0.25355 �0.03643 3.74 3 4 8 125.68
30 872.01 –23.24 �4.07 32.21 330.29 �208.74 �0.26586 �0.02684 4.44 3 3 7 105.45
31 942.11 –23.86 �4.94 34.68 360.32 �238.54 �0.25358 �0.03559 3.63 4 3 8 114.68

Table 4
Cumulative percentage of eigenvalues.

Number Percent Eigenvalue Cum Percent

1 71.656 10.0318 71.656
2 11.400 1.5960 83.056
3 8.399 1.1758 91.454
4 4.158 0.5822 95.613
5 2.116 0.2962 97.728
6 0.981 0.1374 98.710
7 0.774 0.1083 99.483
8 0.363 0.0509 99.847
9 0.085 0.0119 99.932
10 0.058 0.0081 99.990
11 0.005 0.0007 99.995
12 0.004 0.0006 99.999
13 0.001 0.0001 100.000
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cumulative percentage (Cum Percent) of the total variation as the
most significant criterion, which must go beyond 80% (Jolliffe,
2002) (From the point of view of inertia or variance, n first axes
of the principal component analysis are a better option to com-
press a set of N random variables). According to Table 4, the two
first main components hold 83.06 % of all the information.Thus,
we can ignore or removethe other components of PCA representa-
tion, which facilitatesdataset compression.

We have illustrated the loading diagrams as shown in Fig. 3, to
better understand the corollary relationship between the different
variables.

As long as the load diagram has a higher absolute value, its
influence on the PCA/model is more significant(Yoo and Shahlaei,
2018). The circle of correlation helps to get the relations between
the variables. We explore the existence of groups of reliable vari-
ables that are well correlated. If these groups have a real exis-
tence,therefore all the variables of a designated group have the
chance to be synthesized by a well-determined variable.
6

By analyzing the circle of correlation, we notice that:

� TPSA, HD, HA, Pol, MW, and V constitute a strongly correlated
subgroup because their corresponding vectors largely overlap.

� The topological parameters on the first axis are negatively
related to the energies of HF and HE.

� Second factorial axis mainly depends on ELUMO and EHOMO

energies.

To define the sub-classes of our dataset, we have established a
hierarchical grouping;it is a multivariate technique that leads to
assembling very close findings. Well-defined clusters share close
descriptors values(SAS Institute Inc, 2017).

Fig. 4 indicates that the data is divided into four distinct groups.
We can differentiate them into the following groups:

� Group 1: assembles the molecules: 1, 2, 3, 8, 11, and 12. These
molecules have a similarity of having aweight that exceeds 575
amu and containing a group of glycosides.

� Group 2: encompasses a single molecule, which carries the
number 4. It is the only drift, which has a synapoyle group.

� Group 3: contains the following molecules: 5, 13, 14, 15, 21, 22
and 24. These compounds enclose a glycoside group as the first
cluster, but they have a weight well below 500 amu.

� Group 4:gathers the remaining molecules. These are molecules
of simple structures whose weight is less than 500amu.

In order to illustrate the distribution of the molecules within
the two principal components, a score plot is given in the Fig. 5.

3.4. Construction of a QSAR model by applying the Gaussian process

The aim of regression is to pattern the relationship between
input data and real-valued output data. This section shows how
to take advantage of the qualities of Gaussian processes in order



Fig. 3. Correlation circle of different descriptors and biplot PCA scores.

Fig. 4. Scheme ofHierarchical Classification.

Fig. 5. Scoring plot.
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to solve these regression problems. Due to their random nature,
Gaussian processes can serve as a probability distribution over a
space of functions. Therefore, it is conceivable to use them as a
probability distribution in the context of Bayesian inference.

Prediction is usually the primary goal of a regression, where an
input � is passed to the learning algorithm for it to subsequently
provide an estimate of the output value Y. In the regression by
7

Gaussian process, it is from the posterior distribution over the
space of functions that the predictions are made. From a proba-
bilistic point of view, calculating this distribution is a relatively
simple operation.

The data set is split into two sets, the test, and the training one.
The test set was randomly swept among the three most dominant
groups 1, 3, and 4 with a ratio of approximately 1:5. Molecules
used for the test set are 7, 12, 15, 1, 9, and 23.

Through the GP model, we confirm that the value of the HOMO
energy is the factor that clearly dominates the antioxidant activity
with a relative contribution of 27.03% (SAS Institute Inc,2018).

Naturally, the GP processes perfectly interpolate the data. They
can deal with models with an error term equalto zero, where there
is a similarity between input and output values. This similarity can
be shown by calculating the coefficient ofcorrelation (R2) (Mouhibi
et al., 2013)and the absolute average relative error (AARE) (Darnag
et al., 2017)forthe training set. A good correlation is obtained with
a higher value of R2 and a lower value of AARE.

R2 ¼ 1�
PN

m¼1 bym � ym
� �2

PN
m¼1 ym � y

�� �2



Fig. 6. Comparison in the test set between observed and predicted pIC50.
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and

AARE ¼
PN

m¼1 bym � ym
�� ��= ymj j

N

-ym is the experimental output,
-bym is the predicted output,

-y
�
is the mean of dependant variable,

-N is the number of the molecules in the data set.
In order to check the prediction capacity of our model (Fig. 6.);

an external validation was established using the predictive R2(R2-
pred)(Muhammad et al., 2018), and AARE pred on the test set
(Darnag et al., 2017).

The values of the statistical parameters are given as follows:

� We have validated the training set with: R2 = 0.99 and
AARE = 0.01.

� We have validated the test set: R2pred = 0.86 and
AAREpred = 0.06.

It can be deduced that the model is predictive and reliable
withR2

pred = 0.86, so it is much higher than the reference value of
0.6 (Tropsha, 2010).
4. Conclusion

Typical QSAR studies use common techniques such as the arti-
ficial neural method, multiple linear regression, and partial least
squares regression. The aim of this work was to use a statistical
technique little known in pharmaceutical chemistry, the Gaussian
process regression which is rarely used to build a QSAR model. In
our study, we have also demonstrated that GP is reliable and cap-
able of predicting antioxidant activity with a respectable record (R2-
pred) which is equal to 0.86, so it is much higher than the reference
value of 0.6. Therefore, we estimate that this reliable model can be
used to predict the antioxidant activity ofa series of new mole-
cules. Also, based on the HC results, our set was divided into four
separate clusters according to the presence of glycosides and the
molar weight of the flavonoids.
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