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In this research, by implementing modified analytical and numerical methods, the construction of the
analytical and numerical wave solutions for the Ito integro-differential dynamical equation are obtained.
The central finite differences are employed to derive the numerical solutions of this equation. We applied
the Taylor expansion to test the accuracy of the numerical solutions. We invoke the Von Neumann’s sta-
bility to explore the stability. The comparison between the exact and numerical results is successfully
obtained. We provide some graphical representations to illustrate this comparison and to show the beha-
viour of the travelling wave solutions. The error which arises from the performance of the used numerical
method is investigated. The used methods can be utilized to deal with more nonlinear partial differential
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article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Nonlinear evolution equations are commonly used to model
and analyse most natural events. In particular, these equations
play an essential role in describing and explaining some sophisti-
cated phenomena arising in heat transfer, wave propagation, fluid
dynamics, optics, elasticity, fibres, plasma physics, electrodynam-
ics, biology, chemistry, ocean engineering, condensed matter phy-
sics and many other branches in nonlinear science(Helal and
Seadawy, 2012; Khater et al., 2001; Khater et al., 2003; Khater
et al,, 2006; Calin Itu et al.,, 2019; Vlase et al., 2019; Praveen
Agarwal, 2021; Agarwal et al., 2020; Rahmoune et al., 2020;
Agarwal et al., 2020). The travelling wave solutions of such equa-
tions are utilized to clarify and interpret the physical mechanism
in the real life. Consequently, there has been a great interest in
the investigation of exact travelling wave solutions (Inc et al.,
2020; Igbal et al., 2018; Helal et al., 2014; Ozkan, 2020; Ahmad
et al., 2020). Some scientists have devoted considerable effort to
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develop various approaches by which one can straightforwardly
extract the exact travelling wave solutions for some partial differ-
ential equations. Among these approaches, we specify and state the
following: the projective Riccati equation approach (Conte and
Musette, 1992), the sine-cosine approach (Wazwaz, 2005;
Wazwaz, 2004), the tanh-sech principal (Malflieta and Hereman,
1996; Wazwaz, 2004), the exp(—f({))-expansion process (Alharbi
and Almatrafi, 2020), the Adomian decomposition technique
(Adomain, 1994; Wazwaz, 2002), the complex hyperbolic function
approach (Zayed et al., 2006; Chow, 1995), the rank analysis pro-
cess (Feng, 2000), the extended tanh method (Fan, 2000;
Wazwaz, 2007). For more information about other techniques,
one can see Cesar and Gomez (2010), Alharbi et al. (2019),
Alharbi and Almatrafi (2020), Alharbi and Almatrafi (2020),
Abdelrahman et al. (2020), Alharbi et al. (2020), Alharbi et al.
(2020), Alam and Tung¢ (2019), Shahida and Tung¢ (2019),
Seadawy et al. (2019).
The (1 + 1)-dimensional Ito equation which is given by

Vi + Vit + 6ViVe + 3 W, + 3V, / V,do =0, (1)

was developed by Ito in 1980. According to Ito (1980), this equation
is a generalization for the KdV equation. Several authors have dis-
cussed Eq. (1) in terms of its exact solutions. For instance, Zhao
et al. (2010) used the extended homoclinic test approach to analyse
soliton solutions and periodic type of soliton solutions of Eq. (1).
The generalized direct algebraic method, the long simple equation
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approach and the modified F-expansion method have been success-
fully used in Seadawy et al. (2020) to obtain the exact solutions of
Ito equation. Furthermore, the generalized Kudryashov technique
has been applied in Gepreel et al. (2017) to construct the soliton
solutions for Ito equation. The author in Akbari (2017) used the
Kudryashov process to demonstrate the exact solutions of the gen-
eralized Ito integro-differential equation.

The construction of the exact solutions of Eq. (1) is remarkably
limited to some approaches. Thus, we invoke the improved F-
expansion process combined with Riccati equation to construct
some exact travelling wave solutions for this equation. According
to [slam et al. (2014), this method leads to more novel exact trav-
elling wave solutions. The main strategy depends on reducing the
integro-differential equation into an appropriate ordinary differen-
tial equation (ODE) solved by the considered method. Naturally,
the achieved ODE does not provide the whole solutions of the con-
sidered PDE, but gives a class of solutions under some conditions.
Since the traditional approaches cannot be sometimes applied to
handle most nonlinear PDEs, we exploit the numerical methods
to approximate the solutions. The finite difference formulae are
executed to develop the numerical solutions of Ito equation. The
exact and numerical solutions are found nearly the same in the
behaviour with a very small error, as can be seen in the presented
figures and the provided table.

2. Analysis of the improved F-expansion approach

In this section, we introduce and explain the analysis of the
improved F-expansion technique combined with Riccati equation,
as presented in [slam et al. (2014). Consider the Riccati equation
on the form:

Fi(0) = F*(() -1 =0, (2)
where / = d%, and r is a real parameter. The general solutions of Eq.

(2) are given by

e If r < 0, the general solutions of Eq. (2) are formed as

F = —/—r tanh(v/-r{), (3)
F = —/—1 coth(v/—r{). (4)
o If r = 0, the general solutions of Eq. (2) are expressed as
1
F=—-. 5
¢ (5)
o If r > 0, the general solutions of Eq. (2) become
F = Vr tan(v10), (6)
F = —/r cot(v/10). (7)
Now, we consider the following PDE:

G(v, Ux, Ur, Usg, Uxt, . -.) = 0, (8)

where G is a polynomial in v = v(x,t), and its partial derivatives.
We now substitute the transform

v(x,t) = Y(0), {=kx —wt, 9)
into Eq. (8) to reduce it into the following ODE:
PP, ¥, ¥Yn,Wm,...)=0, (10)

where P is a polynomial in W and its derivatives. Next, the travelling
wave solutions are shown as follows:

M

() =D pm+FQ) + Y 4(m+F)7, (11)

pry =
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where the positive integer M is evaluated from the homogeneous
balance, F satisfies Eq. (2) and the constants 7;, 4, w and m are
determined later. Substitute Eq. (11) into Eq. (10) to have a polyno-
mial in F. Equate the coefficients of F to zero to end up with an alge-
braic system. The solutions of this system give the vales of the
constants 7;, 4;, w and m. Inserting the values of these constants
into Eq. (11) yields the travelling wave solutions.

3. Establishment of exact solutions

In this part, we derive new hyperbolic and trigonometric travel-
ling wave solutions for the following equations:

X
Vie + Viooe + 28ViVe + BWie + Vi / Vedo =0, (12)

where f is an arbitrary constant. We first convert Eq. (12) into a new
PDE by substituting V = v, into Eq. (12). Achieving this, we have

Vst + Vst + 28 Usx Uxe + B Ux Vst + B Uxux Ve = 0. (13)
The transform
v(x, t) =Y(), {=kx—wt, (14)

where k and w are real numbers, is now substituted into Eq. (13) to
give

WKW — Wh W — 25wk (W2 4+ Wi W) = 0. (15)

Integrating twice w.r.t. { and equating the integral constants to
zero lead to

WY, — ¥ — pIEP? = 0. (16)

The homogeneous balance between ¥, and ‘I’2 gives M = 1.
Therefore, the travelling wave solution becomes

p

\P(Q)ZV0+V1(m+F(é))+m- (17)
Next, we plug Eq. (17) into Eq. (16) and equate the coefficients
of ', n=0,1,2,..., 8, to zero to obtain an algebraic system whose

solutions are given by

Casel: 7y, =0, )1:w7 w=—4rk’,

Case2: 7, =0, i1 =%r w=—4rk m=0, a8)
Case3: y]:f%, =0, w=-4rk’, m=0,

Cased : y]:—slif, 11:%22 w=-16rk>, m=0.

Here, v;; and V;; are the exact solutions of Eqgs. (13) and (12),
respectively. The index i indicates the solution number while j
illustrates the case number. Hence, the exact solutions of Egs.
(13) and (12) can be simply formed as follows:

1.Ifr<0 and k= —1.We have
Case 1:
6(K*m? +k2r) 1
V(X E) = 7 + 5 (m+\/—“rtanh(ﬁf(lo<+4rk3 t))) .

(19)

Hence, the exact solution of Eq. (12), which is determined by
taking the first derivative of v, ; with respect to x, is

6kr (k2 m? + k* r) sech? (\/fr (4I<3 rt+ kx))

Viilx,t) = )
ﬁ<\/—_rtanh (\/—_r(4k3rt + kx)) + m)

(20)
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Case 2:

2
V12(X,t) =9 — % (m + v/=rtanh(v/=r(kx + 4rk’ t))) o

(21)
Therefore, the exact solution of Eq. (12) obtaining by taking the
first derivative of v, with respect to x, is

6k>r2sech® (\/—_r(élk3 r[+kx) )

Viax,0) = /f(\/iFtanh(\/iF(4k3rt+kx))+m)2 ’ (22)
Case 3:
6k 3
v13(X,t) =9 — a (m + v/=rtanh(v/=r(kx + 4k rt))).
(23)
Thus, the exact solution of Eq. (12) is shown as follows:
Vis (X, f) _ 6k3rsechz(\/7(4k3rt+kx)) . (24)
Case 4:
6]{2 3
Dralx,t) =0~ (\/——rtanh(\/——r(kx + 16k rt)))
6k
+ r S— (25)
ﬁ(\/—_rtanh(\/—_r(kx+ 16k rt)))
Hence, the exact solution of Eq. (12) is expressed as
6rcsch? (v=r(—16rt — x
Vi) = W_ﬁ( )
2
_ brsech (\/—_r(—16rt—x))' (26)
B
2. Ifr >0, k=+1 then
Case 1:
6<k2m2 +k2r) 51
V21(X,t) =70+ 5 <m+\/Ftan(\/F(kx+4rk t))) .
(27)
Thus, the exact solution of Eq. (12) is given by
6r(m? +r) sec? (\/r(4rt +x
Vo 1) = - T+ 1) e (VItArt ) (28)
B(m+ rtan (Vr(4rt +x)))
Case 2:
2 -1
22(%, 1) = 7, +¥ (Vran(vrkx +4ri)) (29)
Therefore, the exact solution of Eq. (12) is shown as follows:
6resc? (vr(4rt 4 x
Vzvz(X7 t) = — (\/—( )) . (30)
B
Case 3:
6]{2 3
D) =70~ g (m + Vrtan(vr(kx + 4rk t))). (31)
Hence, the exact solution of Eq. (12) is given by
6rsec? (v/r(4rt +x
Vas(x,t) = — (\/[;( ) . (32)
Case 4:
6k 3
BralX ) =70~ 7 (\/Ftan(\/F(kx + 167k t)))
2
6k r (33)

+ .
ﬁ(\/Ftan(\/F(kx +16rk? t)))
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Thus, the exact solution of Eq. (12) is illustrated as

6resc? (Vr(16rt +x))
B

_ 6rsec? (Vr(16rt +x))

B

V2,4(Xs t) ==

. (34)

4. Establishment of numerical solutions

This section is devoted to utterly demonstrate the numerical
results of Egs. (12) and (13) by executing the central finite differ-
ences. The numerical solutions are investigated on the interval
la, b], as illustrated in Fig. 1. Here, a and b denote the endpoints
of the physical domain. We begin with generating the numerical
solutions of Eq. (13) by reforming Eq. (13) into the following
system:

Ut = 8y,

e + Qxx = O) (35)
where

Q:gxxx+/j(ygx)x_ﬂygxx~ (36)

The variables x and t indicate the spatial and time variables,
respectively. Modifying Eq. (13) into a system leads a scheme
much faster and more stable. Let U =g,,. Then, system (35)
becomes

Ve =8y
U+ Q) =0, (37)

where
Q =8 T ﬁ(ygx)x - ﬁvg)o(

The initial conditions of system (37) is generated by introducing
the function g which reads

gx,t) = / %dé- (38)

Eq. (19) is selected to build the initial condition of ». Hence, Eq.
(38) becomes

2472k (m? +1)

X, t) = . 39

g.0) Bk(rm — v=r3 tanh(— /=T (—4rk’t — kx))) 39)
Thus, the initial conditions of system (37) are shown as

011(%,0) = 7y + M (m + v/=Ftanh(v/=r(kx))) ", )

o 2412k’ (m2+r)
g(X., 0) Bk (rm—v/=13 tanh(— = (=kx))) °

It is worth noting that Fig. 1 is perfectly utilized to deduce the
relevant boundary conditions which are

vy =g, =0, at x=a,

41
v =g,=0, at x=>b, (“41)

where a and b are the endpoints of the physical domain. Egs. (41)
are also used to determine the fictitious points which we invoke
to find the spatial derivatives at the boundaries of the domain.
The interval [a, b] is divided into sub-intervals such that

Xp=a+ (n-1Ax, VYn=1,2,... N+1. (42)

Here, Ax indicates the space increment. It is important to men-
tion that the numerical results at the mesh node are characterized
by v, and g,. In addition, we semi-discretize the spatial derivatives
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Increasing time—>
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Increasing time——>

9(x,0)

X

Fig. 1. (a) and (b) represent the initial conditions for v and g, respectively, using Eqs. (40). The parameter values are taken by y, = -2,r=-0.3, =12, m=1.2.

whereas the temporal derivatives are kept continuous. Conse-
quently, the new system is given by

yf'n = %Ax (gn+1 7gn71) = 07

Upl, = — Bt (43)
n 72 n n—

Qn = 8w ‘n + B(vgx)x |n - ﬂl)n mx#

The discretization of the term g,,,
be expressed as

and the term (vg,),|, can

In

‘ _ Eni2=38n1138n—8n1
gxxx n 2Ax3 )

Vni1+?n) (8ns1—8n )= (¥n+Vn-1)(8n—8n-1)
(ng)x|n:( = )( = Z)Ax2 : =

The conditions (41) are upgraded with their ODE form

Vi1 = Vener =0,
81 =8na=0,

Here, Ax = (b —a)/N. It is to noted that the method of lines is
applied here. This approach depends on DASPK solver (Brown
et al., 1994) which employs backward differentiation formulas so
as to roughly specify time derivatives. Furthermore, the Jacobian
matrix of the linearised system is approximated using LU factoriza-
tion. In order to achieve less bandwidth for the matrix, a unique
system numbering for the variables
V1,815 V2,82, -+, UN-1, 8n—15 UNs 8ns UN11, 8N, IS USEd.

(44)

4.1. Accuracy of the scheme

Taylor expansion is applied on the numerical scheme to mani-
fest its accuracy. The accuracy is studied by substituting Taylor
expansion into the scheme and simplifying the result. This gives
us that the accuracy is from O(At?, Ax?). As a result, the accuracy
of the schemes are from the second order in time and space.

4.2. Stability of the scheme

Von Neumann’s stability is carried out in this subsection to
examine the stability of the numerical scheme. Assume that
o = ¥(Xn, tm). Then, system (37) is converted into

Uy = ng
8o + Qe =0, (45)
Qxx = (gxxx + ﬂagxx - ﬁ(xgxx)

System (45) is clearly discretized as
Uit = of =38 (81 — 8nt):
guln™! = galn + 25 (Q - 207 + Q) =0, (46)
Q= (ol —gult™):
Next, Von Neumann'’s concepts of 2" and g are given by
Y = ymgidxen gn = pmeitxen, (47)

Here, y, pand ¢ are constants. Insert Eqs. (47) into system (46)
and simplify to have

m-+1 m+1 _ ,m
vt —s gt = v,

(48)
0ot +(1—s2) gy =gy
System (48) can be simply written as
m+1 m
PR MR )
0 1-5 g g
Therefore,
m+1 m
- T
g g
where

A {; } |
=
s1 and s, are given by
51 = {Lisin(¢Ax),
52 = i i’ () (¢ 1),

where At is the time step. The eigenvalue of the matrix A is given by

m:{—szll,l}. (51)

The stability occurs if the maximum eigenvalues of A is less
than or equal one. However, this is obviously satisfied in the
obtained eigenvalues in which the maximum eigenvalue is one.
As a consequence, we conclude that the numerical scheme is
unconditionally stable.
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Fig. 2. Graphical comparison between the analytical solution of »(x,t) (left) and the numerical solution of »(x,t) (right). The values of the used parameters are

Yo=-2,r=-03,=12,m=12.

Table 1

L, error and CPU time taken to reach t = 10 for the numerical approach.
AX L, error CPU
1.000e — 01 3.206e — 01 726x103 s
5.000e — 02 1.575e — 01 149 %1072 s
1.000e — 02 6.800e — 03 714%x102%s
5.000e — 03 1.730e — 03 140x 107 's
2.000e — 03 2.796e — 04 320x10's
1.000e — 03 7.640e — 05 6.80x10°!s

5. Result and discussion

In this paper, we have precisely deduced novel exact travelling
wave solutions on the form of hyperbolic and trigonometric func-
tions for Eqgs. (12) and (13) using the improved F-expansion pro-
cess combined with Riccati equation. The presented solutions are
more general than the solutions investigated by Gepreel et al.
(2017) and by Akbari (2017). Akbari (2017) determined one
rational solution for the generalized Ito integro-differential equa-
tion via the Kudryashov method whereas the authors in Gepreel
et al. (2017) applied the generalized Kudryashov technique to

Q
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53 ]
©

x

W]

2, 4
; ‘ ‘ ‘ ‘
100 10 20 30 40

X

extract three rational solutions. The finite difference formulae are
perfectly employed in this paper. The achieved numerical solutions
are super acceptable. Therefore, the applied methods are more reli-
able and powerful.

The central finite differences have accurately presented approx-
imated solutions. For instance, Fig. 2 shows that the exact travel-
ling wave solution and the numerical solution of wv(x,t) are
almost coincident and concomitant. Furthermore, the 2D diagram
in Fig. 7 illustrates that the performance of the numerical method
for different values of Ax where the smallest value is the best. In
particular, when we take Ax = 0.1, the resulting L, error of the
numerical solution (dashed yellow line) is large while this error
is strongly reduced when we use Ax = 0.001, (dashed blue line).
Note that all figures are plotted under the values
Yo=-2,r=-03,=12,m=1.2. L, error and CPU time can be
easily observed in Table 1. We begin with Ax = 1.000e — 01 where
the L, error reaches 3.206e — 01 in 7.26 x 10> second. This error
arrives at 1.730e —03 for smaller Ax = 5.000e — 03 during
1.40 x 107! seconds which increases. However, the method gives
suitable performance and shrinks the error for small
Ax = 1.000e — 03 with a slight increment in the CPU time

(6.80 x 107! s) (see Figs. 3-6).

oy 9

Numerical solution for v(x,t

n

1‘ L L
-10 0 10
X

20 30 40

Fig. 3. Graphs (a) and (b) represent the time evolution of a single travelling wave for the exact and numerical results of v(x,t).
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Fig. 4. 3D surfaces sketching a single travelling wave for exact and numerical solutions of V(x,t). The plots also compare the characteristics between the two solutions.
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Fig. 5. The time development for a solitary wave solution of the exact solution of V(x,t) (left) and the numerical solution of V(x,t) (right).
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Fig. 6. Diagram (a) shows that the exact solution of v(x,t) is almost the same as its numerical solution while Figure (b) illustrates the behaviour of the exact and numerical
solutions of V(x,t).

6. Conclusion this research to establish the exact travelling wave solutions and
the numerical solutions, respectively, for Egs. (12) and (13). The

The improved F-expansion approach combined with Riccati correctness of the accomplished solutions is verified by substitut-
equation and the central finite differences have been utilized in ing the solutions into the leading equations. The numerical solu-
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2 Exact Solution
Numerical A x=0.1
= = ~Numerical A x=0.05
~ = ~Numerical A x=0.01
1.5 ~ = ~Numerical A x=0.005
= = ~Numerical A x=0.002
Py — — ~Numerical A x=0.001
sl
x 1 ]
> Decreasing A x
d
05" ——
~ ~—__- -
\Decreasing A x -~ |
0 =1 ===7 | i i i
-10 0 10 20 30 40

Fig. 7. Comparison between the exact and numerical solutions of V(x, t) for various
values of Ax. The numerical solution approaches the exact solution if Ax is very
small.

tions approximately approach to the exact solutions for small Ax,
as can be seen in Fig. 7. More precisely, L, error rapidly declines
for smaller Ax, as presented in Table 1. The numerical scheme is
found unconditionally stable via Von Neumann stability. Its accu-
racy is from second order in time and space. The applied processes
lead to practical and powerful results. Eventually, we conclude that
the employed techniques can be certainly used to deal with more
complicated nonlinear evolution equations.
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