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A B S T R A C T

Introduction: Congenital heart disease (CHD) involves structural heart defects present from birth. Ventricular 
septal defects (VSDs) are among the most common types. Early diagnosis is important and can be done using fetal 
echocardiography at 12–14 weeks of gestation. However, detection rates depend on the quality of diagnostic 
tools and expertise. Machine learning (ML) can enhance detection through various diagnostic modalities, 
including electrocardiogram (ECG) and ultrasonography (US).
Aim and Objectives: This study aims to improve CHD detection by integrating fetal echocardiography with ma-
chine learning techniques.
Method: The study explores methods for detecting CHD using an online dataset, employing preprocessing, feature 
extraction, and deep learning classification.
Results: There was notable variability in model performance metrics. The Decision Support System for Early 
Prediction (DSSEP) had the highest sensitivity (80.11%) but a lower positive predictive value (PPV) and spec-
ificity compared to the Heart Deep Learning model (CDLM), which showed the highest specificity (88.25%) and 
PPV (91.31%). The Predictive Analysis of Congenital Heart Defects (PACHD) model had the lowest sensitivity 
(59.78%) and PPV (56.45%), while the Machine Learning-Based Discharge Prediction (MLBDP) model had the 
lowest specificity (59.78%) and the highest miss rate (40.22%). These findings highlight the importance of 
selecting appropriate models based on performance metrics.
Conclusion: The DSSEP model demonstrated higher sensitivity and lower miss rates, making it strong for early 
detection, whereas the CDLM model offered higher specificity and PPV, reducing false positives.

1. Introduction

Congenital Heart Disease (CHD) represents a significant structural 
anomaly present from birth, affecting various components of the heart, 
such as valves, walls, and major vessels. (Pachiyannan et al., 2023; Sun 
et al., 2020). Each year, millions of infants are diagnosed with CHD, 
making it the leading cause of death among newborns, accounting for 
over one-third of infant fatalities (Qu et al., 2022). Among the different 
types of CHD, the ventricular septal defect (VSD) is the most common, 
varying in severity and impacting the heart’s efficiency (Mullen et al., 
2021; Shivadekar et al., 2024). Despite advancements in prenatal di-
agnostics, many cases remain undetected until after birth due to subtle 
early signs and limitations in current diagnostic techniques. Fetal 
echocardiography is the primary method for diagnosing congenital 
heart disease (CHD) and is recommended to be performed by the 

supervising physician between 12 and 14 weeks of pregnancy for all 
women.

However, the effectiveness of this technique is often compromised by 
inconsistent interpretation skills among healthcare providers. As a 
result, current detection rates for CHD range from 30 % to 51 %, 
revealing a significant gap in early diagnosis (Nidhi et al., 2021). Ma-
chine learning (ML) techniques offer a promising solution to enhance 
these detection rates by improving the accuracy of fetal echocardio-
graphic assessments. ML algorithms have demonstrated superior pre-
dictive performance compared to traditional methods, enabling better 
identification and classification of heart defects from diverse data 
sources, including imaging and electrocardiograms (Kumar and Singh, 
2022; Khan et al., 2023). Addressing the challenges of CHD detection is 
important. These conditions often coexist with other health issues in 
newborns, complicating treatment options. Integrating machine 
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learning with fetal echocardiography can significantly improve diag-
nostic accuracy. This integration enables timely interventions and re-
duces the disease burden on affected infants.

This study aims to detect congenital heart disease (CHD) by inte-
grating fetal echocardiography data with machine learning models. This 
integration seeks to improve CHD detection through advanced algo-
rithms. The effectiveness of various machine learning models is evalu-
ated using key metrics such as sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV).

2. Materials and methods

2.1. Computational resources

The algorithm is built in a Jupyter Notebook using Anaconda and 
trained on a PC with Python v3.11 in a TPU-v3:8 environment with 
16 GB of RAM. It utilizes TensorFlow and Keras, along with an 8-core 
Tensor Processing Unit (TPU), to speed up machine learning tasks.

2.2. Study population selection and data acquisition process

In this study, a dataset from an open-source database is utilized. It 
includes ultrasound evaluations of female patients at 12–14 weeks of 
gestational age (Stoean et al., 2022). This dataset has been referenced in 
other studies as well (Hutchinson et al., 2017; Ungureanu et al., 2023). 
The dataset includes 6,720 images taken from original video files 
showing four main views of the heart.: the atrioventricular flows in the 
four-chamber view, the aorta in the left ventricular outflow tract plane, 
the intersection of the great vessels in the right ventricular outflow tract 
plane (shaped like an “X”), and the arterial arches in the three-vessel 
plane (shaped like a “V”). An additional “other” class was also 
included, containing random frames that do not fit the specified cate-
gories. To diagnose heart defects, the study employed techniques like 
rhythmic tapping, palpation, auscultation, and physical examination, 
which are important for the early evaluation of congenital heart defects 
(CHDs) and help direct further imaging (Fig. 1).

Fig. 2 shows a holistic block diagram of the proposed CHD detection, 
classification, and therapy paradigm.

2.3. Preprocessing

Pre-processing was done by 3 techniques, namely, K-Nearest 
Neighbors (KNN) estimation, “Min_Max” Normalization and One Hot 
encoding. KNN estimates the similarity of two data points and can 
identify similar cases within the obtained dataset. Then the similar data 
point is replaced by a missing value. In simpler language, it finds the 
closest point of the reference points, marked as “K”, which is based on 
the nearby reference points.

Min-max normalization is a popular data preprocessing technique 
employed to scale numerical features within a fixed range, typically 

between 0 and 1. The process involves two main steps. Firstly, the 
minimum and maximum values of the feature of interest are determined 
within the dataset. Subsequently, each data point in the feature is scaled 
using the following formula: 

Xnormalized =
X − Xmin

Xmax − Xmin 

X = original value of the feature
Xmin = the minimum value of the feature in the dataset.
Xmax = the maximum value of the feature in the dataset, and.
Xnormalized = the normalized value of the feature.
This normalization method proves beneficial when dealing with 

features that exhibit varying scales, enabling them to be compared on a 
level playing field without compromising the original data distribution. 
It finds widespread application in machine learning algorithms, partic-
ularly those reliant on gradient descent techniques, where the scale of 
features can significantly influence model performance. The last tech-
nique that is used during the pre-processing stage is “One hot encoding”, 
in which data analysis is conducted to convert categorical variables into 
a binary representation, involving each category within a variable as a 
binary vector, where only one element is marked as “1” while all others 
are “0”. This technique is particularly useful when dealing with cate-
gorical data in machine learning algorithms that require numerical 
input. Transforming categorical variables into this binary format, allows 
algorithms to interpret and process the data more effectively. For 
instance, if we have a variable like “color” with categories red, green, 
and blue, one hot encoding would represent each color as a distinct 
binary vector, facilitating analysis and modeling tasks.

2.4. Proposed model

The proposed machine learning approach to the detection of CHD 
involves using a supervised learning algorithm. The structure of this 
algorithm is outlined in Algorithm 1. It is trained using historical data of 
newborns with CHD, along with factors such as gestational age, birth 
weight, and maternal health history.

Algorithm

// Get ultrasound image samples and set the range;
Input: Ain; Output: Aout;
// Segment the images;
For each cluster pair (Ax_in, Ay_in)
If min(Ax_in, Ay_in) < |Qx_in − Qy_in|
Then merge Ax_in, Ay_in into Az;
// Feature extraction;
AZi = AZx_in + AZy_in;
Qi = (AZx_in * Qx_in + AZy_in * Qy_in) / (AZx_in + AZy_in);
// Preprocessing of samples;
Where Ain is the x  × y matrix;
For i = 1:x
For j = 1:y
If (Ain(x,y) < 0)

(continued on next page)

Fig. 1. Diagnosis of heart abnormalities.
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Fig. 2. Flowchart showing the proposed design of the model.

Fig. 3. Proposed flow diagram showing the detection stage.
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(continued )

Algorithm

Ain_s = 1;
Else
Ain_s = 0;
End;

This structured algorithm processes ultrasound image samples through 
several key steps. Initially, images are segmented, merging specific 
clusters based on predefined conditions. The flow chart of the working 
principle of the deep learning model is presented in Fig. 3.

2.5. Comparative analysis

A comparison of CHD prediction models in a certain population in-
cludes accuracy, sensitivity, specificity, positive predictive value, and 
negative predictive value. The Heart DL Model (CDLM) is compared to 
the Novel Healthcare Framework (NHF), Decision Support System for 
Early Prediction (DSSEP), Machine Learning-Based Discharge Prediction 
(MLBDP), and Predictive Analysis of Congenital Heart Defects (PACHD) 
(Nurmaini et al., 2022).

Simulation is done with Matlab r2022a. The ratio of true positives 
(TP) to total diseased patients, presented as a percentage, measures a 
test’s sensitivity (Se) in CHD prediction. A more sensitive test or treat-
ment is more accurate. 

Se =
TP

TP + FN 

Specificity measures the ability to correctly identify true negative (TN) 
cases. It was calculated using 

Sp =
TN

TN + FP 

The Positive Predictive Value (PPV) reflects the accuracy of a test in 
identifying individuals with CHD and was computed as 

PPV =
TP

TP + FP 

NPV assesses the proportion of true negatives among negative pre-
dictions and was calculated using 

NPV =
TN

TN + FN 

3. Results

In this study, the predictive performance of various deep learning 
models was evaluated to diagnose congenital heart disease (CHD) using 
ultrasound images of fetuses at 12–14 weeks gestational age. The models 
assessed include NHF, DSSEP, MLBDP, PACHD, and CDLM, with a total 
dataset organized into training (80 %), validation (10 %), and test 
(10 %) sets. The TP, TN, FP, FN, accuracy, confusion matrix and ROC 
(AUC) curves for 100 images are presented in Table S1 and Figures (S1 
and S2) (Supporting Information).

3.1. Sensitivity Measurements

Table 1 presents the evaluation of sensitivity percentages for each 
model in predicting heart disease. The results of the sensitivity evalua-
tion indicate that CDLM significantly outperformed the other models, 
achieving a sensitivity range of 87.05 % to 91.55 %.

In contrast, NHF showed a sensitivity of 59.81 % to 70.29 %, while 
DSSEP maintained a more stable sensitivity around 79.81 % to 81.02 %. 
MLBDP and PACHD exhibited lower sensitivity, with MLBDP ranging 
from 66.10 % to 73.25 % and PACHD from 56.95 % to 64.95 %. The 

average sensitivity for all the models is plotted in Fig. 4.

3.2. Specificity evaluation

Table 2 summarizes the specificity percentages for the models, which 
measure the ability to correctly identify negative cases. Most models 
showed a decline in specificity as the number of images increased, 
indicating challenges in accurately identifying negative cases with 
larger datasets. CDLM, however, consistently maintained higher speci-
ficity across different image counts, demonstrating robust effectiveness 
in recognizing negative situations.

3.3. Positive Predictive Value (PPV)

Table 3 shows the PPV for the models, which indicates the propor-
tion of true positives among all positive predictions. CDLM demon-
strated consistently high PPV values, ranging from 85.32 % to 89.25 %. 
NHF’s PPV declined from 70.58 % to 65.51 %, indicating challenges in 
maintaining predictive accuracy. DSSEP started strong at 85.40 % but 
dropped to 75.05 %. MLBDP and PACHD exhibited lower PPV, with 
MLBDP ranging from 66.30 % to 72.48 % and PACHD from 52.10 % to 
60.26 %.

Negative prediction values(NPV%) for proposed models are sum-
marized in Table 4. CDLM exhibited the highest NPV values among the 
proposed models. That ranges from 82.66 % to 96.66 %. NPV for NHF 
decreased from 66.95 % to 61.25 %. DSSEP maintained a reasonable 
NPV from 79.02 % to 88.12 %, while both PACHD and MLBDP displayed 
lower NPV values.

Table 5 presents the findings of miss rates (%) across various 
healthcare frameworks. Miss rates represent the percentage of positive 
cases that are incorrectly classified as negative, indicating the model’s 
failure to identify actual cases of congenital heart disease (CHD). In this 
evaluation, the proposed cardiac deep learning model (CDLM) achieved 
the lowest miss rates, ranging from 10.15 % to 10.92 %. NHF had 
significantly higher miss rates, ranging from 35.63 % to 36.85 %. 
DSSEP’s miss rates varied between 19.21 % and 20.48 %, while PACHD 
had the highest miss rates, between 39.47 % and 41.05 %.

Fig. 5 compares five healthcare frameworks’ performance charac-
teristics. Recall indicates the percentage of real positive cases the model 
properly identifies out of all positive cases. NHF detects 63.79 of positive 
cases with sensitivity. Specificity quantifies how many true negative 
cases the model accurately identifies out of all negative cases. For 
instance, DSSEP has 80.25 specificity, identifying 80.25 of negative 
cases. PPV, or precision, estimates the proportion of real positive in-
stances among all model-identified positive cases.

MLBDP has a PPV of 59.87, meaning 59.87 of the positive results are 
real positives. NPV is the percentage of model-identified negative sce-
narios that are true. PACHD has an NPV of 89.25, meaning 89.25 of its 
negative situations are true negatives. The false negative rate measures 
the percentage of results that are false negatives. CDLM misses 89.25 of 
positive cases while misclassifying them as negative.

4. Discussion

The findings from this study provide valuable insights into the 

Table 1 
Evaluation of sensitivity (%) for each model in predicting heart disease.

No. of Images MLBDP PACHD CDLM NHF DSSEP

100 73.25 64.95 91.55 70.29 80.01
200 72.95 62.36 90.44 70.2 79.81
300 71.68 61.1 89.96 69.18 81.09
400 68.2 59.85 89.78 59.82 80.04
500 67.21 57.26 88.92 58.69 80.12
600 66.75 55.96 88.60 59.01 80.81
700 66.1 56.95 87.05 59.81 81.02
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performance of various deep learning models in predicting congenital 
heart disease (CHD) using ultrasound images. The analysis reveals 
important trends and implications for clinical practice, emphasizing the 
need for a multifaceted evaluation of model performance.

4.1. Performance variability among models

The results show that sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) varied significantly 
across models. CDLM consistently outperformed the other models in 
sensitivity (89.45 %) and specificity (88.25 %), indicating its robustness 
in correctly identifying both positive and negative cases. This suggests 
that CDLM may be particularly effective for clinical applications where 
both accurate identification of disease and avoidance of false positives 
are crucial. Conversely, models like NHF and PACHD demonstrated 
lower sensitivity and higher miss rates, especially at larger image counts. 
This decline could suggest that these models may not generalize well 
with increased data variability or complexity. It raises concerns about 
their reliability in clinical settings, where accurate identification of CHD 
is critical for timely intervention.

4.2. Impact of dataset Size

The analysis revealed that larger dataset sizes often reduce model 
sensitivity and positive predictive value (PPV). This decline may stem 
from the challenges of training on diverse data, which can create 

Fig. 4. Average sensitivity of models.

Table 2 
Evaluation of specificity (%) for each model in predicting heart disease.

No. of Images MLBDP PACHD CDLM NHF DSSEP

100 60.75 62.36 89.25 71.69 81.57
200 60.02 61.85 88.72 71.52 81.15
300 59.94 61.25 88.25 71.21 80.48
400 59.6 60.55 87.93 70.85 80.01
500 59.5 59.74 86.54 70.74 79.87
600 59.4 59.30 86.25 70.22 79.43
700 59.31 58.1 85.5 69.40 79.02

Table 3 
Evaluation of positive prediction value (%) for each model in predicting heart 
disease.

No. of Images MLBDP PACHD CDLM NHF DSSEP

100 72.48 60.26 89.25 70.58 85.4
200 71.95 59.12 88.73 69.93 82.15
300 70.45 57.64 88.22 69.1 79.5
400 69.99 56.3 87.12 68.74 79.1
500 68.39 55.2 88.59 66.68 78.5
600 67.65 54.70 88.42 65.9 77.4
700 66.30 52.1 85.32 65.51 75.05

Table 4 
Evaluation of negative prediction value (%) for each model in predicting heart 
disease.

No. of Images MLBDP PACHD CDLM NHF DSSEP

100 70.99 71.69 96.66 66.95 79.02
200 66.44 67.62 93.56 64.91 79.96
300 62.12 63.72 92.1 64.29 80.85
400 59.75 60.73 89.69 64.25 80.12
500 56.21 57.4 85.69 63.95 80.45
600 52.45 55.68 85.42 62.33 88.12
700 50.96 54.95 82.66 61.25 81.01

Table 5 
Findings of Miss Rate (%) for each model in predicting heart disease.

Number of Images MLBDP PACHD CDLM NHF DSSEP

100 30.95 39.8 10.27 35.74 20.38
200 29.95 41.05 10.8 36.85 19.21
300 30.25 39.47 10.34 35.96 20.12
400 30.21 40.88 10.15 36.5 20.03
500 30.82 40.45 10.92 36.15 19.77
600 30.43 39.98 10.68 35.63 20.48
700 31.36 40.03 10.4 36.77 19.25

A.A. AlZubi and A. Alkhanifer                                                                                                                                                                                                               Journal of King Saud University - Science 36 (2024) 103555 

5 



prediction variability. In contrast, the CDLM model maintained more 
stable performance, suggesting better generalization for real-world use. 
Variability in specificity across models also points to difficulties in 
identifying negative cases as datasets expand. This highlights the need 
for ongoing evaluation and adjustment to sustain model performance. 
Codes from the ICD (International Classification of Diseases) in admin-
istrative information are frequently used for the detection of coronary 
heart disease (CHD) (Bhatt et al., 2023). However, these codes might 
incorrectly categorize individuals with true positive (TP) cases of heart 
disease. Improving CHD surveillance can be achieved by accurately 
detecting CHD in administrative documents with machine learning (ML) 
techniques. ML enhances the precision of identifying true positive cases 
compared to relying solely on ICD codes. This approach increases the 
relevance of findings from large datasets for the CHD patient group, 
thereby strengthening public health monitoring efforts (Shi et al., 2023).

Cardiovascular disease is the leading cause of death worldwide, and 
predicting it from clinical data is challenging. Machine learning (ML) is 
effective for diagnosing and predicting heart disease (Griffeth et al., 
2023). Previous studies have applied ML techniques to forecast heart 
illness. In one study, eight ML classifiers were used to identify key fea-
tures that enhance prediction accuracy (Mohsin et al., 2023). Neural 
network models like Naïve Bayes and Radial Basis Functions achieved 
accuracies of 95 % and 91 %, respectively. Vector Quantization 
demonstrated a 99 % reliability rate, outperforming other methods for 
predicting cardiovascular issues. The goal of predicting cardiovascular 
disease is to save lives, improve outcomes, and optimize healthcare re-
sources. Key contributions include early intervention, personalized 
treatment, technological advancements, and ongoing research to miti-
gate the impact of coronary heart disease (Srinivasan et al., 2023).

5. Conclusion

This study has demonstrated the transformative potential of deep 
learning models in diagnosing congenital heart disease (CHD) from ul-
trasound images of fetuses at 12–14 weeks gestational age. The Cardiac 
Deep Learning Model (CDLM) emerged as the leading approach. That 
shows significant advantages in sensitivity and specificity compared to 
traditional models. Its ability to accurately identify both positive and 
negative cases makes it a promising tool for clinical settings, where 
timely and accurate diagnosis is crucial. The high positive predictive 
value (PPV) of CDLM indicates its effectiveness in minimizing false 
positives, which is essential for reducing unnecessary interventions and 
alleviating parental anxiety. Furthermore, the impressive negative pre-
dictive value (NPV) underscores its capacity to reliably identify healthy 
cases, ensuring that expectant parents can have confidence in their ul-
trasound results. However, the study also revealed challenges faced by 
other models, particularly NHF and PACHD, which exhibited declines in 

performance metrics as dataset sizes increased.
The dataset, while large, may not fully represent the diverse pop-

ulations found in clinical practice. Variations in ultrasound image 
quality, gestational age, and prenatal care practices could affect model 
performance. Additionally, relying solely on one imaging method might 
limit effectiveness; incorporating multiple imaging techniques could 
enhance diagnostic accuracy.

Future research will aim to expand the dataset to include a broader 
range of groups and clinical scenarios. Utilizing additional imaging 
methods, such as MRI, could further improve accuracy. Lastly, long-term 
studies are essential to evaluate the impact of these models on patient 
outcomes in real-world settings.
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