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In this paper, we have shown that parabolic motion from a critical launch angle has an unexpected prop-
erty related to the distance between the object and the launcher. This distance decreases in a time inter-
val that occurs between two moments: one, in which distance has a maximum and another in which it
has a minimum. As it will be shown, this only happens in launch angles greater than coshc ¼ 1=3, that is
hc ffi 70:53

�
. The launch we have studied occurs from the ground and we have not taken into account air

friction. We have not considered the possible variations in the acceleration of gravity, that is, we have
taken it as a constant throughout the movement of the projectile. We have used dimensionless coordi-
nates so that the focus is on the angular variable. In addition, at the end of the study, we have used polar
variables to visualize what happened. This is a very didactic approach, which can be used in the first year
of STEM university degrees. It will also prove useful for teachers that wish to explain parabolic motion in
their classes.
� 2022 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When we look at baseballs and tennis balls flying through the
air, in a home run hit or a field goal kick, the balls follow a partic-
ular curved path through the air, exhibiting what we call projectile
motion. Parabolic motion has been extensively studied over the
years (Bajc, 1990; Bose, 1985; Lucie, 1979; Medina, 1978; Siegel,
2017; Tan and Giere, 1987). We believed that everything about
its characteristics was known, but we have found a new and sur-
prising occurrence.

When we launch a projectile, the particle appears to be con-
stantly moving away from the launcher, both when we look at it
from the perspective of the launcher and when we look at it from
a position external to the launcher. In this work, we will show that
this is not always the case as strange as it may sound. In fact, there
are intervals in which the projectile approximates the launch
point.

Our findings seem to go against students’ and teachers’ intu-
itions. We think that the projectile is always moving away, but
there is an interval of angles in which there is a shortening of dis-
tance between the projectile and the launching point, in certain
moments of the trajectory. There is a critical launch angle, above
which there is an approximation. Below that critical angle, the pro-
jectile always moves away from the launcher. We will also calcu-
late the length of the time interval in which the approximation
occurs, an approximation which depends on the angle at which
the projectile has been launched.
2. Parabolic motion in dimensionless coordinates

Projectile motion is two-dimensional free-fall motion under the
influence of only gravity. We will neglect the influence of air resis-
tance, leading to results that are a good approximation of reality
for relatively heavy objects moving relatively slowly over relatively
short distances.

Projectile motion follows a parabolic trajectory with two inde-
pendent motions: uniform motion at constant velocity in the hor-
izontal direction x, and constant acceleration, the gravity, in the
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vertical direction y (Freedman and Young, 2020; Halliday et al.,
2014; Knight, 2016; Serway and Vuille, 2017; Tipler and Mosca,
2008; Wolfson and Pasachoff, 2017). Considering the particle is
launched with speed v0 at angle h from the origin of the Cartesian
coordinate system, mathematically the motion is described by

x tð Þ ¼ v0 cos h t ð1Þ

y tð Þ ¼ v0 sin h t � 1
2
gt2 ð2Þ

where g is the acceleration of gravity.
In this paper, we want to analyze in detail the distance from

an object in parabolic motion to the launching point. We are
specifically interested in the behaviour of this magnitude, so
launching speed is irrelevant, as we will see later. The only vari-
able that will appear is the initial launch angle. Based on this, we
will carry out the following variable change in the preceding
equations

x ¼ v2
0

g
�x ð3Þ

y ¼ v2
0

g
�y ð4Þ

t ¼ v0

g
�t ð5Þ

being, �x, �y, and �t dimensionless variables. Now, parabolic motion is
described by the equations

�x �tð Þ ¼ cos h �t ð6Þ

�y �tð Þ ¼ sin h �t � 1
2
�t2 ð7Þ

where we can see that they don’t depend on launching speed or
gravity, even though the general behaviour of parabolic motion is
the same.

In vectorial terms, the position of the projectile each moment is
given by the dimensionless position vector� �

r
! �tð Þ ¼ �x �tð Þ i

!
þ�y �tð Þ j

!
¼ cos h �t i

!
þ sin h �t � 1

2
�t2 j

!
ð8Þ

We can find the dimensionless time of flight, �t, from Eq. (7) by
setting �y ¼ 0

�t ¼ 2 sin h ð9Þ
Fig. 1. Distance from the projectile to the launch point at any moment for a launch
angle of h ¼ 80o, which is greater than the critical angle.hc :
3. Distance from projectile to launch point

The distance at any point between the launcher and the posi-
tion of the object is the magnitude of position vector, Eq. (8), which
is the square root of a fourth-degree polynomial in the new dimen-
sionless time variable

r �tð Þ � ��r! �tð Þ�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xð�tÞ2 þ �yð�tÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t2 � sin h �t3 þ 1

4
�t4

r
ð10Þ

Let us analyse this function more closely, studying its critical
points. For this, we find the first derivative and we calculate its
roots.

dr �tð Þ
d�t

¼ 2�t � 3 sin h �t2 þ �t3

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t2 � sin h �t3 þ 1

4
�t4

q ¼ 0 ) �t 2� 3 sin h �t þ �t2
� � ¼ 0 ð11Þ

The trivial solution �t ¼ 0 will not be taken into account since it
coincides with the beginning of the launch. The other two solutions
2

correspond to the points in which Eq. (10) will have a relative max-
imum, tM, and minimum, tm, given by

tM ¼ 1
2

3 sin h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7� 9 cos 2h

2

r" #
ð12Þ

tm ¼ 1
2

3 sin hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7� 9 cos 2h

2

r" #
ð13Þ

To find out which of them correspond to a relative maximum
and minimum of the r �tð Þ function, we have carried out a second
derivative, and we have calculated the signs that result from the
noughts of the first derivative, that is, the noughts of Eqs. (12)
and (13), resulting in

d2r �tð Þ
d�t2

�����
�t¼tM

< 0 ð14Þ

d2r �tð Þ
d�t2

�����
�t¼tm

> 0 ð15Þ

Therefore, it is correct to say that tM corresponds to a relative
maximum and tm to a relative minimum. Also, tm > tM.

Eqs. (12) and (13) only have a real solution when the radicand
that appears in them is higher or equal to 0.

�7� 9 cos 2h � 0 ) cos 2h � �7
9

ð16Þ

Taking into account the double-angle formulae

cos h � 1
3
) h � 70:53

� ð17Þ

With everything we have analysed up to this point, when we
carry out a launch with an angle greater than the critical angle
hc ¼ 70:53

�
, that is, when h > hc , the distance to the launching

point presents a similar behaviour to the one shown in Fig. 1.
This behaviour indicates that in the time interval between tM

and tm, the distance between the projectile and the launching point
decreases, which means that the object is approaching the
launcher. This is a very curious and surprising result since intu-
itively we would mistakenly think that the projectile always moves
away from the launch point, if we looked only at the horizontal
direction x of the movement. It is necessary to carry out an exhaus-
tive analysis of the position vector to conclude that there is an
interval of launch angles in which, at a certain time interval, the
projectile approximates the launcher.



Fig. 3. Time interval of the approximation of the projectile to the launching point
depending on the launch angle, it being always bigger than.hcFig. 2. Evolution of the maximum tM, minimum tm and inflection point tip in the

function that determines the distance from the projectile to the launching point
with the different possible lunching angles, always greater than hc .
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3.1. Evolution of critical points with launch angle

Fig. 2 shows the evolution of critical points resulting from the
analysis of the magnitude of position vector, rð�tÞ, that determines
the distance from the projectile to the launching point, depending
on the launching angle, and always taking into account that we are
in higher angles to the critical angle calculated in the previous sec-
tion, Eq. (17). The inflection point, tip, indicates the time for which
variable rð�tÞ changes its curvature. In this particular case, in Fig. 1
we can see that it goes from a concave downwards curvature with
a maximum in tM, given by Eq. (12), to an upwards concave curva-
ture with a minimum in tm, given by Eq. (13).
Fig. 4. Vertical position of the projectile at each moment, �yð�tÞ, the time at which the proje
point at each moment, rð�tÞ with its corresponding critical points tM, tm and tip for launch

3

As can be seen in Fig. 2, as the launch angle h increases, the
maximum tM decreases, asymptotically tending to 1. In other
words, for larger launch angles, the point at which the projectile
starts approaching the launching point occurs sooner. On the other
hand, the minimum time tm increases as h increases, asymptoti-
cally tending to 2. That is, the time at which the projectile starts
to move away from the launcher gets longer. From these results,
we can state that the time interval in which the object is approach-
ing its original point increases as the launch angle also increases, as
can be seen in Fig. 3.

Note that the time interval of approximation asymptotically
tends to 1. Bearing in mind that for h ¼ 90

�
(linear motion along

the y-axis), the flight time is 2, Eq. (9), it is easy to understand that,
for this particular angle, the interval of approximation is half of the
ctile reaches its maximum height �T1=2, the distance from the projectile to the launch
angles: a) h ¼ 71

�
; b) h ¼ 76

�
; c) h ¼ 81

�
and d)h ¼ 86

�



Fig. 6. Parabolic trajectory corresponding to the parabolic motion and represen-
tation of any point in the trajectory with its polar coordinates.

I. Escobar, E. Arribas, R. Ramirez-Vazquez et al. Journal of King Saud University – Science 34 (2022) 101842
time of flight. In a completely vertical launch, for half of the time,
the particle is going up and, therefore, moving away from the
launcher. And the other half of the time, the particle goes down
approximating the launch point.

Regarding the inflection point, it is always closer to the mini-
mum of the function, that is, closer to the value of tm, see Fig. 2.
In addition, it has an almost linear shift towards the right in the
timeline in the first part of the graph, until the launch angle is just
over 80�.

To show all these results in a more visual way, in Fig. 4 we rep-
resented the distance from the projectile to the launch point, rð�tÞ,
indicating the times at which the maximum, the minimum and
the inflection point take place. We also represented the vertical
coordinate �yð�tÞ and the time at which it reaches its maximum
value, �t1=2, the point from which the projectile starts to descent
vertically. This time corresponds half of the time of flight,
�t1=2 ¼ �t=2.

As we can see, the time interval in which the projectile is
approaching the launch point always takes place when the projec-
tile is descending, and it increases as the verticality of the launch
increases. This increase is more pronounced in the angles closer
to the critical angle. Note that the maximum time tM, over which
the projectile stops moving away from the launcher, is closer to
the time in which the projectile reaches its maximum height �t1=2,

until it coincides with the said point for a launch angle of h ¼ 90
�
.

3.2. Growth rate of the approximation interval

Analyzing in detail the time interval of approximation to the
launch point, in Fig. 5 we have represented the rate, vh, at which
the interval increases depending on the launch angle

vh ¼ d
dh

tm � tMð Þ ð18Þ

As we can see, the speed of separation between the critical
points tM and tm decreases drastically in the interval close to the
critical angle, from 70.6� to 71�. In the last part, for h > 80

�
, the

decrease of the growth rate of the interval tm-tM is practically lin-
ear, with a slope of 0.003.

4. Polar coordinates

Let us analyze the problem in terms of radial and angular coor-
dinates in order to see the situation from another point of view.

�x ¼ r cos/ ð19Þ

�y ¼ r sin/ ð20Þ
Fig. 5. Growth rate of interval tm-tM depending on launch angle.

4

In Fig. 6 we have represented any point of the parabolic trajec-
tory corresponding to a parabolic motion in polar coordinates. Note
that we are still working with the dimensionless variables defined
in the last section, so that the radial coordinate is also non-
dimensional. It is evident that this radial coordinate is the magni-
tude of the position vector, Eq. (10), but expressed as a function of
other variables.

The dimensionless trajectory equation is given by

�y ¼ � 1
2cos2h

�x2 þ tan h �x ð21Þ

Substituting this change of variables, Eqs. (19) and (20), in the
trajectory equation, we find

r sin/ ¼ � 1
2cos2h

r2cos2/þ tan h r cos/ ð22Þ

And eliminating the trivial solution r ¼ 0 which corresponds to
the initial position, we obtain

r /ð Þ ¼ 2 cos h
sin h� /ð Þ
cos2 /

ð23Þ

whose graph can be seen in Fig. 7 for three initial shot angles. From
the graph, the existence of a minimum and a maximum correspond-
ing to the mentioned stationary points is clear. Those extremal
points can be found by equaling to zero the first derivative of the
Fig. 7. Distance as a function of the angular variable for three initial shot angles.
The blue curve (──) corresponds to h ¼ 80

�
, which is above the critical initial angle

and, hence it has a maximum, /M , and a minimum /m , between which the projectile
is approaching. The green curve ( ) corresponds to the critical initial angle, hc ,
which has an inflection point /ip ¼ hc=2. And the curve in orange ( ) corresponds to
an angle h ¼ 45

�
, which is below the critical initial angle and hence the projectile is

always moving away from the launcher.
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above function, Eq. (23), leading to the following condition for the
stationary angles, /

tan h� /ð Þ tan/ ¼ 1
2

ð24Þ

Using the equality of the tangent of the sum, we obtain

tan h ¼ tan h� /ð Þ þ /ð Þ ¼ tan h� /ð Þ þ tan/
1� tan h� /ð Þ tan/

¼ 2 tan h� /ð Þ þ tan/ð Þ ð25Þ
And using Eq. (24),

2 tan2/� tan h tan/þ 1 ¼ 0 ð26Þ
which gives

tan/M ¼ tan hþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 h� 8

p

4
ð27Þ

tan/m ¼ tan h�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 h� 8

p

4
ð28Þ

Which will have real solutions when the discriminant that
appears in them is higher or equal to 0, obtaining the same result
as in Eq. (17), h � 70:53

�
.

The blue curve in Fig. 7 corresponds to h ¼ 80
�
, which is above

the critical initial angle and, hence it has a maximum, /M , and a
minimum /m, between which the projectile is approaching. The
curve in orange corresponds to an angle h ¼ 45

�
, which is below

the critical initial angle and hence the projectile is always moving
away from the launcher. The green curve corresponds to the criti-
cal initial angle, hc , which has an inflection point / ¼ hc=2 because

tan/ ¼ tan hc
4

¼ 1ffiffiffi
2

p ð29Þ

Which is the tangent of hc=2, a fact that can be seen using the
half-angle tangent formula

tan
hc
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos hc
1þ cos hc

s
¼ 1ffiffiffi

2
p ¼ tan/ ð30Þ
5. Conclusions

We have obtained a particularity of projectile motion when
launched from the ground and without air friction. The distance
5

between the launched object and the launcher does not always
increase. Depending on the launch angle, there is a time interval
in which the distance decreases and the object approximates the
launcher only to move away once again, if it is possible. This hap-
pens when the angle is greater than the critical angle whose value
is approximately 70.53�. The critical angle does not depend on
speed. Below this angle, this effect does not occur. We can say that
this is an effect that only takes place for big angles.
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