Contents lists available at ScienceDirect

Journal of King Saud University – Science

journal homepage: www.sciencedirect.com

Original article

Assessment of decadal land use dynamics of upper catchment area of Narmada River, the lifeline of Central India

Tarun Kumar Thakur^{a,*}, D.K. Patel^a, Joystu Dutta^b, Anirudh Kumar^c, Sandeep Kaushik^a, Arvind Bijalwan^d, Mohammed S. Fnais^e, Kamal Abdelrahman^e, Mohammad Javed Ansari^f

^a Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, MP 484887, India

^b Department of Environmental Science, Sant Gahira Guru University, Sarguja, Ambikapur, CG 497001, India

^c Department of Botany, Indira Gandhi National Tribal University, Amarkantak, MP 484887, India

^d College of Forestry, VCSG Uttarakhand University of Horticulture and Forestry, Ranichauri-249199, Tehri Garhwal, Uttarakhand, India

^e Department of Geology & Geophysics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

^f Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India

ARTICLE INFO

Article history: Received 31 October 2020 Revised 15 December 2020 Accepted 17 December 2020 Available online 29 December 2020

Keywords: Freshwater ecosystems GIS Ecology Anthropogenic stress Sustainable development

ABSTRACT

India is a land of rivers and Narmada is one of the principal river systems and is ascribed as the lifeline of Central India. Freshwater ecosystems such as rivers across the globe are facing degradation due to multitude of anthropogenic stress factors. Holistic and sustainable approach is prerequisite for monitoring, risk assessment and management of such multitude of problems and critical challenges. Geographical Information System (GIS) has emerged as a powerful tool for carrying out scientific and unbiased monitoring and assessment studies as well as understanding the degradation of ecosystems. The present study focuses on decadal land use changes along the upper catchment area of Narmada river basin. Vegetation was spatially analyzed for digitally classifying numerous imageries using the maximum likelihood algorithm (MLA). Six land cover types were identified which includes dense mixed forest, Sal dominated forests, barren landscapes, agricultural fields, water bodies as well as habitation and commercial spaces. The vegetation structure and species composition are important ecological attributes of the ecosystem. Our study area has faced intensification in anthropogenic stress factors, which is observable in our temporal variations study as well. Increasing urbanization and deforestation in river valley regions is alarming and testimony of the fact. Therefore, in order to maintain the river health advocacy at policy level is needed. The current study is an attempt in that direction. It is therefore essential in developing a road-map for sustainable development of this important riparian ecosystem.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The sustainable development goals (SDGs) of 2030 as adopted by United Nation member states set up by United Nations General Assembly are blueprint of better and sustainable future for all. Several countries are working hard to achieve the shared vision of development to the best of their abilities. The different aspects of various goals like 6, 11, 12, 13 and 15 have been

* Corresponding author.

E-mail address: tarun.thakur@igntu.ac.in (T.K. Thakur).

Peer review under responsibility of King Saud University.

clubbed together in this research project to accomplish the aim enumerated in goal 15. It explains to "protect, restore and promote sustainable use of terrestrial ecosystems, sustainable management of forests, combat desertification, halt and reverse land degradation and halt biodiversity loss". Meeting the objectives of SDGs is pivotal in order to comprehensively address the costs associated with anthropogenic impacts and ecosystem trade-offs. Some of the major cities across the globe that they have rapidly altered the land use and land cover (LULC) dynamics to achieve economic goals and urbanization in order to attain the needs of a rapidly growing population (Barros, 2004). The LULC changes study plays a crucial regulatory role in changing total atmosphere and the environment (Qian et al., 2007). Land use patterns denote to the physical features of the earth's surface like distribution of green vegetation, water, soil and other physical land features generated through anthropogenic activities. Thus, addressing SDG

https://doi.org/10.1016/j.jksus.2020.101322

1018-3647/© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Goal 11 that is to make the urban centres and human settlements more inclusive, safe, resilient and sustainable through this initiative is pivotal. The quantitative analysis of the changes occurred through LULC is crucial to study the corresponding impact on the ecosystem service value (ESV). It could help in the decisionmaking process for the sustainable development of ecosystem (Lin et al., 2018). The alternations in different component of terrestrial ecosystems could be estimated and monitor through LULC (affecting the different components of the ecosystem directly or indirectly (Guzha et al., 2018). The last century has seen many natural disasters and climate changes across the globe like rise in sea surface temperature, melting of polar ice, sea level rise, change in global wind circulation & ocean currents and weather changes. This has caused detrimental impacts on the biodiversity around the world. Continued overexploitation of natural resources leads to serious threat and it represents unsustainable consumption and production patterns which hampers the Goal 12 of the SDG and adversely discourage the sustainable consumption and production patterns. Its adverse effect can be easily observed in the form of degrading freshwater ecosystems. Preserving freshwater resources for both people and wildlife is essential and is a top priority responsibility to protect the planet. In this manuscript, we have used recent scientific advance techniques to ensure sustainable and holistic development of the upper reaches of Narmada flowing across Achanakmaar Amarkantak Biosphere Reserve (AABR). In order to mitigate the effect of climate change and adapt it as per the fulfillment of goal 13 of the SDG, availability of credential data is crucial. The United Nations have recognized the inextricable link between water and climate change by making it a theme for the World Water Day of 2020. This initiative explains and emphasizes the importance of water and its potential role to mitigate the effect of climate change. Further, it urges the international community to keep water conservation at the top priority during designing the climate related policy. Protection and conservation of freshwater resources such as rivers, streams, springs and lakes distributed across the globe is the need of the time and this manuscript proposes a sound scientific data set for policy makers. It argues that, a land use land cover map of a drainage basin provides a holistic view of the river actual health conditions and also the natural and anthropogenic stress factors that impacts the river sustenance. Under such circumstances, development of the Digital Elevation Model (DEM) is crucial. The resolution of the satellite image varies with the sensors, but the DEM provides the foundations for extracting data pertaining to the drainage network. Many critical hydrological phenomena such as the size, shape and slope of the drainage area, the drainage density, the size and length of the tributaries, etc., correlate with the physiographic characteristics of drainage basins (Rastogi and Sharma, 1976). The aforementioned techniques and tools were chosen for the generation of the current scientific data set. Few limitations of LULC have been noted in hydrological modeling and evapotranspiration estimations where little or no information on the temporal dynamics of LULC classes have been reported (DeFries et al., 1999). AVHRR pathfinder time-series images have become cutting-edge procedures to capture temporal dynamics of LULC at global level (De Fries et al., 1998; Loveland et al., 2002). LULC studies of drainage basins are particularly important in case of rain-fed river systems such as Narmada. It is prone to flooding with prolonged monsoonal rains and erratic precipitation pattern under current climate change scenario (Guhathakurta, et al., 2011; Kulkarni et al., 2013). LULC analysis confirmed around 74.84% increase in built up area and 42.8% decrease in open spaces area during the years 1966-2009 due to increase in the degree of urbanization over the decades in Oshiwara river basin (Zope, et al., 2016). LULC change detection studies have profound impacts on hydrological processes and have been investigated prominently in the recent times (Fox et al., 2012).

The current study attempts to investigate the decadal changes in land use and land cover along upper catchment basin area of Narmada. The primary objective of the current research is to understand the decadal land use changes as well as to identify the anthropogenic stress factors of the study area. The vegetation mapping also ensured the study of phytodiversity of the area. DEM have been constructed for hydrological mapping and geomorphological analysis of the study area.

2. Materials and methods

A workflow of methodology for the current monitoring and assessment analysis is described in Fig. 1. The flow chart is selfexplanatory and discusses the various stages of the analysis work carried out during the current research.

2.1. Study area

Upper catchment area of Narmada River was selected as the study site which is a part of Achanakmaar Amarkantak Biosphere Reserve (AABR), Central India. The study area endowed with biodiversity, medicinal, herbal and aromatic plants. There are many minor rivers of this region such as Gayatri, Savitri, Kapila, Baitarini, Arandi, Arpa, Bakan, Tipan and Karmandal. These small rivers provide a natural source of water throughout the year to the Narmada river. Besides minor rivers, many perennial streams and wetlands are found which supply the water to main stream of Narmada.

The Narmada river system originates from Amarkantak highlands located between the map coordinates 22°15′ N to 22°58′ N and 81°25′ E to 82°5′ E covering a geographical area of approximately 35.61 km² at a mean altitude of 1048 m from average sea level. The base map is demonstrated in Fig. 2. The climate type is sub-humid tropical monsoon with extended summers from April to June, rain from July to October and winter from November to February months. The average yearly temperature ranged from 16.1 °C to 31 °C, while April and May are the hottest, whereas December and January are the coldest months with minimum temperature drops below 5 °C. The annual rainfall varies between 1350 and 1600 mm.

2.2. Selection, image pre-processing and classification of remote sensing data

Landsat 4, 5, 7, 8 Thematic Mapper (TM) images (1980, 1988, 1998, 2008) and a high-resolution cloud free Resourcesat 2A level-1C image of path 144 and row 44, 43 April/March 2018 was used for mapping LU/LC change classes of the upper catchment areas of Narmada river from (1980 to 2018). All Landsat images were obtained freely from The United States Geological Survey (USGS) website (http://glovis.usgs.gov/). Resourcesat 2A (2018) satellite data was procured from the NRSA National Data Center (NDC), Hyderabad. The data covers the entire study area of the Narmada river basin in the upper catchment areas of Amarkantak region and the neighboring areas. The digital analysis of the data was performed using ERDAS Imagine (Version 2013) software. The secondary data collected from SOI topomaps were analyzed using ArcGIS 10.3. A base map of the study area was prepared from Survey of India toposheets (64E/16 and 64 I/4) at a 1:50,000 scale and geometric rectification of all the imageries was performed. This map was utilized for the ground control point for exactly locating samples plots in the research site. The characteristics of selected satellite data as acquired from the USGS website is demonstrated in (Table 1). Digital image processing and supervised

Fig. 1. Methodology workflow and data analysis.

classification has been performed for the monitoring of six land use classes using the maximum likelihood algorithm. The delineated LU/LC classes were: Dense Mixed forest (DMF), Sal mixed forest (SMF), Open Land (OL), Agriculture (AG), Habitation/commercial building (HB) and Water Bodies (WB).

2.3. Vegetation mapping and forest health monitoring using NDVI

Many remote-sensing tools are available to support forest health information needs, and forest health specialists have been making extensive use of these tools for many years. Aerial sketch mapping is extensively used in detection of forest health in USA and Canada. Color and color infrared (CIR) aerial photos have also been used for a wide range of applications. More recently, technologies such as airborne videography, digital photography, and Earth-orbiting satellite imagery have been evaluated for their ability to provide needed information. In the current paper, the vegetation mapping (during 1980 to 2018) and forest health checkup was performed with the help of NDVI (Normalized Difference Vegetation Index). It helped in vegetation classification and forest health monitoring over the time-scale employed for the study. NDVI employs the multi-spectral remote sensing data technique to find out forest types, land use land cover pattern and change detection analysis, habitation, water bodies, open area, agricultural area with few band combinations using satellite images. Previous study suggest that natural resources are easily interpreted by computing NDVI indices like LULC changes and plant health (Gandhi, et al., 2015).

2.4. Construction of DEM (Digital Elevation Model)

The quantitative representation of terrain important for earth science studies and hydrological applications is described by Digital Elevation Model (DEM) (Mukherjee, et al., 2013). The methodology adapted for the study includes the extraction of river basin image followed by extraction of drainage network data. First the DEM images were downloaded from United States Geological Survey (USGS) website (http://glovis.usgs.gov/) following which they were successfully mosaicked. The mosaicked images were then used to delineate the river basin boundary. The images of Narmada river basin was extracted using the Arc hydro tool in ArcGIS 10.3 software.

2.5. Field survey and accuracy assessment

The reference and supplementary data were collected with the help of a field survey as a ground control point with the help of GPS and direct local field measurements were performed for ground verification. Additionally, image categorization and overall accuracy assessment of the classification were carried out. Images of

Fig. 2. Layout map of the study area.

Table 1				
Characteristics	of the	selected	Satellite	data

T-1-1- 4

Satellite data	Obtain Date	Row/Path	Number of bands	Swath width (Km)	Inclined Angle	Spatial resolution
Landsat-4	30/05/1980	144/42	7	185	98.2°	30 m
Landsat-5	26/03/1988	144/42	6	185	98.2°	30 m
Landsat-7	11/07/1998	144/42	6	185	98.2°	30 m
Landsat-8	06/09/2008	144/42	4	185	98.2°	15 m
Resourcesat-2A	27/01/2018	144/43	3	740	98.72°	5.8 m

1980–2018 were evaluated through confusion matrix for the overall accuracy assessments (Congalton, 1991) and Kappa analysis (Rosenfield and Fitzpatrick-Lins, 1986). Stratified random sampling method was used for the evaluation of images in the ERDAS Imagine 2013 software. Besides field investigation, we also investigated the characteristics of understorey and groundstorey vegetation in the upper catchment area of Narmada river. During the survey, we interacted with local individuals and healers for the taxonomic identification and validation of native flora and non-timber forest produces.

2.6. LULC change detection analysis

The LULC map of 1980, 1988, 1998, 2008 and 2018 was resampled from the middle resolution of satellite data (30 m) to spatial high resolution (5.8 m) for the study of classified map and LULC change during the said period. A comparison of pixel-based study was also performed to generate changes on the pixel basis. Pairs of multispectral satellite images were compared between 1980 and 2018 using cross-tabulation to find out the information of LULC changes. Interestingly, change matrix presents significant information about vegetation changes in LULC study (Shalaby and Tateishi, 2007). All classified images change matrix were generated and analyzed using ERDAS to evaluate LULC change during 1980–2018 (Yang and Wen, 2011; Thakur et al., 2020).

3. Results and discussion

3.1. LULC and vegetation mapping

The land cover classification of the study area was done using the MLA and supervised classification, the Standard False Color Composite (SFCC) maps were employed in Fig. 3. It shows decadal changes of the study area over a period of forty years. The spatiotemporal assessment of land use categories is illustrated in (Table 2, Figs. 4 and 5). With a few exceptions, almost all the land use classes were separable in one or the other bands. Six LC and vegetation classes such as DMF, SMF, OL, AG, HB and WB were

Fig. 3. SFCC maps of study area during 1980, 1988, 1998, 2008 and 2018.

delineated. The results pertaining to the spatial extent of the different forest types and change detection (during 1980 to 2018) are presented in Table 3. It indicates a steady decline in forest and water resource areas leading to shrinkage in river basin. OL, AG and HB have increased heavily with unplanned industrialization and urbanization along the river valley. The contribution of the

Tarun Kumar Thakur, D.K. Patel, J. Dutta et al.

Table 2

and	1150	land	cover	in 1	Inner	catchment	area	of	Narmada	river	hetween	1980	and	2018	ŝ
Det i i ei					apper	caccinitient		•••							

Class Name	Area (km ²) 1980	Area (km ²) 1988	Area (km ²) 1998	Area (km ²) 2008	Area (km ²) 2018
Dense Mixed Forest	18.92 (53.13)	17.79 (49.96)	16.85 (47.32)	14.98 (42.07)	14.78 (41.50)
Open Land	2.34 (6.57)	2.69 (7.55)	3.01 (8.45)	4.98 (13.98)	5.02 (14.10)
Agriculture	0.29 (0.81)	0.90 (2.53)	0.98 (2.75)	2.78 (7.81)	2.82 (7.91)
Habitation/Commercial Building	0.21 (0.59)	0.29 (0.81)	0.56 (1.57)	1.54 (4.32)	1.70 (4.77)
Water bodies	3.2 (8.98)	2.71 (7.61)	2.64 (7.41)	1.43 (4.01)	1.39 (3.90)
Total	35.61	35.61	35.61	35.61	35.61

*Parenthesis values are in percentage.

Fig. 4. LULC Classification of the upper catchment area of Narmada River (1980-2018).

changes in the different vegetation classes (during 1980 to 2018) are shown in Fig. 6 as revealed by NDVI index used to employ the vegetation classification and change detection over the years.

3.1.1. LULC pattern 1980

During 1980 to 2018, the DMF was dominating category which occupied an area of 53.13% (18.92 km^2), the SMF occupied 29.91% (10.65 km^2) area of the land use, the OL occupied an area of 6.57% (2.34 km^2), the AG was occupied by 0.81% (0.29 km^2), the HB covered approximately 0.59% (0.21 km^2) and the area under WB cover was 8.98% (3.20 km^2) respectively. The land cover area of green vegetation (including different types of forest and agriculture) was 83.85% (29.86 km^2) and rest of the land use (OL, HB, WB) were 16.15% (5.75 km^2), respectively (Table 2).

3.1.2. LULC pattern 1988

In the year 1988, the contribution of the forest vegetation and agriculture crop lands was 83.97%, WB was 7.61% and other land use (i.e. OL, HB) was covered by 8.42%. The land use covers under DMF, SMF, OL, AG, HB and commercial buildings cover was 49.96% (17.79 km²), 31.48% (11.21 km²), 7.55% (2.69 km²), 2.53% (0.90 km²) and 0.81% (0.29 km²) of the total upper catchment area of Narmada river respectively (Table 2).

3.1.3. LULC pattern 1998

During the period of 1998, the land cover comprises maximum LU areas of 47.32% (16.85 km²), 32.49% (11.57 km²), 8.45% (3.01 km²), 7.41% (2.64 km²), 2.75% (0.98 km²) and 1.57% (2.64 km²) under DMF, SMF, OL, WB, AG and HB of the total land use covered in the current study area. The share of total land cover under the green vegetation (including different forest types and

agriculture) was 82.56% (29.40 km²) and rest of the land use (OL, HB, WB) were 17.44% (6.21 km²) respectively (Table 2).

3.1.4. LULC pattern 2008

DMF covered an area of 14.98 km² (42.07%), SMF 9.90 km² (27.80%), OL 4.98 km² (13.98%), AG 2.78 km² (7.81%), HB 1.54 km² (4.32%) and the WB was estimated as 1.43 km² (4.01%) respectively in the classified map of 2008.

3.1.5. LULC pattern 2018

During recent time period, the DMF occupies an area of 14.78 km² (41.50%), which was close to 2008 DMF value. The SMF occupies an area of 9.90 km² (27.80%), OL 5.02 km² (14.10%), AG 2.82 km² (7.91%), HB 1.70 km² (4.77%) and the WB 1.39 km² (3.90%), respectively, in the classified map of 2018. The total study area was found to comprise of 35.61 km² (Table 2). The forest occupies more than 85% of the total area and the remaining 15% area belongs to agricultural lands, habitation/commercial spaces and water bodies. However, the forest areas are rapidly diminishing due to habitat expansion, roads constructions and other infrastructure development.

3.2. LULC change detection (1980-2018) and accuracy assessment

The results on the pattern of LULC change detection is illustrated in Fig. 7 and represent in (Table 3 and 4). Medium resolution (Landsat 4, 5, 6 and 7 images during 1980, 1988, 1998, 2008) and high-resolution satellite images (i.e. Resourcesat 2A image for 2018) have been employed for spatial distribution of the LULC changes at upper catchment areas of Narmada river between 1980 and 2018 in Fig. 8. The changes in land use are described here for each category (DMF, SMF, AG OL, HB and

Fig. 5. Information on the LULC Classified Image of upper catchment area of Narmada river during 1980, 1988, 1998, 2008 and 2018.

Table 3

LULC change detection analysis of upper catchment area of Narmada river during 1980 to 2018 $\,$

Class Name	Area (km ²)	Area (km ²)	Difference 2018
	1980	2018	Vs 1980 (km ²)
Dense Mixed Forest Sal Mixed Forest Open Land Agriculture Habitation/Commercial Building Water bodies Total	18.92 (53.13) 10.65 (29.91) 2.34 (6.57) 0.29 (0.81) 0.21 (0.59) 3.2 (8.98) 35.61	14.78 (41.50) 9.90 (27.80) 5.02 (14.10) 2.82 (7.91) 1.70 (4.77) 1.39 (3.90) 35.61	-4.14 (-11.63) -0.75 (-2.11) 2.68 (7.52) 2.53 (7.10) 1.49 (4.18) -1.81 (-5.08)

*Parenthesis values are in percentage.

WB). During study periods DMF (11.63%), SMF (2.11%) and WB (5.08%) was gradually decreased whereas, OL (7.52%), AG (7.10%) and HB (4.18%) areas were increased. Fig. 8(A–E) shows the major land use change of forest areas (DMF & SMF) 13.74% to OL, AG and HB areas. The cultivation practices and habitations have been increased respectively by 7.52%, 7.10% and 4.18% during the periods between 1980 and 2018. The expansion of OL, HB and AG account for almost 18.82% (6.70 km²) of the total LULC changes in the upper catchment area of Narmada from 1980 to 2018 as demonstrated in Table 4.

Current study approves the reliability and accuracy of multispectral satellite images for mapping of LULC change detection in diverse areas (Aghsaei, et al., 2020; Desta and Fetene, 2020; Aslami and Ghorbani, 2018; Aggarwal et al., 2016). The LULC studies between 1980 and 2018 in upper catchment areas of Narmada basin reveals notable changes that occurred over the four decades such as shrinkage of water bodies, conversion of dense and sal mixed forest into open forest, expansion of agricultural land to delineated forest areas, increase in commercial spaces and habitation areas etc. This has further accelerated overall ecological degradation and biodiversity loss. The problems overgrazing, construction of dams, mining and illegal settlements also pose severe pressure on existing natural resources. Many native species have been replaced by non-native species and monoculture is creating ecological imbalance. Similar demonstration on LULC and change detection in the tropical regions across the globe were reported by several researchers (El-Tantawi et al., 2019; Mishra et al., 2020; Soha and El-Raey, 2019; Olmanson and Bauer, 2016; Dutta et al., 2020; Thakur et al., 2020).

Image classification accuracy assessment of 1980, 1988, 1998, 2008 and 2018 were very constructive and overall accuracy for the LULC image was found to be 85.95% for the year 1980; 87.07% for 1988; 91.86% for 1998; 93% for 2008; and 97% for the year 2018. The accuracy assessment data is mentioned in (Table 5). Similar results on accuracy assessment were reported by Olmanson and Bauer (2016), Chetan et al. (2017), Aslami and Ghorbani (2018). This study signifies the viability of the accuracy assessment data. Furthermore, the error matrix applied over the LULC classification was based on the ancillary facts (Hossen and Negm, 2016). The present study observed significant LULC change and change in matrix also shows severe changes on green undergrowth vegetation and water bodies. The change matrix in the upper catchment area of Narmada river from 1980 to 2018 is presented in (Table 6).

3.3. Factors responsible for LULC change/land degradation

The anthropogenic stresses were mostly responsible for changes in the LULC pattern of upper catchment area of Narmada river between 1980 and 2018. Our study results point to the increasing anthropogenic stress factors in the study area with land use changes, increase in habitation areas and commercial spaces, degradation of forests and overgrazing of grasslands, problems of siltation and pollutant influx in the river water leading to degradation of water quality as well as decreasing wetland spaces (Fig. 9). This has resulted in steady biodiversity loss in the area during the last few years. The increase in habitation areas have also resulted in overexploitation of river water for domestic as well as commercial purposes. Wastewater is added back to the system without any treatments leading to deterioration of water quality. Freshwater resources have depleted in the area steadily. Groundwater contamination is another emerging issue from the study area concerned. Therefore, the current holistic study was much needed.

3.4. Spatio-temporal comparison of Digital Elevation Models (DEMs)

In order to examine the increase in spatial resolution of satellite images from Landsat 4 to Landsat 7 (30 m), middle and high resolutions images from Landsat 8 and Resourcesat 2A (15 m and 5.8 m) of Digital Elevation Models, the attraction model was used. The results of the models for 30 m, 30 m, 30 m, 15 m and 5.8 m are illustrated in Fig. 10. The association of DEMs (1980, 1988, 1998, 2008 and 2018) as ideas in the attraction models determined that DEM 5.8 m (Resourcesat 2A satellite image) has better spatial resolution than 30 m images of Landsat data series. As is represented in Fig. 8, with the intensification of the value of scale factor, the sub-pixel increases more than principal pixel and variations among the elevation models are shown well. So, it can be concluded that the increases of the scale case lead to the increase in the spatial resolution. DEM helps in creating realistic models of flow patterns and networks of the drainage basin (Pan, et al., 2019). Compared to the original DEM, the computation efficiency has been improved significantly and similar findings were reported earlier (Mokarrama and Hojati, 2017). DEM can be used for increasing spatial resolution of the study area. Previous findings are in agreements with the current study which further authenticate the importance of the study (Pan et al., 2019; Liu et al., 2019).

3.5. Diversity of flora found in the upper catchment of Narmada river

Structure and composition of many vegetations, having immense commercial and economic values, have been identified. The tribal communities know the proper use of medicinal plants in health care and other uses. In current study, we reported 157 plants species (herbs, tubers, grasses, climbers) comprising a total of 47 overstorey species and 86 groundstorey vegetation. There were 24 understorey vegetation reported which are traditionally utilized by local tribal communities of upper catchment area of Narmada river (Table 7). The species diversity values of AABR were lower as compared to diversity indices values reported earlier (Thakur, 2018). This study conclusively proves the extinction various plant species due to different kinds of interferences like habitation, degradation, fragmentation, constructions, encroachments, introduction of exotic species and monoculture. Several studies have identified similar ecological consequences in tropical forest ecosystems (Thakur, 2007; Thakur et al., 2014, 2017; Brar et al., 2020). Due to population pressure, forest wealth is over exploited and mixed forests are reducing. There is ever increasing developmental pressure on forest especially upper catchment areas of Narmada River. Adverse impacts of mining are degrading forests as well.

Fig. 6. Normalized difference vegetation index maps of the study area during 1980 to 2018.

Fig. 7. Change Detection pattern of various LC classes during assessment period 2018 Vs 1980 (km²)

Table 4

Pattern of LULC changes in the upper catchment area of Narmada river between 1980 and 2018.

Change From	Changed to	Percentage Change					
		1980-1988	1988-1998	1998-2008	2008-2018		
Dense Mixed Forest	Sal Mixed Forest	2.8	0.99	1.5	0.1		
	Open Land	0.25	0.69	1.3	0		
	Agriculture	0	0.14	0.98	0.41		
	Habitation/Commercial Building	0.5	0	1.47	0.56		
	Water	0	0	0.29	0.74		
Sal Mixed Forest	Dense Mixed Forest	0	0	0	0		
	Open Land	0.75	0	1.86	0		
	Agriculture	0	0	1	0		
	Habitation/Commercial Building	0	0	1.50	0		
	Water	0	0	0.29	0		
Open Land	Dense Mixed Forest	0	0	0	0		
	Sal Mixed Forest	0	0	0.45	0.58		
	Agriculture	0	0	0	0.71		
	Habitation/Commercial Building	0	0	0	0.15		
	Water	0	0	0.36	0.48		
Agriculture	Dense Mixed Forest	0	0	0	0		
	Sal Mixed Forest	00	0	0	0		
	Open Land	0	0	0.11	0.19		
	Habitation/Commercial Building	0	0	0	0		
	Water	0	0	0	1.10		
Habitation/Commercial Building	Dense Mixed Forest	0	0	0	0		
	Sal Mixed Forest	0	0	0	0		
	Open Land	0	0	1.5	1.98		
	Agriculture	0	0	0	0		
	Water	0	0	0.47	0.45		
Water	Dense Mixed Forest	0	0	0	0		
	Sal Mixed Forest	0	0	0	0		
	Open Land	0	0	0	0		
	Agriculture	0	0	0.25	0.38		
	Habitation/Commercial Building	0	0.58	0.98	1.25		

4. Conclusion

The study infers that satellite based remote sensing and GIS techniques are indeed the most reliable tools for the characterization of land use along the river basin of the concerned study area. One of the most important features of Narmada and its tributaries such as Gayatri, Savitri, Kapila, Baitarini, Arandi emerging from Amarkantak region is that all of them are fed by rain water. Ample rainfall is therefore positively correlated to the existence of these rivers which develops the core idea of sustenance in the region. These rivers originate from Maikal mountain range are under threat due to natural as well as anthropogenic causes as listed above. Holistic development guided by eco-restoration strategies is the need of the hour. Lack of monitoring and scientific approaches can bring a death blow to these rivers. The upper zone of the Narmada is very important from ecological viewpoint and needs urgent attention. The entire riparian ecosystem is dependent on good forest cover for sustainability. Vegetation mapping using NDVI reveals shrinking forest cover and degradation in forest health over the years. The anthropogenic stress factors such as increase in commercial zones, utilization of river water for irrigation purposes, agricultural run-off, industrial effluents, domestic

Fig. 8. Spatial distribution of land use land cover changes at upper catchment area of Narmada River between 1980 and 2018; (A) Waterbodies, (B) Forest type, (C) Agriculture, (D) Rural areas, (E) All LULC classes. Unchanged areas are shown in white.

Table 5

Summary of Accuracy assessment

Maps	1980	1988	1998	2008	2018
Overall accuracy (%)	85.95	87.06	91.86	93	97
Kappa	0.85	0.87	0.83	0.92	0.97

Table 6

Change matrices calculation of upper catchment area of Narmada river during 1980-2018

		Water bodies	Sal mixed forest	Dense mixed forest	Open Land	Agriculture	Habitation	Total
1980	Water bodies	0	4	4	0	0	0	8
	Sal mixed forest	1054	634	9634	102	49	4	11,477
	Dense mixed forest	0	59	59	523	47	47	735
	Open Land	1521	523	7723	489	0	0	10,256
	Agriculture	244	9392	1492	924	130	113	12,295
	Habitation	247	0	0	302	3	53	605
	Total area (histogram Value)	3066	10,612	18,912	2340	229	217	35,376
	Total area (km ²)	3.2	10.65	18.92	2.34	0.29	0.21	35.61

Fig. 9. Images from Study Area: Deterioration of health of Narmada River.

exploitation of water resources, municipal sewage and sludge mixing with flowing water are the major factors behind the degradation of forest health which is causing negative impact on the entire environment. LULC analysis also supports these findings.

The study also reveals that Digital Elevation Model (DEM) is very useful in studying the topography within a GIS environment. Geomorphic analysis of an area is based on the systematic study of present-day landforms which can be related to their origin, nature, development, geologic changes and their relationship with other underlying structures. The technology has been effectively and economically used in the analysis and inventory of basin area development and management. The scientific investigation proves the vulnerability of Narmada and her tributaries. Relief ratio, ruggedness number and visual interpretation of the DEM of the study area indicate moderate to high relief, low run off and high infiltrations with the early mature stage of erosion.

The identification of rare, endangered and threatened species is essential for prioritization of conservation in the upper catchment area of Narmada. Application of geospatial techniques will be exploited for the expansion of spatial data sets that is quite necessary for the conservation of the forest ecosystem with sustainable approach. Further, the field surveys in selected villages help in gathering information on ground realities of socioeconomic status and also traditional methods, and uses of forests produces. Finally, the study documented a total of 157 species potentially exploited and utilized by aboriginal communities of

Fig. 10. Digital elevation models of the upper catchment area of Narmada River during 1980–2018.

upper catchment area of Narmada in Central India. Study highlighted the unsustainable and overexploitation of resources leading to forest degradation as well. Therefore, appropriate management interventions were suggested to conserve the susceptible species as well as associated rivers of Narmada by involving the indigenous communities.

Table 7

List of the overstorev.	. understorev and	groundstorev	vegetation of up	oper catchment a	area of Narmao	la River with their uses
	,	0				

s. No.	Common name	Scientific name	Family	Parts used	Uses
1.	Bel	Aegle marmelos	Rutaceae	Fruit Leaf	Edible, Medicinal, Religious
,	Dhabda	Anogeissus latifolia	Combretaceae	Stem Resin	House construction Fuel wood
•	Dilabua	Intogenous hargona	compretaceae		Agriculture implement
	Mohlino	Pauhinia nurnurga	Cassalpiniacoaa	Loof Flower	Cup and plate making Medicinal
•	Monnie Samal	Bauhina parparea	Maluasaas	Leal Flower	Cup and plate making, Medicinal
	Semei	Bombax ceiba	Maivaceae	Fruit Flower	Medicine, Edible
•	Salei	Boswellia serrata Roxb.	Burseraceae	Resin	Medicine
	Chironji	Buchanania lanzan	Anacardiaceae	Fruit seed	Edible
	Khakra	Butea monosperma	Fabaceae	Leaf	Cup and plate making
	Kumbhi	Careya arborea	Lecythidaceae	Bark	Fish poisoning
	Amaltash	Casia fistula	caesalpinaceae	Fruit	Medicinal
0.	Mahalimb	Cedrela toona Roxb.	Meliaceae	Stem	Furniture
1	Ghiriha	Chloroxylon swietenia	Rutaceae	Stem Bark	House Construction Agricultural implements Fuel
	ommu	chief et.gion ethicienta	nutucouc	Stem Burk	wood, Fish
2.	Karra	Cleistanthus collinus	Euphorbiaceae	Stem	Furniture
3.	Sita phal	Custard apple	Annonaceae	Fruit Stem	Edible House Construction
	· · · · ·	11			Agricultural implements, Fuel wood
4	Shisham	Dalhergia sisoo	Leguminosae	Stem Leaf	House Construction Agricultural Implements Fuel
	binbindin	Duibeigia bibee	Loganniobae	btem bear	Wood Medicinal
5	Culmohar	Delonix regia	Leguminosae	Stem	Fuel wood
5. S	Dhohon	Dillania nantamma Poyh	Dilloniacoao	Poot	Medicinal
J. 7	Tandu	Dinema pentagyna Koxb.	Champagaga	Fruit Loof	Edible (Mhee size) Celling
/. >	Deno: 1	Diospyros melanoxylon KoxD.	Ebenuceue	Fiult Ledi	Eurore (when tipe) senting
5.	Bargad	ricus pengnalensis	woraceae	rfuit	
9.	Peepal	Ficus religiosa	Moraceae	Whole tree Fruit Leaf	Religious Edible Fodder
0.	Kekad	Garuga pinnata Roxb.	Burseraceae	Stem	Agricultural implements
1.	Lendia	Lagerstroemia parviflora Roxb.	Lythraceae	Stem	Firewood Boundary wall making
2.	Maida	Litsea sebifera	Lauraceae	Bark	Medicinal
3.	Mahua/Guli	Madhuca indica	Sapotaceae	Flower Fruit Leaf	Edible after cooking Liquor preparation Oil Religiou
4	Aam	Mangifera indica	Anacardiaaceae	Fruit Seed	Fdible Fdible medicinal
5	Munga	Maringa ntangosparma Coorth	Moringacaga	Loof Fruit	Edible Edible
Ј. С	Amile	Dhullanthua amblian	Funkarhizanza	Eedi Fluit	Edible and modified
э.	Allild	Phylianthus emblica	Euphorbiaceae	Ffuit Leai	
					Cultural and medicinal
7.	Kanji	Pongamia pinnata	Fabaceae	Fruit	Oil extraction
8.	Bija	Pterocarpus marsupium Roxb.	Faabaceae	Stem	House construction Furniture
9.	Kusum	Schleichera trijuga Willd.	Sapindaceae	Fruit	Edible
0.	Bhelwa	Semicarpus anacardium	Anacardiaceae	Fruit	Edible, Medicinal
1.	Sarai	Shorea robusta Gaertn.	Dipterocarpaceae	Stem	House construction. Furniture.
			1 1		Fuel wood Tooth brush oil
2	Culbar/kullu	Storculia urons	Storculiaceae	Resin Bark	Medicinal
2. ว	Jamun	Sucregium cumini	Murtacoao	Stom Emuit Loof	Cultural Edible medicinal
Ζ.	Jannun		Wyrtuceue	Stelli Fluit Leai	
4.	Emii	Tamarinaus inaica	Caesalpiniaceae	Fruit	Edible, Pickle preparation,
_	C	Testerior	T	Steve Leef	Medicinal, Sennig
5.	Sagaun	Tectona grandis	Lamiaceae	Stem Leaf	House construction, Furniture
					Furniture, Dona making
6.	Arjun	Terminalia arjuna	Combretaceae	Stem	Firewood, House construction
7.	Beheda	Terminalia bellirica	Combretaceae	Fruit	Medicinal (Digestive)
8.	Harra	Terminalia chebula	Combretaceae	Fruit	Medicinal (Digestive)
9	Saia	Terminalia tomentosa	Combretaceae	Stem	House construction Fuel wood Used during marria
0	Kala Umhar	Fine himida I f	Manager	Fruits	Fruits vegetable
J.		ricus nispiaa <u>L.i.</u>	woraceae		
1.	Alu Bukhara	Fiacourtia indica (Burm.f.) Merr.	<u>Salicaceae</u>	Fruit	Fruit - raw or cooked
2.	Phalsa	Grewia asiatica L	Malvaceae	Fruit	The fruit can be eaten raw,
3.	Jungli sami,	Prosopis cineraria	Fabaceae	Fruit	Leaves and fruit eaten
	Kheiri	•	rubuccuc		
4	Kadam	Anthocephalous kadamba	Rubiaceae	Fruits	Ripe fruits eaten
5	Kaji Kinu	Deidelia antere (L) A L	Phyllanthaceae	Fruit Bark Flowers	Ripe fruit pulp
J.	Naji, Niilu	Briaelia retusa (<u>L.) A.Juss</u>	i nynunnuceue	Tun, bark, HOWEIS	Ripe II uit puip
6.	Wild kajur	Phoenix sylvestris (L.) Roxb.	<u>Arecaceae</u>	Fruit	Ripe fruits eaten
7.	Neem	Azadirachta indica A luss	Meliaceae	Fruit	Pulp of ripe fruits eaten
8	Chughch	Abrus precatorius	Fahaceae	Leaves	Mouth freshener
0. 0	Pane	Pambusa hamboo	Doccoco	Soods	mix into flour
9. 0	Dd115		rouceue	Ded and an 1	
υ.	Спаког	Cussia tora	Caesalpiniaceae	rua ana seed	vegetable
1.	Ratan jot	Jathropa curcus	Euphorbiaceae	Seed, Whole plant	Biotuel, Substitute of candle Bio-fencing
2.	Lantana	Lantana camara	Verbenaceae	Ripen fruits Whole	Edible Bio-fencing
				plant	
3.	Khajuri	Phoenix sylvestris	Arecaceae	Ripen fruits	Edible.
4.	Mainhar	Randia dumetorum	Rubiaceae	Leaf Root	Vegetable Medicinal
5	Arandi	Ricinis communis	Funhorhiaceae	Seed	Oil
5. 6	Nirmundi	Vitev nigundo	Varhanacaaa	Loof	Medicinal
J. 7	Por	VIEX IIIguiluo Zizinus zilonumus	Dhammacaaa	Ecuit	Ediblo
/.	Ber	Zizipus ziiopyrus	клатпасеае		
5.	Аак	Calotropis gagentia	Musaceae	Leat & flower	Utter to god
Э.	Banana	Musa paradisca	Lythraceae	Whole tree	Religious use
).	Mehandi	Lawsonia irnemis	family	Leaf	Dye
1.	Sitaphal	Annona squamosa L.	Annonaceae	Fruit	Ripe fruits eaten
2	Karonda	Carissa carandas I	A	Fruit	Ripe fruits eaten & pickled
· •	ixai oliuu	canosa canalluus L.	ADOCADACESE		rape nuno cuten a pieneu

Table 7 (continued)

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
S. No.	Common name	Scientific name	Family	Parts used	Uses
63.	Chota ber	Zizyphus martuiana Lam	Rhamnaceae	Fruit	Ripe fruits eaten
64.	Dhavai	Woodfordia floribunda (L.). Kurz.	Lytharaceae	Flowers	Flowers are eaten as food
65.	Raimuniya	Lantana camara L.	Verbenaceae	Fruit	Ripe fruits eaten
66.	Makora	Ziziphus oenophylla Lam.	Rhamnaceae	Fruits	Eaten by children
67.	Kathber, Baraber	Ziziphus xylopyrus (Retz.) Willd.	<u>Rhamnaceae</u>	Fruits	Eaten and used as drug
68.	Bilangada	Flacourtia indica (<u>Burm.f.) Merr.</u>	<u>Salicaceae</u>	Fruits	Raw eaten or cooked
69.	Kiraman	Grewia rothii DC.	Malvaceae	Bark	Medicinal
70.	Beli	Limonia crenulata (Roxh.) Roem	Rutaceae	Fruit	Eaten
71.	Munya	Meyna spinosa Roxb.	Rubiaceae	Fruit	Raw eaten
72.	Gajar ghas	Parthenium hysterophorus L.	Asteraceae	Seeds	Medicinal
73.	Kubbi	Ageratum conyzoide L.	Asteraceae	Leaves	Medicinal
74.	Kurie	Bidens pilosa L.	Asteraceae	Leaves	Medicinal
75.	Safed munga	Celosia argentea L.	Amaranthaceae	Leaves, Fruit	Medicinal & Vegetable
76.	Bhrangraj	Eclipta alba) Hassk. L)	Asteraceae	Oil	Medicinal
77.	Kutki	Panicum antidotale Retz.	Poaceae	Leaves	Food
78.	Grass lily	Iphigenia indica.L) A. Gray ex Kunth)	Poaceae	Leaves	Fodder
79.	Meethi buti	Scoparia dulcis L.	Plantaginaceae	Leaves, Seeds	Medicinal
80.	Naichi bhaji	Smithia conferta Sm.	Fabaceae	Leaves	Vegetable
81.	Kanghi	Blainvillea acmella (L.) Philipson	Asteraceae	Leaves	Medicinal
82.	S0II Dudhali	Aeschynomene americana L.	Leguminosae	Seeds/grains	Grain edible Medicinal
83. 94	Akarkara	Sopubla delphinijolia G.	Astoração	Leaves, Seeds	Medicinal
85 85	Rhui amla	Phyllanthus niruri I	Funhorhiaceae	Whole plants	Medicinal
86	Doodhi	Funhorhia heteronhylla Des F	Funhorhiaceae	Leaves	Medicinal
87	Pulpuli grass	Arthraxon hispidus (T. Makino)	Родседе	Leaves	Fodder
88.	Satawar	Asparagus racemosus Willd.	Liliaceae	Roots/Tubers	Medicinal
89.	Haddi mushli	Chlorophytum borivilianum Santapau & R. R. Fern.	Asparangaceae	Tubers	Medicinal
90.	Ghughunia	Crotalaria retusa L.	Leguminosae	Leaves	Food
91.	Pihri chara	Mecardonia procumbens Mil Small	Scrophulariaceae	Leaves	Fodder
92.	Satparni	Desmodium gangeticum L.	Fabaceae	Leaves	Medicinal
93.	Kharatti	Sida acuta Burm. f.	Malvaceae	Leaves	Medicinal
94.	Sitab	Ruta graveolens L.	Rutaceae	Leaves	Medicinal
95.	Mameera	Thalictrum foliolosum DC.	Rananculaceae	Leaves	Medicinal
96.	Bathua bhaaji	Chenopodium album L.	Chenopodiaceae	Leaves	Vegetable
97.	Pattilar choor Pariwari	Sida cordata (Burm, f.) Borce, Waally	Lamaceae	Roots/Tubers	Medicinal
90.	Hirankhuri	Emilia sonchifolia (L.) DC ex DC	Asteraceae	Eruite	Medicinal
100	Badrani boya	Neneta cataria I	Lamiaceae	Seeds	Medicinal
101.	Kevkand	Dioscorea bulbifera L.	Dioscoreaceae	Suckers/Tuber	Medicinal
102.	Kali mushli	Curculigo orchioides Gaertn	Agavaceae	Suckers/Roots	Medicinal
103.	Tinpaniya	Oxalis corniculata L.	Oxalidaceae	Leaves	Medicinal & Vegetable
104.	Maskani	Evolvulus nummularius L	Convolvulaceae	Leaves	Medicinal
105.	Chanchu	Corchorus fascicularis Lam.	Tiliaceae	Leaves	Food
106.	Kena	Commelina diffusa Burm. f.	Commelinaceae	Roots/tubers	Medicinal
107.	Kharmor	Rungia pectinata L.	Acanthaceae	Leaves/shoots	Medicinal
108.	Ghueen	Fimbristylis littoralis Gaudich.	Cyperceae	Roots/leaves	Medicinal
109.	Nagar motha	Cyperus gracilis R. Br.	Poaceae	Leaves, roots	Fodder and Commercial products
110.	Bufalo grass	Paspalum conjugatum P. J. Bergius	Poaceae	Leaves	Fodder
111.	Baiga sikiyab	Digitaria divaricatissima R. B) Hughes)	Poaceae	Leaves	Fodder
112.	Jangii marua	Eleusine inaica) Gaert).	Poaceae	Leaves	Fodder
113.	Dokar Del	Vitis carnosa Lam VVall.	Vitaceae	Leaves/Fruits	Medicinal
114.	Nuniva bhaii	Milliosa pualca L.	Portulaceae	Leaves	Wegetable
115.	Kanthkari	Solanum xanthocarpum Schrad. & H. Wendl	Solanaceae	Leaves	Medicinal
117.	Jungli sama	Echinochloa colona Link	Poaceae	Seeds grains	Grain edible
118.	Amti	Solanum nodiflorum Jacq.	Solanaceae	Fruits	Vegetable
119.	Chirchita	Achvranthes aspera L.	Amaranthaceae	Seeds, leaves	Medicinal
120.	Ghooma	Leucas aspera Willd	Lamiaceae	Leaves	Vegetable
121.	Kaniya kanda	Dioscorea oppositifolia L.	Dioscoreaceae	Tubers	Medicinal
122.	Chench	Corchorus trilocularis L.	Tiliaceae	Leaves	Vegetable
123.	Chanahur	Marsdenia tenacissima Roxb.	Asclepiadaceae	Leaves	Vegetable
124.	Van rai	Blumeopsis flava D Gagnep.	Asteraceae	Seeds, Leaves	Medicinal, vegetable
125.	Tikhur	Curcuma angustifolia Roxb.	Zingiberaceae	Tuber	Medicinal
126.	Mandukparni	Centella asiatica L.	Apiaceae	Leaves	Medicinal
127.	Ghuia	Colocasia esculenta L Schott.	Araceae	Leaves, Rhizomes	Vegetable
128.	Kev kand	Costus specios J. Koen Sm.	Zingiberaceae	Tuber	Medicinal
129.	Amahaldi	Curcuma amada Roxb.	Zingiberaceae	Tuber	Medicinal
130.	Jungli dhania Bicaldhaara	Eryngium Joetidum L.	Apiaceae	Leaves, Seeds	vegetable
131.	BISAKNPAFA	Duernavia procumbens Banks ex Koxb.	nyciuginaceae	Leaves	vegetable Modicipal
152.	Daui UUUNI		сирногршсеае	LEGVES	weultlildi

Table 7 (continued)

S.	Common	Scientific name	Family	Parts used	Uses
INU.	liallie				
133.	Chhoti dudhi	Euphorbia macrophylla Pax	Euphorbiaceae	Leaves	Medicinal
134.	Bara	Flemingia chappar Benth.	Fabaceae	Shoots	Lac
135.	Bedarikand	Coccinia grandis Voigt	Cucurbitaceae	Climber	Edible
136.	Kalihari	Gloriosa superba L.	Colchicaceae	Climbers, Flower	Medicinal
137.	Kheksa	Momordica dioica Roxb	Cucurbitaceae	Climber	Vegetable
138.	Karmata	Ipomoea aquatica Forssk.	Convalvulaceae	Leaves	Vegetable
139.	Jungle	Mucuna pruriens L.	Papilionaceae	Seeds	Medicinal
	kevanch				
140.	Jangli pyaj	Urginea indica Roxb	Liliaceae	Tuber	Medicinal
141.	Chirula	Aerva lanata L.	Amaranthaceae	Leaves	Medicinal
142.	Chirinya	Peristrophe roxburghiana Roem & Schult	Acanthacea	Leaves	Medicinal
143.	Garundi	Alternanthera sessilis L.	Amaranthaceae	Leaves	Medicinal
144.	Jungli rye	Sisymbrium nigrum Prantl	Cruciferae	Seeds	Vegetable
145.	Jangli Tulsi	Ocimum gratissimum L.	Lamiaceae	Seeds, Leaves,	Medicinal
				Inflorescences	
146.	Chirpoti	Physalis minima L.	Solanaceae	Fruits	Fruit edible
147.	Sarpgandha	Rauvolfia serpentine L Benth. ex Kurz	Apocynaceae	Seeds	Medicinal
148.	Sadabahar	Catharanthus roseus L G. Don	Apocynaceae	Flowers	Medicinal
149.	Brahmi	Bacopa monnieri L Wettst.	Plantaginaceae	Whole plants	Medicinal
150.	Tulsi	Ocimum sanctum L.	Lamiaceae	Seeds, Leaves,	Medicinal, Religious use
				Inflorescences	
151.	Chirayta	Swertia alba T. N. Ho & S. W. Liu	Gentianaceae	Whole plants	Medicinal
152	Aswagandha	Withania somnifera Dunal	Solanaceae	Suckers, leaves	Medicinal
153.	Chand kal	Macaranga peltata Roxb Müll. Arg.	Euphorbiaceae	Leaves	Medicinal
154.	Chaulai	Amaranthus spinosus L.	Amaranthaceae	Leaves	Vegetable
155.	Tiger lily	Belamcanda chinensis L. DC.	Iridaceae	Tubers	Medicinal
156.	Buch	Acorus calamus L.	Acoraceae	Rhizomes, Oil	Medicinal
157.	Mandukparni	Centella asiatica L.	Plantaginaceae	Whole plants	Medicinal

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors are grateful to Indira Gandhi National Tribal University, Amarkantak, MP, India for continuous support and encouragement to carry out research work and the researchers and farmers involved in this study are deeply acknowledged for their support and cooperation. We are thankful to the anonymous reviewers for improving the quality of this manuscript. This research was supported by Researchers Supporting Project number (RSP-2020/249), King Saud University, Riyadh, Saudi Arabia.

References

- Aggarwal, N., Srivastava, M., Dutta, M., 2016. Comparative analysis of pixel-based and object-based classification of high-resolution remote sensing images - a review. Int. J. Eng. Trends Technol. 38, 5–11.
- Aghsaei, H., Mobarghaee Dinan, N., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N., Wagner, P.D., 2020. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 712, 136449. https://doi.org/10.1016/j.scitotenv.2019.136449.
- Aslami, F., Ghorbani, A., 2018. Object-based land-use/land-cover change detection using Landsat imagery: a case study of Ardabil, Namin, and Nir counties in northwest Iran. Environ. Monit. Assess. 190 (7). https://doi.org/10.1007/ s10661-018-6751-y.
- Barros, J.X., 2004. Urban growth in Latin American cities: exploring urban dynamics through agent-based simulation. Doctoral Thesis University of London, London.
- Chetan, M.A., Dornik, A., Urdea, P., 2017. Comparison of object and pixel-based land cover classification through three supervised methods. J. Geodasy, Geoinf. Land Manage.
- Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35–46.
- De Fries, R.S., Hansen, M., Townshend, J.R.G., Sohlberg, R., 1998. Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. Int. J. Remote Sens. 19 (16), 3141– 3168. https://doi.org/10.1080/014311698214235.

- DeFries, R.S., Townshend, J.R.G., Hansen, M., 1999. Continuous fields of vegetation characteristics at the global scale. J. Geophys. Res. 104, 16911–16925.
- Desta, H., Fetene, A., 2020. Land-use and land-cover change in Lake Ziway watershed of the Ethiopian Central Rift Valley Region and its environmental impacts. Land Use Policy 96, 104682. https://doi.org/10.1016/ j.landusepol.2020.104682.
- Dutta, S., Dutta, I., Das, A., Guchhai, S.K., 2020. Quantification and mapping of fragmented forest landscape in dry deciduous forest of Burdwan Forest Division, West Bengal, India. Trees, For. People 2, (2020) 100012.
- El-Tantawi, A.M., Bao, A., Chang, C., Liu, Y., 2019. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environ. Monit. Assess. 191 (8). https://doi.org/10.1007/s10661-019-7478-0.
 Fox, D.M., Witz, E., Blanc, V., Soulié, C., Penalver-Navarro, M., Dervieux, A., 2012. A
- Fox, D.M., Witz, E., Blanc, V., Soulié, C., Penalver-Navarro, M., Dervieux, A., 2012. A case study of land cover change (1950–2003) and runoff in a Mediterranean catchment. Appl. Geogr. 32 (2), 810–821. https://doi.org/10.1016/j. apgeog.2011.07.007.
- Gandhi, G.M., Parthiban, S., Thummalu, N., Christy, A., 2015. Ndvi: vegetation change detection using remote sensing and Gis – a case study of Vellore District. Procedia Comput. Sci. 57, 1199–1210. https://doi.org/10.1016/j. procs.2015.07.415.
- Guhathakurta, P., Sreejith, O.P., Menon, P.A., 2011. Impact of climate change on extreme rainfall events and flood risk in India. J. Earth Syst. Sci. 120 (3), 359–373. https://doi.org/10.1007/s12040-011-0082-5.
- Guzha, A.C., Rufino, M.C., Okoth, S., Jacobs, S., Nóbrega, R.L.B., 2018. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Hydrol. Reg. Stud. 15, 49–67.
- Hossen, H., Negm, A., 2016. Change detection in the water bodies of Burullus Lake, Northern Nile Delta, Egypt, using RS/GIS. In: Proceedings of the Twelfth International Conference on Hydro Informatics, HIC 2016. Procedia Engineering, pp. 936–942.
- Kulkarni, A.T., Mohanty, J., Eldho, T.I., Rao, E.P., Mohan, B.K., 2013. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds. Comput. Geosci. 64, 7–14. https://doi.org/10.1016/j.cageo.2013.11.002.
- Lin, X., Xu, M., Cao, C., Singh, R.P., Chen, W., Ju, H., 2018. Land-use/land-cover changes and their influence on the ecosystem in Chengdu City, China during the period of 1992–2018. Sustainability. 10, 3580. https://doi.org/ 10.3390/su10103580.
- Liu, K., Song, C., Keb, L., Jiang, L., Maa, R., 2019. Automatic water shed delineation in the Tibet an endorheic basin: Alake oriented approach based on digital elevation models. Geomorphology 358, (2020) 107127.
- Loveland, T., Sohl, T.L., Stehman, S.V., Gallant, A.L., Sayler, K.L., Napton, D.E., 2002. A strategy for estimating the rates of recent united states land-cover changes. Photogramm. Eng. Remote Sens. 68, 1091–1099.
- Mishra, P.K., Rai, A., Rai, S.C., 2020. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt. J. Remote Sens. Space Sci. 23 (2), 133–143. https://doi.org/10.1016/j.ejrs.2019.02.001.
- Mokarrama, M. and Hojati, M. 2017. Morphometric analysis of stream as one of resources for agricultural lands irrigation using high spatial resolution of digital

elevation model (DEM). Computers and Electronics in Agriculture. Volume 142, Part A, November, 190–200.

- Mukherjee, S., Joshi, P.K., Mukherjee, S., Ghosh, A., Garg, R.D., Mukhopadhyay, A., 2013. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 21, 205–217.
- Olmanson, L.G., Bauer, M.E., 2016. Improved land cover classification by integrating Landsat imagery with Lidar and object-based image analysis for land cover classification of the international lake of the woods/rainy river basin. https://lps16.esa.int/posterfiles/paper2097/Landcoverposter32_40_final.pdf>.
- Pan, F., Xi, X., Wang, C.A., 2019. MATLAB-based digital elevation model (DEM) data processing toolbox (MDEM). Environ. Modell. Software. https://doi.org/ 10.1016/j.envsoft.2019.104566.
- Qian, J., Zhou, Q., Hou, Q., 2007. Comparison of pixel-based and object-oriented classification methods for extracting built-up areas in arid zone. In: ISPRS Workshop on Updating Geo-Spatial Databases with Imagery & the 5th ISPRS Workshop on DMGISs, pp. 163–171.
- Rosenfield, G.H., Fitzpatrick-Lins, K., 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 52 (2), 223–229.
- Rastogi, R.A., Sharma, T.C., 1976. Quantitative analysis of drainage basin characteristics. J. Soil Water Conserv. India 26 (1&4), 18–25.
- Shalaby, Adel, Tateishi, Ryutaro, 2007. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 27 (1), 28–41. https://doi.org/10.1016/j. apgeog.2006.09.004.
- Soha, A.M., El-Raey, E.M., 2019. Land cover classification and change detection analysis of Qaroun and Wadi El-Rayyan lakes using multi-temporal remotely

sensed imagery. Environ. Monit. Assess. 191 (4). https://doi.org/10.1007/s10661-019-7339-x.

- Thakur, T.K., 2007. Analysis of land use, structure, diversity, biomass production, C and nutrient storage of a dry tropical forest ecosystem using satellite remote sensing, ground data and GIS techniques Ph.D. Thesis. Indira Gandhi Krishi Vishwavidyalaya, Raipur, India.
- Thakur, T.K., 2018. Diversity, composition and structure of understorey vegetation in the tropical forest of Achanakmaar Biosphere Reserve, India. Environ. Sustainability 1 (2), 279–293.
- Thakur, T.K., Kumar, Y., Bijalwan, A., Dobriyal, M.J.R., 2017. Traditional Uses and Sustainable Collection of Ethnobotanicals by Aboriginal Communities of the Achanakmaar Amarkantak Biosphere Reserve of India. Front. Environ. Microbiol. 3 (3), 39–49.
- Thakur, T.K., Patel, D.K., Bijalwan, A., Dobriyal, M.J., Kumar, A., Thakur, A., Bohra, A., Bhat, J.A., 2020. Land use land cover change detection through geospatial analysis in an Indian Biosphere Reserve. Trees, For. People 2, 100018. https:// doi.org/10.1016/j.tfp.2020.100018.
- Thakur, T.K., Swamy, S.L., Nain, A.S., 2014. Composition, structure & diversity characterization of dry tropical forest of chhattisgarh using satellite data. J. For. Res. 25 (4), 819–825.
- Yang, X., Wen, X., 2011. Post classification comparison change detection of Guangzhou Metropolis, China. Key Eng. Mater. 467 (469), 19–22. https://doi. org/10.4028/www.scientific.net/KEM.467-469.19.
- Zope, P.E., Eldho, T.I., Jothiprakash, V., 2016. Impacts of land use-land cover change and urbanization on flooding: a case study of Oshiwara River Basin in Mumbai, India. CATENA 145, 142–154. https://doi.org/10.1016/j.catena.2016.06.009.