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1. Introduction

Water is a basic need for all living forms on the planet. Clean
water is essential for living a healthy life since polluted water
can pose citizen’s health at risk through direct or indirect contact
with dangerous chemicals (Sajid et al., 2018). Environmental con-
tamination has been exacerbated by industrial revolution and
anthropological activities. Significant pollutant discharges into
the ocean have resulted in huge hazards to the coastal environ-
ments. Because of their chronic toxicity, non-biodegradability,
and environmental bioaccumulation, heavy metals (HMs) are
incredibly harmful environmental pollutants (Valdés et al., 2014).
Heavy metals can be transferred and biomagnified via food chains
and seriously threaten human health (Liu et al., 2018; Mansour and
Sidky, 2002). Effective monitoring and surveillance of heavy metal
concentrations in the marine environment is also highly sought
(Ahmed et al., 2015). At the local, regional, and national levels,
problems are now being raised because of the HMs concentration
and their effects, distribution, and environmental origin (Kumar
et al., 2019). The bioaccumulation patterns of HMs, such as mer-
cury (Hg), arsenic (As), Nickel (Ni), cobalt (Co), copper (CU), cad-
mium (Cd), and chromium (Cr), have a significant influence on
the lives of most organism (Rahman and Singh, 2019). Heavy met-
als from different distribution sources have a negative influence on
marine biota (Kahlon et al., 2018).

These HMs have an impact on beneficial organisms such as
fishes and other invertebrates (Morkunas et al., 2018). Heavy met-
als from the surrounding water and foodstuffs accumulate in mar-
ine species (Hao et al., 2019). In certain cases, excessive levels of
heavy metals in marine ecosystems are directly related to environ-
mental contamination. According to several research studies, the
concentration of heavy metal bioaccumulation differed substan-
tially amongst marine species. Variations in heavy metal accumu-
lation of aquatic organisms are possibly related to their different
living environments, feeding patterns, and trophic levels (Liu
et al.,, 2018; Rajeshkumar et al., 2018).

The purpose of this review is to give insight into the overall geo-
graphical pattern of heavy metal outlets in the aquatic ecosystem
as well as human sources. It also discusses heavy metal pollution
in marine food components. Furthermore, the effects of such com-
ponents on the environment and human life are thoroughly dis-
cussed in order to explain the physiological/molecular processes
involved in the use of metallic toxins in aquatic foods. Finally,
the review examines remedil techniques (e.g., ecosystem remedia-
tion and the application of genetic engineering). These manage-
ment strategies are intimately linked to human population safety
by eliminating or mitigating the transfer of HMs pollutants from
the aquatic environment to the food chain.

2. Source of heavy metals

Heavy metals (HMs) are elements with larger density and
higher atomic mass that can affect individuals and the environ-
ment, such as cadmium (Cd), zinc (Zn), mercury (Hg), arsenic
(As), silver (Ag), chromium (Cr), copper (Cu), iron (Fe), and plat-
inum (Pt). Heavy metal contamination of water is one of the most
serious environmental concerns affecting plants, animals, and
humans (Gu et al., 2018; Wang et al., 2020). Heavy metals are haz-
ardous even in low concentrations because they are not biodegrad-
able (Brodin et al., 2017, Ferrey et al., 2018).

Metals and metalloid ions re classified into three groups. The
first group includes metals such as mercury, cadmium, and lead,
which are toxic at minimum concentrations. The second group of
metals is less dangerous (bismuth, indium, arsenic, thallium, and
antimoney), and the third category includes essential metals such
as zing, cobalt, copper, iron, and selenium, which are part of several
chemical or biochemical processes in the body and are only toxic
above a certain concentration (Odobasic et al., 2019). HMs accu-
mulate in the soil, human and animal tissues as a result of absorp-
tion and, in certain cases, inhalation, and as well as accidents or
mishandling. Metals have been present on the planet since the ori-
gin through regular biogeochemical cycles (Dalziel, 1999; Masindi
and Muedi, 2018). The underlying weathering mechanism resulted
in the occurrence of HMs in the soil. Because of mineralized veins
and metal deposits in high concentrations in the bedrock, the soil
in the Mendip region (Great Britain) is rich in cadmium, lead,
and zinc. Metal enrichment during soil formation can occur as a
result of bedrock weathering with a slightly high concentration
of HMs.

The major reasons of increased environmental toxicity owing to
heavy metals are human and anthropogenic factors. Natural
sources of HMs include wind-blown soil debris, forest fires, vol-
canic eruptions, biogenic processes, and marine salt (Blaser et al.,
2000; Muhammad et al., 2011). Anthropogenic causes of HMs con-
tamination include mining operations, pesticides, fertilizers, and
herbicides use, crop field irrigation with industrial and sewage
water (Sarkar et al., 2018; Srivastava et al., 2018) (Fig. 1). HMs
trace levels in fertilizers are important sources of heavy metal con-
taminants in our food. Inappropriate industrial waste manage-
ment, traffic pollution, use of lead (Pb) as fuel antiknock, aerosol
cans, metallurgy and smelting, discharge of sewage and construc-
tion materials are the anthropogenic practices responsible for
HMs contamination (Srivastava et al., 2016; Srivastava et al., 2017).

Several industries, including drugs manufacturing, paper, and
pulp preservatives, the farming sector, chlorine and caustic soda
industry, release mercury (Hg) into the atmosphere (Ibrahim
et al., 2019). Soils and rocks, including coal and mineral fertilizer,
contain a certain amount of cadmium. Cadmium (Cd) is widely
used in electroplating for a variety of applications, including bat-
teries, pigments, textiles, and metal coatings (Saini and Dhania,
2020). All these practices are responsible factors for increased
HMs contamination of the environment.
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Fig. 1. Sources of Heavy metals.
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3. Heavy metals toxic effect

Heavy metal contamination is becoming a global issue. Heavy
metals can enter fish through three routes: the gills, the body sur-
face, and the digestive tract (Dane and Sisman, 2020). Fish juve-
niles and larvae rise pretty fast and their growth in both body
length and mass is closely related to suitable temperature and suf-
ficient food supply, i.e. under optimal growth conditions (Krieger
et al., 2020). On the other hand, fish development is hampered
by toxic food loaded with heavy metals. One of the most obvious
signs of metal toxicity in fish is growth inhibition. As a result,
HMs concentrations in tissues cause a variety of metabolic, physi-
ological, and histological changes in fish and other freshwater spe-
cies by altering various enzymes and metabolites (Mehmood et al.,
2019).

The feeding mechanism differs amongst fish species based on a
variety of factors such as developmental agents, psychological
agents, and fish lifespan. HMs accumulate in the tissues of Fish liv-
ing in polluted environment (Kumar et al., 2020; Topal and Onac,
2020). Metal intensity, expression duration, metal absorption,
environmental variables (temperature, pH, hardness, and salinity),
and intrinsic agents, such as fish age and feeding activities are all
factors in the selection of body organs for HMs deposition. Most
metals accumulate mainly in the kidneys, gills, and liver
(Kucukosmanoglu and Filazi, 2020; Squadrone et al., 2019). Zinc
accumulates in fish gills disrupting the oxygen supply to tissues
and causing hypoxia, which leads to death. However, if water pH
falls, HMs may be mobilized and discharged into the water column,
endangering marine organisms such as crustaceans and insects
(Bonsignore et al., 2018). These toxic sediments kill the benthic
organisms and reducing food availability for the gigantic organism.
In modest levels, HMs found in the environment and food are nec-
essary for optimal health, but in large amounts, they can be harm-
ful or unhealthy. Their toxicity can deplete energy and affect the
brain, lungs, kidneys, liver, blood, and other vital organs. Long-
term exposure eventually results to degenerative physical, tissue,
and neurological processes imitating diseases such as Alzheimer's,
Parkinson’s, muscle dystrophy, and multiple sclerosis. Acute lead
(Pb) exposure can induce appetite loss, headaches, hypertension,
stomach discomfort, renal dysfunction, fatigue, insomnia, arthritis,
hallucinations, and vertigo. Mercury toxicity results in acrodynia or
pink disease. Increased mercury exposure may affect the brain’s
structure and cause shyness, tremors, cognitive loss, irritability,
and visual or hearing (Guzzi et al., 2020). Exposure to metallic mer-
cury vapors at higher levels for a shorter length of time might
result in lung damage, vomiting, diarrhea, nausea, skin rashes,
and increased blood pressure. Organic mercury toxicity signs and
symptoms include depression, memory problems, tremors, fatigue,
headache, and hair loss. Because these signs and symptoms are fre-
quently associated with other diseases, circumstances may be dif-
ficult to recognize (Atti et al., 2020).

4. Bioavailability of HMs in food webs

Heavy metals contamination of rivers, lakes, and streams causes
bioaccumulation of toxic elements in fishes. HMs might enter fish
through different routes, including dietary intakes and the
incorporation of sediment particles (Liu et al., 2020). Many inverte-
brates are important food sources for fish and other aquatic spe-
cies, and the provide a practical route for lead, copper, zinc, and
cadmium absorption (Corrias et al.,, 2020; Jardine et al., 2020).
Immediate water absorption another path of exposure to these
toxic compounds (Maurya et al., 2019). Sediment, which is the pri-
mary trace element repository in marine settings, provides a third
possible route (Luoma and Rainbow, 2008). The rate of element
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concentration between the fish and the abiotic (water and sedi-
ment) environments, also known as the Bioaccumulation Factor
(BAF), was typically used to assess the pollution status of water
bodies (Mortuza and Al-Misned, 2015; Ziyaadini et al., 2017). Sig-
nificant elements and trace elements are transmitted from abiotic
to live species in this environment and accumulated in biota, pol-
luting the food chain (Ali and Khan, 2018) (Fig. 2).

Organisms at higher trophic levels in food chains are more vul-
nerable to biomagnification. Because of bioamplification, higher
concentrations of trace elements in species with higher trophic
levels can endanger these organisms or humans. The activity of
water-living microorganisms convert atmospheric mercury into
methyl, dimethyl, and ethyl mercury, which is subsequently
ingested by smaller and larger animals (Bernhoft, 2012). More than
20 organic and inorganic chemical compounds containing arsenic
(As) have been detected in aquatic bodies. The form of chemical
compounds present in water is influenced by factors such as bacte-
ria, phytoplankton, salinity, temperature, and redox conditions
(Zhang et al., 2013). Marine microorganisms can transform one
source of arsenic into a new one. Arsenic is incorporated into the
marine food chain by depositing invertebrates (Casado-Martinez
etal., 2010). These invertebrates are an important source of aquatic
food for higher species, and fish consume arsenic particles when
feeding on these invertebrates. According to the research findings,
fish constitute the most significant source of arsenic exposure in
humans (Juma et al., 2002). Lead is harmful to marine species
(Nair et al., 2006), and fish is present at the top of the aquatic food
chain, accumulating lead at a high rate in their gills and livers (Nair
et al., 2006). People typically eat fish as part of their regular diet.
Due to the fact that lead is transported into the circulation and
incorporated into tissues after absorption (Castro-Gonzalez and
Méndez-Armenta, 2008), HMs accumulation in the body (Nair
et al., 2006).

5. Bioaccumulation of HMs in seafood

The bioaccumulation of heavy metals in freshwater fish has
important ecological, environmental, and social implications (Ali
et al,, 2017). When metals are present in high concentrations in
the environment, species accumulate their higher amounts. Caus-
ing biomagnification of metals in the trophic web, which has a neg-

Large fish

Small Fish

Fig. 2. Bioavailability of HMs in food webs.
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ative impact on the aquatic ecology since it relies on them in var-
ious ways, either directly or indirectly (Luoma and Rainbow, 2008).
Increased pollution has resulted in a reduction in freshwater fishes
and other aquatic organisms in the Indus river, Pakistan (Al-
Ghanim et al., 2016).

Fish characteristics such as size, sex, reproductive cycle, feeding
habits, and swimming patterns, as well as environmental factors
such as HMs bioavailability and concentration in water columns,
physicochemical properties of water, and other climatic factors
all play an essential role in the bioaccumulation of HMs (Ali
et al.,, 2019; Moiseenko and Gashkina, 2020). The degree of HMs
deposition in various fish organs typically varies according to tis-
sue shape and function. Metabolically active tissues, including kid-
neys, liver, or gills, generally accumulate more HMs than other
tissues, such as the skin and muscles. Fish gills have been identified
as the target tissue for the aggregation and disposal of HMs like
nickel (Ni) (EI-Moselhy et al., 2014; Mansouri et al., 2012). HMs
bioaccumulate in muscles of fish in species-specific manner
(Chakraborty et al., 2016). Toxic elements were determined in
Indian anchovy (Stolephorus indus) collected from the Arabian Gulf,
United Arab Emirates. Zinc was discovered in high quantities
mostly in the muscles, and high levels of Cd, Cu, and Cr were found
in muscle, and liver (Alizada et al., 2020)

Three fish species, Labeo rohita, Pangasius hypophthalmus, and
Katsuwonus pelamis were taken from Visakhapatnam, and their
eyes, gills, stomach, gonads, liver, and muscles were studied. The
metal concentrations in small and large L. rohita and P. hypophthal-
mus were in the order Fe > Zn > Cu, whereas Co, Hg, and Pb were
below the detectable limit (BDL). HMs concentrations in K. pelamis
were as follows: Fe > Zn > Cu > Cd, whereas Pb, Hg, and Co were
BDL (Pragnya et al., 2020).

As filter feeders of the aquatic environment, bivalves
constitute an essential component of the human diet and play
an important part in the biogeochemical cycle. They can accu-
mulate HMs by feeding in seawater and then act as prey for
other marine bodies at higher trophic levels (Kodama et al.,
2012; Yuan et al., 2020). Pollutants in the water column, sus-
pended particulate matter, sediments, and even food sources
can be picked up by bivalve molluscs. The bioaccumulation rate
of metals in bivalves depends on biotic factors (e.g., organisms,
age, sex, weight, gametogenesis, and physiological status) and
abiotic factors (e.g., chemical species, pH, salinity, temperature,
filtration rate, availability of environmental contaminants).
Bivalves possessed a high capacity for bioaccumulation of HMs
(Yuan et al., 2020). Consumption of edible bivalves is detrimen-
tal to human health. Crabs of the Ocypodid family are depositary
feeders known to be important prey and inseparable food for
many mammals and water birds. They contribute significantly
to particle size reduction, organic mineralization, and sediment
purification (Gouws and Stewart, 2001; Hewitt, 2004). Studies
have shown that the bioaccumulation of heavy metals, such as
Zn, Cu, Cd, and Pb, occurred in the aquatic organisms in coastal
regions of Tuticorin. According to (Yogeshwaran et al., 2020),
crabs in contaminated habitats are significant bio accumulators
of heavy metals. The research was performed to explore the
accumulation and biomonitoring capacity of HMs for Fe, Cu,
Zn, Cr, Ni, Co, Pb, and Cd in Macrophthalmus depressus from
Karachi, Pakistan (Saher and Siddiqui, 2019).

6. Recommendations
6.1. Biological indicators as a warning system of HMs
Bioindicators are organisms whose physiological features,

absence, or appearance indicate the quality of the environment
in which they live (Arimoro and Keke, 2017; Sures, 2003). They
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can be either impact indicators or accumulation indicators. Effect
Bioindicators reflect changes in metabolism, substances, roles, or
the number of species. Their presence, absence, and appearance
indicate environmental quality (Arimoro and Keke, 2017; Sures,
2003). In contrast, accumulation bioindicators (sentinels) may suc-
cessfully collect elements in the environment at concentrations
considerably higher than those present in the environment with-
out harmful consequences (Sures, 2003; Tellez and Merchant,
2015). Historically, free-living biotas such as fish, macroinverte-
brates, and plankton have been used as bioindicators in water
quality studies (Keke et al., 2020). The use of fish parasites (acan-
thocephalans, cestodes, and nematodes) as crucial biomonitoring
instruments functioning as bioindicators of trace elements envi-
ronmental pollution has been effectively proven in research. Host
ingested food pollutants directly affect the intestinal parasites;
they may respond to the contamination by accumulating such con-
taminants (Sures et al., 1995). Fish parasites have been proven to
collect considerably more contaminants than their host species.
Acanthocephalans are highly bioaccumulative, in particular, due
to their lack of a digestive system, which enables them to absorb
nutrients from the predigested system via diffusion from intestinal
fish content. In addition, both the location and growth of the par-
asite in fish may play a significant role in the process of bioaccu-
mulation (Nachev and Sures, 2016). Acanthocephalans are
incredibly important in verifying and quantifying toxic substances
in aquatic ecosystems due to their rapid response to chemical
exposure and accumulation of high levels, particularly with trace
elements like cadmium and lead, which have a significant toxic
effect in these environments. Intestinal helminthic parasites may
be an ideal remedy to heavy metal impact and accumulation
bioindication (Keke et al., 2020). Parasites, primarily intestinal
trematodes, collectively accumulated higher Se, Cu, As, and Zn
levels and served as sensitive bioindicators for heavy metals con-
tamination (Gilbert and Avenant-Oldewage, 2017). Bamidele and
Kuton utilized Parachanna obscura and Clarias gariepinus fish as
markers of heavy metal contamination, such as Cu, Cr, Ni, Pb,
and Fe in fish tissues and parasites as indications of heavy metal
bioaccumulation in Lekki lagoon, Nigeria, in 2016. (Bamidele and
Kuton, 2016).

In recent years several biosensor fishes have been used to mon-
itor aquatic toxins. Numerous genetic modifications have produced
these transgenic fishes. In living fish, numerous promoters, includ-
ing cypla, cyp19alb, and mt, activate the fluorescent protein
reporter gene in response to hazardous chemical exposure (Ng
and Gong, 2013). Several transgenic reporter lines were established
in zebrafish (Danio rerio) and Japanese medaka (Oryzias latipes) for
the identification of contaminants (Pawar et al., 2016; Zhou et al,,
2020). Because of the ease with which genes may be manipulated,
the short maturation time, transparency, and controlled ovulation,
zebrafish and medaka have become attractive model fish for
detecting toxins. The use of model fish or embryonic transgenic
lines carrying an easily detectable reporter gene whose expression
is controlled by a pollutant-deficient element such as heavy metals
(Seok et al., 2007). Many fishes have characterized the metalloth-
ionein promoter to identify heavy-metal pollution (copper, cad-
mium, mercury, and zinc). Medaka is used for monitoring
reproductive events through GFP-linked estrogenic vitellogenin
(vtg) gene promoter. Zhou et al. (2020) created lines for the first
time using an upgraded cypla-12 DRE promoter that particularly
supports the usage of Enhanced Green Fluorescent Protein (EGFP)
in marine transgenic plants (Zhou et al., 2020). Several researchers
worldwide have established transgenic zebrafish lines expressing
fluorescent proteins under the control of promoter elements such
as estrogen, aryl hydrocarbon, glycoprotein hormone, heat-shock
protein (HSP), DNA damage and tissue-specific promoters and
response elements for monitoring the aquatic pollution. Most
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transgenic zebrafish biosensors developed to date for detecting
heavy metals have been based on hsp promoter elements activated
by many other stressors (Blechinger et al., 2002).

Recently, Liu et al. (2016) have produced transgenic zebrafish
mt:egfps as a biosensor using a zebrafish MT promoter responsive
to zinc and cadmium (Liu et al., 2016). A transgenic zebrafish has
been reported to respond to heavy metals by employing a metal-
response promoter with a fluorescent reporter (DsRed2) gene
(Pawar et al., 2016). Perna viridis, an Asian green mold, provided
the MT-lal metallothionein promoter containing metallic-
responsive components. Tg(cypla-12DRE:EGFP) is a transgenic
strain with a cypla zebrafish promoter recombined with multiple
DREs dioxin-responsive elements to induce EGFP expression
(Pawar et al., 2016).

Because of their intimate interaction with sediments, benthic
crustaceans are sensitive to contaminants. They lack a sophisti-
cated metabolic system and accumulate HMs in their bodies. As
a result, utilizing these benthic crustaceans, the bioavailability of
poisons in sediments may be measured and assessed (Baki et al.,
2018; Cheng et al., 2017). Barytelphusa cunicularis and Spiralothel-
phusa hydrodroma are essential freshwater crabs in various parts
of India, including Tamil Nadu (Cumberlidge, 2014; Pati et al.,
2014). Because of their widespread distribution and high nutri-
tional content, these crab species have a high market value and
are popular among locals. Furthermore, B. cunicularis and S. hydro-
droma were utilized as powerful biological markers for a variety of
environmental contaminants, including heavy metals (Gayathri
et al,, 2020). This research was carried out to investigate HMs
build-up in different organs of sentinel crab Macrophthalmus
depressus and its ability for sediment bio-monitoring of heavy met-
als (Hg, Cd, Ni). Investigate Macrophthalmus depressus’s potential as
a heavy metal pollution indicator in the various coastal areas of
Karachi. In addition, possible associations between HMs concentra-
tions in crab and environmental endpoints such as organic matter,
grain size, sediment, pH, salinity, temperature, and metal sediment
concentrations have also been evaluated to determine control fac-
tors for crab metal accumulation in the marine ecosystem (Saher
and Siddiqui, 2019).

6.2. Remediations for HMs

Microbial biotechnology has emerged as an environmentally
friendly and essential alternative for HM bioremediation in recent
years. Heavy metal-tolerant bacterial species can be used for heavy
metal bioremediation (Nanda et al., 2019; Ojuederie and Babalola,
2017). Various scientists have identified numerous putative heavy
metal tolerance mechanisms, including redox reactions, pumped,
compound building with other components, and extracellular
and intracellular sequestration. Isolated Pseudomonas sp. Strepto-
coccus sp., and Staphylococcus sp. strains from pulp and paper
industry effluent for heavy metal bioremediation. They tested their
ability to extract heavy metals and found that Pseudomonas sp. effi-
ciently extracts cadmium, manganese, and mercury. In compar-
ison, Streptococcus sp. and Staphylococcus sp. might extract Cu
more easily (Hakeem and Smita, 2010). Gram-positive bacteria
accumulate heavy metals in their cell walls more actively than
Gram-negative bacteria (Rani and Goel, 2009). Bacteria can absorb
and accumulate various metal ions, resulting in transferring metals
into a polluted biomass matrix (Smith et al., 1994). Due to the
negative sites on bacterial cell walls, wastewater cadmium cations
biosorption occurred when actinomycetes dead biomass suspen-
sion from industrial fermentation was mixed (Butter et al., 1995).
Kang et al. (2016) proposed using a bacterial consortium more
effectively instead of single bacterial organisms for water bioreme-
diation of HMs (Kang et al., 2016). They also eliminated various
metal toxins utilizing the bacterial consortium and registered a
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reduction of 98.3% lead, 85.40% Cadmium, and 5.6% Copper. Strep-
tomyces sp, Bacillus firmus, Oscillatoria anguistissima, Chlorella
fusca, Sargassum natans, Ascophyllum nodosum, Rhizopus nigri-
cans, Penicillium chrysogenum, and Aspergillus niger biomass
have the highest potential for metal adsorption from 5 to
641 mgg ! for Ni, Cu, Cr, Cd, Zn, and Pb metals. Previously, fungi
were examined as bioremediation agents for water pollutants.
The strong metabolic ability of fungi make them better microor-
ganisms for growth and production in acidic conditions and
radionuclide exposure (Deshmukh et al., 2016). The fungal cell sur-
face has chitin and chitosan, known to be outstanding heavy metal
ion biosorbents. The fungi Fusarium sp, Saccharomyces sp., Mucor
spp., Rhizopus spp., Aspergillus spp., and Penicillium spp are excel-
lent metal ion biosorbents (Cardenas Gonzalez et al., 2019). Saccha-
romyces sp., Rhizopus sp. and Penicillium sp. biomass can biosorb As,
Cr, Pb, Zn, and Ni (Bano et al., 2018). The promising treatment of
metal-contaminated sites could be suggested for Penicillium piscar-
ium. Coelho et al. (2020) examined the dead biomass of P. piscarium
in metal biosorption (Coelho et al., 2020). The findings were
remarkable and showed that the dead biomass of P. piscarium
might be an essential answer to traditional water treatment sys-
tems polluted with heavy metals. This eco-friendly, cost-
effective, and reliable wastewater management technology can
be promoted from industrial activities. The performance of Asper-
gillus sp. was also stated by Srivastava and Thakur (2006) for chro-
mium reduction of tannery wastewater (Srivastava and Thakur,
2006). Algae are autotrophic and thus need low nutrients and gen-
erate large biomass compared with other microbial biosorbents.
These biosorbents were often used for the removal of heavy metal
with strong sorption potential (Cardoso et al., 2017). Algae biomass
is used for the bioremediation of contaminated heavy metal efflu-
ent through adsorption or cell incorporation. Phycoremediation
uses reduction or oxidation of the toxicant for different algae and
cyanobacteria species to remove heavy metals. Algae provide sev-
eral chemical moieties surfaces such as hydroxy, carboxylic, phos-
phate, and amide as metal-binding sites. Many researchers
concluded that Sargassum brown algae are adsorbent and capable
of efficiently extracting heavy metals like Pr, Sm, Cr, Cd, Cu, Pd,
and Ni due to cell wall structures containing active bioabsorption
sites (Cardoso et al., 2017). Bioadsorbents are widely available as
by-products or waste, and no growth media or growth conditions
are required. Consequently, low-cost products with a strong capac-
ity for usage for several cycles (Nazal, 2019). The literature sug-
gests that heavy metals can be extracted by living or dead
marine algae. Goher et al. (2016) used Chlorella vulgaris dead cells
at different times of contact, pH, biosorbent used to extract led ions
(Pb2*), copper (Cu2*), and cadmium (Cd2*), from aqueous solution.
The findings showed C. vulgaris biomass is 99.4 %, 97.7 %, and 95.5
%, effective for removal of led ions (Pb2"), copper (Cu2*), and cad-
mium (Cd2") respectively (Goher et al., 2016).

6.3. Genetic engineering

Advances in genetic modification and optimization techniques
demonstrate that such advancements have a bright future. Genet-
ically engineered microorganisms might be more able to bioreme-
diate different pollutants (Kapahi and Sachdeva, 2019). In addition,
the genetic modification of photosynthesizing species has been
studied to improve resistance, sequestration, transport, absorption,
and chelation of metals. Microbes are modified in genetic engi-
neering, and they are capable of tolerating metals stress. Closterium
ehrenbergii exhibits a high sensitivity to various hazardous chemi-
cals, making it a model species for ecotoxicology research (Abassi
et al., 2019). CeHOP, CeHSP70, and CeHSP90 all responded to dif-
ferent stresses, but over-expression of the HOP gene than HSP70
and HSP90 means that this gene could be much more significant
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than the HSP70/HSP90 co-chaperone activity. HSP genes have
already been suggested as microalgae biomarkers (Chankova
et al,, 2013; Guo et al., 2013); therefore, HOP may be used as
biomarkers for the prediction of the action of species and data col-
lected from various gene transcription for the creation of an
answer profile to external stressors that can assist in the protection
and monitoring of surroundings. Microalgae have molecular
machinery that allows differentiation between essential and non-
essential heavy metals (Perales-Vela et al., 2006). Chlamydomonas
reinhardtii was identified as a species for heavy metal tolerance
(Hanikenne et al., 2005). Zinc can detoxify heavy metals and
decrease oxidative stress in Dunaliella tertiolecta (Tsuji et al.,
2002). Thioredoxin (TRXs) is believed to detoxify heavy metals in
Chlamydomonas, exemplified by two TRX genes, being stimulated
mercury and Cd. To remediate heavy metal, genetically engineered
E. coli targets As(Ill) (Ibuot et al., 2017). Corynebacterium glutam-
icum and Saccharomyces cerevisiae were genetically modified to
target Zn2+ and Cd2+ using ars operons overexpression to detoxify
As-contaminated sites (Mateos et al., 2017).

7. Conclusion

Environmental pollution, food quality, safety, and public well-
being are all intertwined. Heavy metal concentrations in the
ecosystem have grown substantially in recent decades. The origins
of heavy metals in food crops varies across the developing and
industrialized worlds. Heavy metals (HMs) buildup in organisms
is one of the primary causes of seafood contamination in poor
nations. However, the disposal of inadequately treated effluent or
sludge is the major source of seafood pollution in developed coun-
tries. The heavy metal transfer is complex and uses multifaceted
processes. Metal toxicity in seafood requires a thorough evaluation
of the exact toxicity of a metal. Internationally, risks to public
health have been extensively researched, but few of these initia-
tives have employed effective epidemiological techniques. Current
remediation techniques lower heavy metal concentrations in aqua-
tic environments and the food chain, therefore reducing health
risks. To prevent metal contaminants from entering the food chain
and create efficient remediation techniques, marine food contami-
nation must be mapped quickly and precisely. Biological treatment
can be an environmentally friendly and cost-effective solution for
moderately contaminated water.
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