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1. Introduction

Fractional calculus is nowadays one of the most intensively devel-

oping areas of mathematical analysis (Jahanshahi et al., 2015;
Machado et al., 2011; Tarasov, 2015), including several definitions
of fractional operators like Riemann–Liouville, Caputo, and

Grünwald–Letnikov. Operators for fractional differentiation and
integration have been used in various fields, such as signal process-
ing, hydraulics of dams, temperature field problem in oil strata,

diffusion problems, and waves in liquids and gases (Benkhettou
et al., 2015; Boyadjiev and Scherer, 2004; Schneider and Wyss,
1989). Here we introduce the notion of conformable fractional
derivative on a time scale T. The notion of conformable fractional
derivative in T ¼ ½0;1Þ is a recent one: it was introduced in

Khalil et al. (2014), then developed in Abdeljawad (2015), and is
currently under intensive investigations (Batarfi et al., 2015). In
all these works, however, only the case T ¼ ½0;1Þ is treated, pro-
viding a natural extension of the usual derivative. In contrast, here
we introduce the conformable natural extension of the time-scale
derivative. A time scale T is an arbitrary nonempty closed subset
of R. It serves as a model of time. The calculus on time scales was

initiated by Aulbach and Hilger (1990), in order to unify and
generalize continuous and discrete analysis (Hilger, 1990, 1997).
It has a tremendous potential for applications and has recently

received much attention (Agarwal et al., 2002). The reader inter-
ested on the subject of time scales is referred to the books
(Bohner and Peterson, 2001, 2003).

The paper is organized as follows. In Section 2, the con-
formable fractional derivative for functions defined on arbitrary
time scales is introduced, and the respective conformable
fractional differential calculus developed. Then, in Section 3, we

introduce the notion of conformable fractional integral on time
scales (the a-fractional integral) and investigate some of its basic
properties. We end with Section 4 of conclusion.
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2. Conformable fractional differentiation

Let T be a time scale, t 2 T, and d > 0. We define the d-
neighborhood of t as V t :¼ t� d; tþ d� ½ \ T. We begin by

introducing a new notion: the conformable fractional deriva-
tive of order a 2 �0; 1� for functions defined on arbitrary time
scales.

Definition 1. Let f : T! R; t 2 Tj, and a 2 �0; 1�. For t > 0,

we define TaðfÞðtÞ to be the number (provided it exists)
with the property that, given any � > 0, there is a
d-neighborhood Vt � T of t; d > 0, such that

fðrðtÞÞ � fðsÞ½ �t1�a � TaðfÞðtÞ rðtÞ � s½ �
�� �� 6 � rðtÞ � sj j for all

s 2 Vt. We call TaðfÞðtÞ the conformable fractional derivative
of f of order a at t, and we define the conformable fractional
derivative at 0 as TaðfÞð0Þ ¼ limt!0þTaðfÞðtÞ.

Remark 2. If a ¼ 1, then we obtain from Definition 1 the delta

derivative of time scales. The conformable fractional derivative
of order zero is defined by the identity operator: T0ðfÞ :¼ f.

Remark 3. Along the work, we also use the notation

fðtÞð ÞðaÞ ¼ TaðfÞðtÞ.

The next theorem provides some useful relationships con-

cerning the conformable fractional derivative on time scales
introduced in Definition 1.

Theorem 4. Let a 2 �0; 1� and T be a time scale. Assume

f : T! R and let t 2 Tj. The following properties hold.

(i) If f is conformal fractional differentiable of order a at
t > 0, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is con-
formable fractional differentiable of order a at t with

TaðfÞðtÞ ¼
fðrðtÞÞ � fðtÞ

lðtÞ t1�a: ð1Þ

(iii) If t is right-dense, then f is conformable fractional differ-
entiable of order a at t if, and only if, the limit

lims!t
f ðtÞ�f ðsÞ
ðt�sÞ t1�a exists as a finite number. In this case,

TaðfÞðtÞ ¼ lim
s!t

fðtÞ � fðsÞ
t� s

t1�a: ð2Þ

(iv) If f is fractional differentiable of order a at t, then

f ðrðtÞÞ ¼ f ðtÞ þ ðlðtÞÞta�1T aðf ÞðtÞ.

Proof.

(i) Assume that f is conformable fractional differentiable at

t. Then, there exists a neighborhood V t of t such that

f ðrðtÞÞ� f ðsÞ½ �t1�a� T aðf ÞðtÞ rðtÞ� s½ �j j6 � rðtÞ� sj j for

s 2 V t. Therefore, f tð Þ� f sð Þj j6 f ðrðtÞ� f ðsÞ½ ��j
T aðf ÞðtÞ rðtÞ� s½ �ta�1j þ f ðrðtÞÞ�f ðtÞ½ �j jþ f ðaÞðtÞ

�� �� rðtÞ�½j
s�j ta�1j j for all s2V t\ t��;tþ�� ½ and, since t is a right-
dense point,

f tð Þ � f sð Þj j 6 frðtÞ � fðsÞ½ � � fðaÞðtÞ rðtÞ � s½ �a
�� ��þ fðaÞðtÞ t� s½ �a

�� ��
6 �dþ ta�1

�� �� TaðfÞðtÞj jd:
Since d! 0 when s! t, and t > 0, it follows the conti-

nuity of f at t.

(ii) Assume that f is continuous at t and t is right-scattered.

By continuity,

lim
s!t

fðrðtÞÞ � fðsÞ
rðtÞ � s

t1�a ¼ fðrðtÞÞ � fðtÞ
rðtÞ � t

t1�a ¼ fðrðtÞÞ � fðtÞ
lðtÞ t1�a:
Hence, given � > 0 and a 2 �0; 1�, there is a neighbor-
hood V t of t such that
fðrðtÞÞ � fðsÞ
rðtÞ � s

t1�a � fðrðtÞÞ � fðtÞ
lðtÞ t1�a

����
���� 6 �
for all s 2 Vt. It follows that
fðrðtÞÞ � fðsÞ½ �t1�a � fðrðtÞÞ � fðtÞ
lðtÞ t1�aðrðtÞ � sÞ

����
���� 6 �jrðtÞ � sj
for all s 2 Vt. The desired equality (1) follows from

Definition 1.

(iii) Assume that f is conformable fractional differentiable of

order a at t and t is right-dense. Let � > 0 be given. Since

f is conformable fractional differentiable of order a at t,
there is a neighborhood V t of t such that

½f ðrðtÞÞ � f ðsÞ�t1�a � T aðf ÞðtÞðrðtÞ � sÞj j 6 �jrðtÞ � sj
for all s 2 V t. Because rðtÞ ¼ t,

fðtÞ � fðsÞ
t� s

t1�a � TaðfÞðtÞ
����

���� 6 �

for all s 2 Vt; s – t. Therefore, we get the desired result

(2). Now, assume that the limit on the right-hand side of
(2) exists and is equal to L, and t is right-dense.

Then, there exists Vt such that ðfðtÞ � fðsÞÞt1�a�j
Lðt� sÞj 6 �jt� sj for all s 2 V t. Because t is right-
dense,
ðfðrðtÞÞ � fðsÞÞt1�a � LðrðtÞ � sÞ
�� �� 6 �jrðtÞ � sj;
which leads us to the conclusion that f is conformable

fractional differentiable of order a at t and TaðfÞðtÞ ¼ L.

(iv) If t is right-dense, i.e., rðtÞ ¼ t, then lðtÞ ¼ 0 and

f ðrðtÞÞ ¼ f ðtÞ ¼ f ðtÞ þ lðtÞT aðf ÞðtÞt1�a. On the other
hand, if t is right-scattered, i.e., rðtÞ > t, then by (iii)

fðrðtÞÞ ¼ fðtÞ þ lðtÞta�1 � fðrðtÞÞ � fðtÞ
lðtÞ t1�a ¼ fðtÞ þ ðlðtÞÞa�1TaðfÞðtÞ;
and the proof is complete. h
Remark 5. In a time scale T, due to the inherited topology of
the real numbers, a function f is always continuous at any iso-
lated point t 2 T.

Example 6. Let h > 0 and T ¼ hZ :¼ fhk : k 2 Zg. Then

rðtÞ ¼ tþ h and lðtÞ ¼ h for all t 2 T. For function

f : t 2 T#t2 2 R we have TaðfÞðtÞ ¼ t2ð ÞðaÞ ¼ ð2tþ hÞt1�a.

Example 7. Let q > 1 and T ¼ qZ :¼ qZ [ f0g with

qZ :¼ fqk : k 2 Zg. In this time scale

rðtÞ ¼
qt if t – 0

0 if t ¼ 0

�
and lðtÞ ¼

ðq� 1Þt if t – 0

0 if t ¼ 0:

�
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Here 0 is a right-dense minimum and every other point in T is

isolated. Now consider the square function f of Example 6. It
follows that

TaðfÞðtÞ ¼ t2
� �ðaÞ ¼ ðqþ 1Þt2�a if t – 0

0 if t ¼ 0:

�

Example 8. Let q > 1 and T ¼ qN0 :¼ fqn : n 2 N0g. For all
t 2 T we have rðtÞ ¼ qt and lðtÞ ¼ ðq� 1Þt. Let

f : t 2 T# logðtÞ 2 R. Then TaðfÞðtÞ ¼ logðtÞð ÞðaÞ ¼ logðqÞ
ðq�1Þta

for all t 2 T.

Proposition 9. If f : T! R is defined by fðtÞ ¼ c for all

t 2 T; c 2 R, then TaðfÞðtÞ ¼ ðcÞðaÞ ¼ 0.

Proof. If t is right-scattered, then by Theorem 4 (ii) one has

TaðfÞðtÞ ¼ fðrðtÞÞ�fðtÞ
lðtÞ t1�a ¼ 0. Otherwise, t is right-dense and,

by Theorem 4 (iii), TaðfÞðtÞ ¼ lims!t
c�c
t�s t

1�a ¼ 0. h

Proposition 10. If f : T! R is defined by fðtÞ ¼ t for all

t 2 T, then

TaðfÞðtÞ ¼ ðtÞðaÞ ¼
t1�a if a – 1;

1 if a ¼ 1:

�

Proof. From Theorem 4 (iv), it follows that

rðtÞ ¼ tþ lðtÞta�1TaðfÞðtÞ; lðtÞ ¼ lðtÞta�1TaðfÞðtÞ. If lðtÞ– 0,

then TaðfÞðtÞ ¼ t1�a and the desired relation is proved.
Assume now that lðtÞ ¼ 0, i.e., rðtÞ ¼ t. In this case t is
right-dense and, by Theorem 4 (iii), TaðfÞðtÞ ¼
lims!t

t�s
t�s t

1�a ¼ t1�a. Therefore, if a ¼ 1, then TaðfÞðtÞ ¼ 1; if

0 < a < 1, then TaðfÞðtÞ ¼ t1�a. h

Now, let us consider the two classical cases T ¼ R and
T ¼ hZ; h > 0.

Corollary 11. Function f : R! R is conformable fractional

differentiable of order a at point t 2 R if, and only if, the limit

lims!t
fðtÞ�fðsÞ

t�s t1�a exists as a finite number. In this case,

TaðfÞðtÞ ¼ lim
s!t

fðtÞ � fðsÞ
t� s

t1�a: ð3Þ

Proof. Here T ¼ R, so all points are right-dense. The result

follows from Theorem 4 (iii). h

Remark 12. The identity (3) corresponds to the conformable
derivative introduced in Khalil et al. (2014) and further studied
in Abdeljawad (2015).

Corollary 13. Let h > 0. If f : hZ! R, then f is conformable
fractional differentiable of order a at t 2 hZ with

TaðfÞðtÞ ¼
fðtþ hÞ � fðtÞ

h
t1�a:

Proof. Here T ¼ hZ and all points are right-scattered. The
result follows from Theorem 4 (ii). h
Now we give an example using the time scale T ¼ Pa;b,

which is a time scale with interesting applications in Biology
(Fenchel and Christiansen, 1977).

Example 14. Let a; b > 0 and consider the time scale

Pa;b ¼
S1

k¼0½kðaþ bÞ; kðaþ bÞ þ a�. Then

rðtÞ ¼
t if t 2

[1
k¼0
½kðaþ bÞ; kðaþ bÞ þ aÞ;

tþ b if t 2
[1
k¼0
fkðaþ bÞ þ ag

8>>>><
>>>>:

and

lðtÞ ¼
0 if t 2

[1
k¼0
½kðaþ bÞ; kðaþ bÞ þ aÞ;

b if t 2
[1
k¼0
fkðaþ bÞ þ ag:

8>>>><
>>>>:

Let f : Pa;b ! R be continuous and a 2�0; 1�. It follows from

Theorem 4 that the conformable fractional derivative of order
a of a function f defined on Pa;b is given by

TaðfÞðtÞ ¼
lim
s!t

fðtÞ�fðsÞ
ðt�sÞ t1�a if t 2

[1
k¼0
½kðaþ bÞ; kðaþ bÞ þ aÞ;

fðtþbÞ�fðtÞ
b

t1�a if t 2
[1
k¼0
fkðaþ bÞ þ ag:

8>>>><
>>>>:

For the conformable fractional derivative on time scales to
be useful, we would like to know formulas for the derivatives

of sums, products, and quotients of fractional differentiable
functions. This is done according to the following theorem.

Theorem 15. Assume f; g : T! R are conformable fractional
differentiable of order a. Then,

(i) the sum f þ g : T! R is conformable fractional differen-
tiable with T aðf þ gÞ ¼ T aðf Þ þ T aðgÞ;

(ii) for any k 2 R; kf : T! R is conformable fractional dif-
ferentiable with T aðkf Þ ¼ kT aðf Þ;

(iii) if f and g are continuous, then the product fg : T! R is

conformable fractional differentiable with
T aðfgÞ ¼ T aðf Þgþ ðf � rÞT aðgÞ ¼ T aðf Þðg � rÞ þ fT aðgÞ;

(iv) if f is continuous, then 1=f is conformable fractional dif-

ferentiable with

Ta
1

f

� �
¼ � TaðfÞ

fðf � rÞ ;
valid at all points t 2 Tj for which fðtÞfðrðtÞÞ – 0;
(v) if f and g are continuous, then f =g is conformable frac-
tional differentiable with

Ta
f

g

� �
¼ TaðfÞg� fTaðgÞ

gðg � rÞ ;
valid at all points t 2 Tj for which gðtÞgðrðtÞÞ– 0.
Proof. Let us consider that a 2�0; 1�, and let us assume that f
and g are conformable fractional differentiable at t 2 Tj.
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(i) Let � > 0. Then there exist neighborhoods V t and U t of t

for which

½fðrðtÞÞ � fðsÞ�t1�a � TaðfÞðtÞ rðtÞ � sð Þ
�� ��
6
�

2
jrðtÞ � sj for all s 2 Vt
and
½gðrðtÞÞ � gðsÞ�t1�a � TaðgÞðtÞðrðtÞ � sÞ
�� ��
6
�

2
jrðtÞ � sj for all s 2 U t:
LetWt ¼ Vt \ U t. Then ½ðfþ gÞðrðtÞÞ � ðfþ gÞðsÞ�t1�a�j
TaðfÞðtÞ þ TaðgÞðtÞ½ �ðrðtÞ � sÞj 6 �jrðtÞ � sj for all
s 2 W. Thus, fþ g is conformable differentiable at t

and Taðfþ gÞðtÞ ¼ TaðfÞðtÞ þ TaðgÞðtÞ.

(ii) Let � > 0. Then ½f ðrðtÞÞ � f ðsÞ�t1�a � T aðf ÞðtÞðrðtÞ�j

sÞj 6 �jrðtÞ � sj for all s in a neighborhood V t of t. It
follows that

½ðkfÞðrðtÞÞ � ðkfÞðsÞ�t1�a � kTaðfÞðtÞðrðtÞ � sÞ
�� ��
6 �jkj jrðtÞ � sj for all s 2 V t:
Therefore, kf is conformable fractional differentiable at t
and TaðkfÞ ¼ kTaðfÞ holds at t.
(iii) If t is right-dense, then

TaðfgÞðtÞ ¼ lim
s!t

fðtÞ � fðsÞ
t� s

t1�a

� 	
g tð Þ þ lim

s!t

gðtÞ � gðsÞ
t� s

t1�a

� 	
f sð Þ

¼ TaðfÞðtÞgðtÞ þ TaðgÞðtÞfðtÞ
¼ TaðfÞðtÞgðrðtÞÞ þ TaðgÞðtÞfðtÞ:
If t is right-scattered, then
Ta fgð ÞðtÞ ¼ fðrðtÞÞ � fðtÞ
lðtÞ t1�a

� 	
g rðtÞð Þ

þ gðrðtÞÞ � gðtÞ
lðtÞ t1�a

� 	
fðtÞ

¼ TaðfÞðtÞgðrðtÞÞ þ fðtÞTaðgÞðtÞ:
The other product rule formula follows by interchanging
the role of functions f and g.
(iv) We use the conformable fractional derivative of a con-

stant (Proposition 9) and property (iii) of Theorem 15
(just proved): from Proposition 9 we know that

T a f � 1f

 �

ðtÞ ¼ ð1ÞðaÞ ¼ 0. Therefore, by (iii)

Ta
1

f

� �
ðtÞfðrðtÞÞ þ TaðfÞðtÞ

1

fðtÞ ¼ 0:
Since we are assuming fðrðtÞÞ – 0;Ta
1
f


 �
ðtÞ ¼ � TaðfÞðtÞ

fðtÞfðrðtÞÞ.

(v) We use (ii) and (iv) to obtain

Ta
f

g

� �
ðtÞ ¼ Ta f � 1

g

� �
ðtÞ ¼ fðtÞTa

1

g

� �
ðtÞ þ TaðfÞðtÞ

1

gðrðtÞÞ

¼ TaðfÞðtÞgðtÞ � fðtÞTaðgÞðtÞ
gðtÞgðrðtÞÞ :

This concludes the proof. h

Theorem 16. Let c be a constant, m 2 N, and a 2 0; 1� �.
(i) If f ðtÞ ¼ ðt � cÞm, then T aðf ÞðtÞ ¼ t1�a
Pm�1

p¼0 rðtÞ�ð
cÞm�1�pðt � cÞp.

(ii) If gðtÞ ¼ 1
ðt�cÞm and ðt � cÞ rðtÞ � cð Þ – 0,

then T aðgÞðtÞ ¼ �t1�a
Pm�1

p¼0
1

ðrðtÞ�cÞpþ1ðt�cÞm�p.

Proof. We prove the first formula by induction. If m ¼ 1, then

fðtÞ ¼ t� c and TaðfÞðtÞ ¼ t1�a holds from Propositions 9 and

10 and Theorem 15 (i). Now assume that

TaðfÞðtÞ ¼ t1�a
Xm�1
p¼0
ðrðtÞ � cÞm�1�pðt� cÞp

holds for fðtÞ ¼ ðt� cÞm and let FðtÞ ¼ ðt� cÞmþ1 ¼ ðt� cÞfðtÞ.
We use Theorem 15 (iii) to obtain FðtÞð ÞðaÞ ¼ Taðt� cÞfðrðtÞÞþ
TaðfÞðtÞðt� cÞ ¼ t1�a

Pm
p¼0ðrðtÞ � cÞm�pðt� cÞp. Hence, by

mathematical induction, part (i) holds. (ii) Let gðtÞ ¼ 1
ðt�cÞm ¼

1
fðtÞ. From (iv) of Theorem 15,

gðaÞðtÞ ¼ � TaðfÞðtÞ
fðtÞfðrðtÞÞ ¼ �t

1�a
Xm�1
p¼0

1

ðrðtÞ � cÞpþ1ðt� cÞm�p
;

provided ðt� cÞ rðtÞ � cð Þ – 0. h

We show some examples of application of Theorem 16.

Example 17. Let a 2 0; 1� � and fðtÞ ¼ tm. Then

TaðfÞðtÞ ¼ t1�aPm�1
p¼0 rðtÞm�1�ptp. Note that if t is right-dense,

then TaðfÞðtÞ ¼ mtm�a. If we choose T ¼ R and a ¼ 1, then we

obtain the usual derivative: T1ðfÞðtÞ ¼ mtm�1 ¼ f0ðtÞ.

Example 18. Let a 2 0; 1� � and fðtÞ ¼ 1
tm
. Then

TaðfÞðtÞ ¼ �t1�a
Pm�1

p¼0
1

tp�mrðtÞpþ1. If t is right-dense, then

TaðfÞðtÞ ¼ � m
tmþa. Moreover, if a ¼ 1, then we obtain

T1ðfÞðtÞ ¼ � m
tmþ1.

Example 19. If fðtÞ ¼ ðt� 1Þ2, then TaðfÞðtÞ ¼
t1�a ðrðtÞþ 1Þ2þðrðtÞþ 1Þðtþ 1Þþ ðtþ 1Þ2
h i

for all a 2 0;1� �.

The chain rule, as we know it from the classical differential
calculus, does not hold for the conformable fractional deriva-
tive on times scales. This is well illustrated by the following

example.

Example 20. Let a 2 ð0; 1Þ; T ¼ N ¼ f1; 2; . . .g, for which
rðtÞ ¼ tþ 1 and lðtÞ ¼ 1; and f; g : T! T be given by
fðtÞ ¼ gðtÞ ¼ t. Then, Taðf � gÞðtÞ– TaðfÞ gðtÞð ÞTaðgÞðtÞ :

Taðf � gÞðtÞ ¼ t1�a, while TaðfÞ gðtÞð ÞTaðgÞðtÞ ¼ t2ð1�aÞ.

We can prove, however, the following result.

Theorem 21 (Chain rule). Let a 2 0; 1� �. Assume g : T! R is

continuous and conformable fractional differentiable of order a
at t 2 Tj, and f : R! R is continuously differentiable. Then
there exists c in the real interval ½t; rðtÞ� with

Taðf � gÞðtÞ ¼ f0ðgðcÞÞTaðgÞðtÞ: ð4Þ
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Proof. Let t 2 Tj. First we consider t to be right-scattered. In

this case,

Taðf � gÞðtÞ ¼
fðgðrðtÞÞÞ � fðgðtÞÞ

lðtÞ t1�a:

If gðrðtÞÞ ¼ gðtÞ, then we get Taðf � gÞðtÞ ¼ 0 and TaðgÞðtÞ ¼ 0.
Therefore, (4) holds for any c in the real interval ½t; rðtÞ�. Now

assume that gðrðtÞÞ– gðtÞ. By the mean value theorem we have

Taðf � gÞðtÞ ¼
fðgðrðtÞÞÞ � fðgðtÞÞ

gðrðtÞÞ � gðtÞ � gðrðtÞÞ � gðtÞ
lðtÞ t1�a

¼ f0ðnÞTaðgÞðtÞ;

where n 2�gðtÞ; gðrðtÞÞ½. Since g : T! R is continuous, there
is a c 2 ½t; rðtÞ� such that gðcÞ ¼ n, which gives the desired
result. Now let us consider the case when t is right-dense. In

this case

Taðf � gÞðtÞ ¼ lim
s!t

fðgðtÞÞ � fðgðsÞÞ
gðtÞ � gðsÞ � gðtÞ � gðsÞ

t� s
t1�a:

By the mean value theorem, there exists ns 2�gðtÞ; gðrðtÞÞ½ such
that

Taðf � gÞðtÞ ¼ lim
s!t

f0ðnsÞ �
gðtÞ � gðsÞ

t� s
t1�a

� �
:

By the continuity of g, we get that lims!tns ¼ gðtÞ. Then

Taðf � gÞðtÞ ¼ f0ðgðtÞÞ � TaðgÞðtÞ. Since t is right-dense, we con-
clude that c ¼ t ¼ rðtÞ, which gives the desired result. h

Example 22. Let T ¼ 2N, for which rðtÞ ¼ 2t and lðtÞ ¼ t. (i)

Choose fðtÞ ¼ t2 and gðtÞ ¼ t. Theorem 21 guarantees that we
can find a value c in the interval ½t; rðtÞ� ¼ ½t; 2t�, such that

Taðf � gÞðtÞ ¼ f0ðgðcÞÞTaðgÞðtÞ: ð5Þ

Indeed, from Theorem 4 it follows that Taðf � gÞðtÞ ¼ 3t1�a;

TaðgÞðtÞ ¼ t1�a, and f0ðgðcÞÞ ¼ 2c. Equality (5) leads to

3t1�a ¼ 2ct1�a and so c ¼ 3
2
t 2 ½t; 2t�. (ii) Now let us take

fðtÞ ¼ gðtÞ ¼ t2 for all t 2 T. We obtain 15t4�a¼Taðf�gÞðtÞ¼
f0ðgðcÞÞTaðgÞðtÞ¼2c23t2�a. Therefore, c¼

ffiffi
5
2

q
t2½t;2t�.

To end Section 2, we consider conformable derivatives of
higher-order. More precisely, we define the conformable frac-

tional derivative Ta for a 2 ðn; nþ 1�, where n is some natu-
ral number.

Definition 23. Let T be a time scale, a 2 ðn; nþ 1�; n 2 N,

and let f be n times delta differentiable at t 2 Tjn

. We define
the conformable fractional derivative of f of order a as

TaðfÞðtÞ :¼ Ta�n fD
n


 �
ðtÞ. As before, we also use the notation

ðfðtÞÞðaÞ ¼ TaðfÞðtÞ.

Example 24. Let T ¼ hZ; h > 0; fðtÞ ¼ t3, and a ¼ 2:1. Then,

by Definition 23, we have T2:1ðfÞ ¼ T0:1 fD
2


 �
. Since

rðtÞ ¼ tþ h and lðtÞ ¼ h;T2:1ðfÞðtÞ ¼ t3ð Þð2:1Þ ¼ ð6tþ 6hÞð0:1Þ.
By Proposition 9 and Theorem 15 (i) and (ii), we obtain that

T2:1ðfÞðtÞ ¼ 6ðtÞð0:1Þ. We conclude from Proposition 10 that

T2:1ðfÞðtÞ ¼ 6t0:9.
Theorem 25. Let a 2 ðn; nþ 1�; n 2 N. The following rela-

tion holds:

TaðfÞðtÞ ¼ t1þn�afD
1þn
ðtÞ: ð6Þ

Proof. Let f be a function n times delta-differentiable. For
a 2 ðn; nþ 1�, there exist b 2 ð0; 1� such that a ¼ nþ b.

Using Definition 23, TaðfÞ ¼ Tb fD
n


 �
. From the definition of

(higher-order) delta derivative and Theorem 4 (ii) and (iii), it

follows that TaðfÞðtÞ ¼ t1�b fD
n


 �D
ðtÞ. h
3. Fractional integration

Now we introduce the a-conformable fractional integral (or a-
fractional integral) on time scales.

Definition 26. Let f : T! R be a regulated function. Then the
a-fractional integral of f, 0 < a 6 1, is defined byR
fðtÞDat :¼

R
fðtÞta�1Dt.

Remark 27. For T ¼ R Definition 26 reduces to the con-
formable fractional integral given in Khalil et al. (2014); for
a ¼ 1 Definition 26 reduces to the indefinite integral of time

scales (Bohner and Peterson, 2001).

Definition 28. Suppose f : T! R is a regulated function.
Denote the indefinite a-fractional integral of f of order

a; a 2 ð0; 1�, as follows: FaðtÞ ¼
R
fðtÞDat. Then, for all

a; b 2 T, we define the Cauchy a-fractional integral byR b

a
fðtÞDat ¼ FaðbÞ � FaðaÞ.

Example 29. Let T ¼ R; a ¼ 1
2
, and fðtÞ ¼ t. ThenR 102=3

1
fðtÞDat ¼ 6.

Theorem 30. Let a 2 ð0; 1�. Then, for any rd-continuous func-

tion f : T! R, there exists a function Fa : T! R such that
Ta Fað ÞðtÞ ¼ fðtÞ for all t 2 Tj. Function Fa is said to be an a-
antiderivative of f.

Proof. The case a ¼ 1 is proved in Bohner and Peterson

(2001). Let a 2 ð0; 1Þ. Suppose f is rd-continuous. By
Theorem 1.16 of Bohner and Peterson (2003), f is regulated.

Then, FaðtÞ ¼
R
fðtÞDat is conformable fractional differentiable

on Tj. Using (6) and Definition 26, we obtain that

Ta Fað ÞðtÞ ¼ t1�a FaðtÞð ÞD ¼ fðtÞ; t 2 Tj. h

Theorem 31. Let a 2 ð0; 1�; a; b; c 2 T; k 2 R, and f; g be

two rd-continuous functions. Then,

(i)
R b

a ½f ðtÞ þ gðtÞ�Dat ¼
R b

a f ðtÞDat þ
R b

a gðtÞDat;

(ii)
R b

a ðkf ÞðtÞDat ¼ k
R b

a f ðtÞDat;

(iii)
R b

a f ðtÞDat ¼ �
R a

b f ðtÞDat;

(iv)
R b

a f ðtÞDat ¼
R c

a f ðtÞDat þ
R b

c f ðtÞDat;
(v)

R a
a f ðtÞDat ¼ 0;
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(vi) if there exist g : T! R with jf ðtÞj 6 gðtÞ for all

t 2 ½a; b�, then
R b

a f ðtÞDat
��� ��� 6 R b

a gðtÞDat;

(vii) if f ðtÞ > 0 for all t 2 ½a; b�, then
R b

a f ðtÞDat P 0.

Proof. The relations follow from Definitions 26 and 28, anal-

ogous properties of the delta-integral, and the properties of
Section 2 for the conformable fractional derivative on time
scales. h

Theorem 32. If f : Tj ! R is a rd-continuous function and

t 2 Tj, then

Z rðtÞ

t

fðsÞDas ¼ fðtÞlðtÞta�1:

Proof. Let f be a rd-continuous function on Tj. Then f is a
regulated function. By Definition 28 and Theorem 30, there
exist an antiderivative Fa of f satisfying

Z rðtÞ

t

fðsÞDas ¼ FaðrðtÞÞ � FaðtÞ ¼ Ta Fað ÞðtÞlðtÞt1�a

¼ fðtÞlðtÞt1�a:

This concludes the proof. h

Theorem 33. Let T be a time scale, a; b 2 T with a < b. If

TaðfÞðtÞP 0 for all t 2 ½a; b� \ T, then f is an increasing func-
tion on ½a; b� \ T.

Proof. Assume TaðfÞ exist on ½a; b� \ T and TaðfÞðtÞP 0 for all
t 2 ½a; b� \ T. Then, by (i) of Theorem 4, TaðfÞ is continuous
on ½a; b� \ T and, therefore, by Theorem 31 (vii),R t

s
TafðnÞDan P 0 for s; t such that a 6 s 6 t 6 b. From

Definition 28, fðtÞ ¼ fðsÞ þ
R t

s
TafðnÞDan P fðsÞ. h
4. Conclusion

A fractional calculus, that is, a study of differentiation and
integration of non-integer order, is here investigated via the
recent and powerful calculus on time scales. Our new calculus

includes, in a single theory, discrete, continuous, and hybrid
fractional calculi. In particular, the new fractional calculus
on time scales unifies and generalizes: the Hilger calculus

(Bohner and Peterson, 2001; Hilger, 1990), obtained by choos-
ing a ¼ 1; and the conformable fractional calculus
(Abdeljawad, 2015; Khalil et al., 2014; Batarfi et al., 2015),
obtained by choosing T ¼ R.
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