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Presently, detection technology of breast tumors is mostly influenced by external interference factors,
leading to poor detection efficiency. To improve the detection efficiency of breast tumors and reduce
the cost of breast tumor detection, the study was designed to analyze the characteristics of breast tumors
and improved the traditional ultra-wideband microwave technology to construct a two-dimensional and
three-dimensional detection model of breast tumors. In addition, the study used dimensional transforma-
tion to optimize the two-dimensional texture feature extraction method and employed three-
dimensional texture feature extraction method to study the image. Finally, this paper verifies the validity
of the feature model proposed by this study through comparison experiments and collects 2D and 3D
detection effects images separately.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The pathological types of breast cancer are complex and numer-
ous. At present, the pathological classification of breast cancer in
international and domestic countries is still not unified in practice.
In China, breast cancer is mainly divided into non-invasive cancer,
early invasive cancer, invasive special cancer, invasive non-specific
cancer and other rare cancers. Among them, non-invasive cancer
includes intraductal carcinoma, lobular carcinoma in situ and pap-
illary eczema-like breast cancer (Zarbakhsh and Addeh, 2018).
Early invasive carcinoma includes early invasive ductal carcinoma
and early invasive lobular carcinoma. The invasive special cancers
include papillary carcinoma, medullary carcinoma, tubular carci-
noma, adenoid, mucinous adenocarcinoma, squamous cell carci-
noma, while invasive non-specific cancers include invasive
lobular carcinoma, invasive ductal carcinoma, hard cancer, medul-
lary carcinoma, simple cancer, adenocarcinoma, etc. (Fusco et al.,
2016). A large number of censuses and early diagnosis are signifi-
cant for breast cancer patients. From the perspective of therapeutic
effect, early breast cancer can be cured by almost 100%. Therefore,
early diagnosis and treatment are the key to improve the survival
rate and cure rate of breast cancer patients.

Ultrasound imaging, mammography and breast MRI are the
most commonly used imaging diagnostic techniques in the world.
Ultrasound imaging, mammography has some shortcomings in
breast cancer diagnosis. Ultrasound examination of the breast is
not sensitive to microcalcification of the breast, and the detection
rate has a certain correlation with the knowledge background
and technical level of the operator. Mammography is a projection
type of imaging. The overlap of tissue projections is not good for
multi-center lesions, and the examination of dense breasts can
mask the lesions. Therefore, the diagnostic value is not mainly used
for census, and it is suitable for postmenopausal women and
women with low-density breasts (Tiedtke et al., 2015). The breast
CT has high resolution and can display the anatomy of the breast in
detail, evaluate the exact location of the lesion, the number and
size of the lesion and scope of the examination is larger than that
of the mammography, thus, making it sensitivity to cysts, hemor-
rhage, calcification and fat high. Compared with other breast
examination methods, CT has high cost, radiation damage, and
allergic risk when using contrast agents (Saybani et al., 2016).
Although MRI has certain limitations on the display of calcification,
the resolution of soft tissue signals is high. Moreover, it has high
value for qualitative and localized diagnosis of breast lesions and
combine the morphology of breast lesions with hemodynamics
to comprehensively describe tumor features (Breunig et al., 2017).

Pathologically, breast cancer tumor cell division is uncontrolled
and malignant tumor cells require a large amount of nutrients to
satisfy their continuous growth and reproduction. This facilitate
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cancerous tissues or cells to infiltrate into the surrounding to
obtain nutrients. Considering that blood supply varies heteroge-
neously in different tumors, the characteristics of lesion morphol-
ogy and edge ambiguity in imaging diagnosis are called important
evaluation indicators. The paramagnetic contrast agent diffuses
with the blood entering the blood vessel and easily enters the
intercellular space and tissue cells through the highly permeable
capillary wall, so the concentration of the sputum in the tumor-
rich region is high (Milosevic et al., 2015). This type of physiolog-
ical abnormality can be observed by TIC when DCE-MRI is used
for multiple imaging in different phases of the same tissue. There-
fore, the static characteristics (shape, edge, enhanced form) and
dynamic characteristics (initial signal rise and change) of the lesion
have a great value in judging the benign and malignant tumors
(Kong et al., 2016). MRI’s images are clear and detailed, and can
be multi-faceted, multi-angle imaging (Zhou et al., 2015). The sur-
face coil of the breast has been put into clinical use, and the mag-
netic resonance imaging technology of the breast has also been
improved to become clearer. Moreover, the true positive rate and
the true negative rate of breast cancer diagnosis are simultane-
ously improved. The mammary gland DCE-MRI examination can
quantitatively display the anatomical structure of the human tis-
sue and the lesion at a higher resolution, which provides a great
help for the development of the clinician’s surgical plan and the
objective description of the condition.

More and more studies have shown that breast ECE-MRI is one
of the important means of comprehensive diagnosis of breast can-
cer (Lee et al., 2016)]. The non-invasive DCE-MRI examination pro-
vides detailed information on the diagnosis of mammary gland
disease in the anatomy, dynamics, and three-dimensional mor-
phology of the breast background and lesions. DCE-MRI has obvi-
ous advantages over other imaging examinations in finding the
number of lesions, the blood supply around the benign and malig-
nant lesions, the strengthening of the lesions, and the infiltration of
malignant masses. In clinical testing, early breast cancer in any
type of breast density background can be accurately diagnosed
under DCE-MRI. Moreover, its sensitivity and staging accuracy for
early breast cancer is higher than that of breast ultrasound and
mammography (Zadeh et al., 2015). In addition, it has a higher sen-
sitivity when screening for early breast cancer patients and high-
risk groups in combination with lesion morphological features
and hemodynamic information [13]. Both DCE-MRI and DWI can
be used for the diagnosis of early breast cancer, and the accuracy
of diagnosis of early breast cancer combined with DWI and DCE-
MRI is higher, and the clinical effect is more significant (Tsui and
Miller, 2015).

It can be seen that all of the above medical imaging methods
have their own advantages and disadvantages. Therefore, it is
urgent to develop a new type of auxiliary detection means that is
non-radiative, inexpensive, non-squeezing and portable, and can
be used as a regular routine inspection method. In the past decade,
ultra-wideband microwave imaging detection technology has been
proposed for early breast tumor detection, and this received exten-
sive attention. Based on the impact characteristics, the study inves-
tigated the effective, fast and inexpensive means of breast tumor
detection.
2. Material and method

2.1. Model algorithm

Since the finite-difference time domain method samples the
electric and magnetic fields at discrete points in time and at spatial
points, it is important to choose the sampling interval. Certain con-
ditions must be met to ensure the stability and accuracy of the
entire iterative calculation. In the FDTD method, the numerical sta-
bility depends on the CFL (Courant-Friedrchs-Lewy) condition,
which requires that the time step selected in the calculation be
within a range related to the spatial grid size. This condition can
be expressed as:

cDt 6 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dxð Þ2 þ 1
Dyð Þ2 þ 1

Dzð Þ2
q ð1Þ

Defining, c is the speed of light in the vacuum. For a spatial grid
of cubes, the CFL condition can be written as Bohon (2017):

Dt 6 Dx

c
ffiffiffi
3

p ð2Þ

Even if the numerical solution is stable, the CFL condition does
not necessarily make the numerical solution meet the required
accuracy. Therefore, in addition to adding restrictions between
the time step and the space grid, we also need to make the space
grid meet certain conditions. We must note that due to the spatial
dispersion, the numerical dispersion relationship of the entire
problem space is different from the exact dispersion relation,
which leads to the deviation between the numerical solution and
the exact solution. In order to ensure accuracy, in general, the
selected grid size must satisfy the following formula

Dx 6 k
12

ð3Þ

That is, the size of the grid is less than 1/12 of the wavelength
corresponding to the maximum frequency of the problem to be
solved (Hironaka et al., 2015)

2.2. Feature extraction

Feature extraction was achieved as described by Li et al. (2015).
We define the gray level co-occurrence matrix with direction /

and interval d as P(i,j,d, /). Among them, L is the number of gray
levels of the image, and the data in this study is 16-bit data. The
co-occurrence matrix is a huge matrix, which makes it difficult
to calculate the post-processing. Therefore, it is necessary to com-
press the gray level of the data without affecting the image texture
information. In this paper, we use the AUC value of single feature
under different gray levels (G = 8, 16, 32, 64, 128, 256) to judge.
The AUC value is an important indicator for evaluating the classifi-
cation effect. The larger the AUC value, the better the feature effect
(Hassan et al., 2017) (Fig. 1).

The meaning of P(i,j,d, /) is the probability that the starting
pixel has a gray value of i and the ending gray level is j when the
distance is d and the direction is /. Fig. 2 shows a specific case of
the calculation of the gray level co-occurrence matrix, in which
Fig. 2(a) is a 5 � 5 original image. According to statistics, the gray
value of the original image has three values, namely 0, 1, and 2, so
the gray level co-occurrence matrix has a dimension of 3 � 3.
Assuming that the direction is / = 135� and the distance is
d =

p
2, the matrix (Cvetanovic et al., 2015) shown in Fig. 2(b) is

finally obtained by statistics.
GLCM is able to reflect the texture of the image. Large diagonal

values correspond to images with slow texture changes and vice
versa. Although the symbiotic matrix has certain distinguishing
characteristics, considering that different directions correspond
to one symbiotic matrix, the amount of data is large. Therefore, it
is not advisable to treat GLCM directly as a feature, but to calculate
features based on GLCM.

Traditional texture analysis focuses on two-dimensional images
or two-dimensional projection images. For 3D images, it is com-
mon practice to select the most representative slices and approxi-
mate the three-dimensional results using the analysis results of the



Fig. 2. Calculation of gray lev

Fig. 1. Two-dimensional spatial relationship of pixels.

Fig. 3. Adjacent relationship of vox
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two-dimensional slices. The downside is that extracting informa-
tion from 2D slices is not ideal and ignores vertical information
between slices. With the development of 3D medical images, 2D
texture analysis methods can no longer satisfy the research on
3D images. Therefore, this study optimizes the 2D texture feature
extraction method and uses 3D texture feature extraction method
to study the image. The two-dimensional gray level co-occurrence
matrix is expanded. The pixels adjacent to the center pixel in two
dimensions have eight points, and there are 26 voxels extending
into the three-dimensional image adjacent to the central voxel,
and the shape is as shown in Fig. 3(a). In a two-dimensional plane,
only one angle / is needed for direction control, and when
extended to three dimensions, two directions / and h need to be
introduced, as shown in Fig. 3(b) (Dent et al., 2007).

With the development of medical equipment and the continu-
ous improvement of MRI technology, under the action of contrast
agent, multi-temporal spatial scanning of the human body can
not only obtain the gray information of a single time point, but also
obtain the dynamic enhancement information of tissue and capil-
lary by comparing at different time points. During the scanning
process, the patient is required to keep the position, so that the
same tissue at different time points can be easily registered accord-
ing to the similarity. By calculating the enhancement ratio between
the enhancement sequence and the mask, as shown in Eq. (4), the
el co-occurrence matrix.

els in three-dimensional space.



Fig. 5. MRI original image.

Fig. 6. Picture after enhancement processing.
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information after each voxel enhancement can be obtained. The
statistical feature extraction between each enhancement sequence
enhancement rate is achieved by using the enhanced information
to calculate statistical features.

Ei 6
Si � S0
S0

; i ¼ 1;2;3;4;5 ð4Þ

Among them, S0 represents the sequence of the mask and Si rep-
resents the enhanced sequence (Xiao et al., 2015). In the early
stage, the image data was extracted, and the image information
was reflected by the extracted features. The effect of model train-
ing is closely related to the number of input features. If the input
features are too small, the features do not reflect the differences
between the samples well, and the trained models are under-
learned. If there are too many input features, the model is too com-
plicated, the generalization ability of the model is weakened, and
the over-fitting state occurs. Therefore, feature extraction and fea-
ture selection are all crucial aspects in machine learning. In order
to fully describe the original data, sufficient features have been
extracted from the aspects of texture, morphology, statistics and
enhancement (Sutton et al., 2016).

The flow chart of feature selection is shown in Fig. 4 (Venter
et al., 2015).

3. Results

Fig. 5 is an MRI source diagram. It can be seen that the conven-
tional MRI source map is blurred, and the boundaries between var-
ious types of tissues are not clear. This is caused by noise during
MRI angiography and low resolution of MRI’s own imaging.

Fig. 6. In order to extract more accurate boundaries, in the
boundary enhancement, the fuzzy boundary information is first
extracted, and then the reasonable processing makes the grayscale
changes concentrated in a small interval and makes the change
intense. After this step, the image boundaries become clearer, as
shown in Fig. 6.
Fig. 4. Process of feature selection.

Fig. 7. Schematic diagram after organization discretion.

Fig. 8. Final image after the isolated islands eliminated.



Fig. 9. Three-dimensional MRI-FDTD model of the breast.

Fig. 10. Confocal imaging results of 3D MRI-FDTD model simulation.
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Fig. 7. Due to noise and artifacts, the same type of tissue in the
MRI image does not exhibit the same gray value, and some organi-
zations even change greatly, which makes it more difficult to
define the electromagnetic properties of the tissue during
simulation

Fig. 8. After discrete processing, various organizations appear to
be clearly seen. Fig. 9 is a schematic diagram of a three-
dimensional MRI-FDTD model of a single-sided breast:

After FDTD simulation, the received signal is imaged by the con-
focal algorithm, and the breast reconstruction map is obtained as
shown in Fig. 10.
4. Discussion

Early stage breast cancer tumor detection is critical for treating
and managing the disease condition (Zhao et al., 2017; Saidha
et al., 2017). The study described in details the derivation methods,
derivation processes and how they are applied in tumor detection
simulation. Based on the tissue segmentation model, the effect of
the number of glandular tissues on imaging outcome is examined.
Studies have shown that the more glandular tissue, the worse the
imaging effect in the later stages (Snehal, 2015). At the same time,
based on the model, a progressive method for detecting multiple
tumors is proposed. The method divides the imaging into three
steps: preliminary examination, refocusing, and image optimiza-
tion, and each tumor is successfully detected, and this agrees with
the report of (Hala and Ali, 2010). Here, the FDTD 2D model is
derived based on MRI, and its steps include breast contour extrac-
tion, tissue dispersion, and skin addition. The FDTD simulation test
was carried out by using the two-dimensional model, and the
applicability of the imaging algorithm in the MRI derived breast
FDTD model was verified. Finally, using the interpolation method,
the 3D FDTD model was derived, and the model was used to sim-
ulate the tumor detection, and the tumor was imaged. The simula-
tion results of the above three morphologically realistic breast
models show that the imaging algorithm has certain applicability
in the case of non-uniform breast tissue, but the effect will be
degraded (Rafael et al., 2005).

The gray values based on the MRI map are used to discretize the
tissues of the breast. Air outside the breast is treated prior to tissue
discretization. Due to noise, etc., the gray value of the air will be
somewhat different in the MRI source map. Therefore, when dis-
cretized, air may be divided into different classes of substances.
However, in the breast electromagnetic wave model, it is only nec-
essary to define air as a substance, so that the air portion is sub-
jected to uniform gray value processing once. The specific
method is: The outline of the breast is used as a limit, and each
pixel is judged from top to bottom. If the pixel does not reach
the contour boundary, then the point is outside the breast, regard-
less of its original gray value, and is re-assigned to 0. However,
when the boundary point is reached, the assignment is stopped,
and the portion below the boundary retains the original gray value.
In the longitudinal processing, some air that is blocked by the stee-
per boundary is not involved. Therefore, we use a method similar
to the boundary to complete the air re-evaluation from the left
and right sides of the breast to ensure that all parts of the breast
are uniformly classified as air, and the gray value is zero.

The primary method of discrete processing is to set the gray
value threshold. Pixels that are within a certain threshold range
are grouped into the same type of organization and uniformly
assigned. Since the gray value of a certain type of tissue in the
MRI image may be greatly changed, the internal division of the tis-
sue is further subdivided, for example, the gland is divided into a
gland 1 and a gland 2. This method of division is consistent with
reality, because the real breasts are inherently non-uniform, and
even if they are medically classified as the same type of tissue,
the electromagnetic parameter values may vary greatly.

A tissue-based breast model was derived based on clinical MRI
medical images, and the model was used to study the effect of the
number of glands on the final imaging results (Rafael et al., 2005).
At the same time, based on the model, a method for detecting mul-
tiple tumors is proposed, and the effectiveness of the method is
verified by simulation results. In addition to this, a two-
dimensional breast model for the FDTD algorithm is derived based
on clinical MRI medical images, in which a method of enabling the
skin to fully conform to the breast contour is described in detail.
Moreover, the model truly reflects the contours of the breast and
the distribution of internal tissues. The derived 2D model is then
coupled to the FDTD simulation algorithm. Finally, the two-
dimensional model is used to test the FDTD simulation, and the
applicability of the imaging algorithm in the MRI-derived breast
FDTD two-dimensional model is verified.

By interpolating the MRI map, the corresponding MRI-FDTD
two-dimensional model slices are derived and stacked to establish
a three-dimensional model. Then, the derived 3D model is coupled
with the FDTD simulation algorithm. Finally, using the MRI-FDTD
three-dimensional model, the simulation test is carried out and
the simulated signal is imaged, which verifies the applicability of
the algorithm in the MRI-FDTD three-dimensional model.

It can be seen from Fig. 10 that the tumor position is basically
the same as the preset condition, which indicates the applicability
of the confocal algorithm in the three-dimensional MRI model, and
also indicates that the model is correctly established.In conclusion,
the 2D image obtained from 2D extraction feature is transformed
to achieve 3D transformation, and finally the specific location of
the tumor is found. The research result has shown that the model
proposed in this study has certain practical effects in tumor
imaging.
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