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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

�̃�𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)

https://jksus.org

Journal of King Saud University – 
Science

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to 
remix,transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

© 2024 Journal of King Saud University – Science - Published by Scientific Scholar

Corresponding author: Dr. Md. Nasiruzzaman, Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 7149, Saudi 
Arabia. nasir3489@gmail.com 

Received: April, 2024 Accepted: June, 2024 Epub Ahead of Print: *** Published: ***

DOI: 10.1016/j.jksus.2024.103333

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to 
remix, transform, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

© 2024 Journal of King Saud University – Science - Published by Scientific Scholar

Full Length Article

The improved preconditioned iterative integration-exponential method for linear ill-con-
ditioned problems
Jingtao Suna,b, Jiulong Chenga,b,*, Lei Qinc

aState Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology-Beijing, Beijing 100083, China
bCollege of Earth Science and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
cSun Yat-sen University, Zhuhai 519082, China

A R T I C L E  I N F O

Keywords:
Ill-conditioned problems 
Precise integration method 
iterative integration-exponential 
first order dynamical systems

A B S T R A C T

The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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The presence of possible defects in welding can lead to many risks, so identifying these defects is very important. 
Therefore, in recent years, the automatic detection of these defects using artificial intelligence techniques 
has also received a lot of attention. The present study presents an enhanced approach for welding defect 
detection based on a hybrid deep learning technique. The method uses Ridgelet Neural Network (RNN) as a 
non-destructive detection technique for the detection of welding defects. The study uses an enhanced variant 
of the Pufferfish Optimization Algorithm (EPOA) for optimizing the parameters of the RNN. The proposed 
approach is validated using a standard dataset, namely GDXray, and its results are compared with some state-
of-the-art methods to show the method's superiority. The findings indicate that the proposed RNN/EPOA model 
can effectively identify various welding defects.

1. Introduction

Welding is an important element in the production and manufacture 
of metal materials and is used in various types of industries. Among the 
main applications of welding, we can mention the construction of large 
metal structures such as bridges, buildings, and means of transportation, 
and forging, which must have high welding quality (Vasan et al., 2024). 
Also, in the automotive industry, welding is very important in the 
production and repair of automotive parts. In addition, welding is the 
main part of the production process in the marine industry, aircraft 
manufacturing, and the production of electrical and electronic devices. 
Welding defects cost a lot of money (Mustafa et al., 2024).

Non-destructive tests are one of the most important technical tools 
for inspecting various welded parts. In the welding process, it is very 
important to identify welding defects in the performance of parts and 
structures, and techniques such as radiography, which can determine 
their information without destroying or changing parts, are more 
important (Block et al., 2024). Due to the X-ray diffraction from the 
material and other electronic effects of the imaging system, usually the 
recorded images are accompanied by the effects, and in some cases, 
they do not have the required quality, or the image is distorted and 
making it difficult to detect defects (Cui et al., 2024).

Welding radiography is one of the types of NDT to find internal 
defects and discontinuities in small and large metal structures. Due to 
the high cost of this welding inspection method, the radiation welder or 
welding test expert must have the necessary knowledge to interpret the 
radiographic film and find all types of defects in it, so as not to waste 
money and time (Li et al., 2024). Image processing methods are used to 
solve these problems.

Due to the rapid development of machine vision technology, 
research on welding image defects using X-ray has been of interest to 

*Corresponding author  
E-mail address: rentianmeng888@126.com (T. Ren)

Received: 26 December, 2024 Accepted: 06 May, 2025 Published: 31 May 2025

DOI: 10.25259/JKSUS_550_2024

researchers. Here, welding joints, which are the main weaknesses in 
welding, and welding methods are examined using defect detection 
algorithms. In order to improve the efficiency of X-ray welding image 
detection, deep learning networks and double exposure algorithms are 
also used to identify welding defects, which improves the accuracy and 
speed of the inspection process (Zhang et al., 2024).

Therefore, different algorithms based on image processing, machine 
vision, deep learning, and other relevant observations were used to 
identify and classify welding defects from radiographic images.

For example, Madhav et al. (Madhav et al., 2023) aimed to assess and 
improve the welding operations’ accuracy by conducting and using Deep 
Convolutional Neural Networks (DCNN). Incomplete or missing weld 
procedures can be recognized in an accurate manner by the suggested 
DCNN. There were the number of 10000 Not-OK and OK pictures in the 
training set that assessed the DCNN. After that, the network was made, 
assessed, and optimized to identify flaws in welding. The output of 
the model was examined, and the findings represented that the DCNN 
could forecast the flaws with good accuracy. The accuracy could be 
enhanced by 99.01% by the use of data augmentation once the training 
procedure was accomplished with 9,600 pictures.

Block et al. (Block et al., 2024) represented LoHi-WELD, which was a 
public and original dataset to overcome the issues relevant to weld flaw 
classification and identification that were of 4 diverse types, including 
stains, discontinuities, deposits, and pores. There were the number 
3022 actual weld bead pictures that were annotated in a manual 
manner for visual examination. They consisted of images with high- and 
low-resolution, which were obtained from a Metal Active Gas robotic 
welding procedure. A diversity of a baseline deep framework for the 
suggested database was explored on the basis of the YOLOv7 network; 
moreover, several case investigations were discussed. The mean average 
precision (mAP) value of a fine-grained flaw categorization was 0.69, 
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and the value of a coarse categorization was 0.77, which were achieved 
by a lightweight framework.

Palma-Ramírez et al. (Palma-Ramírez et al., 2024) presented a 
kind of CNN on the basis of ResNet50 to categorize 4 diverse kinds 
of weld flaws within radiographic images, including no defect, non-
penetration, pore, and crack. Regularization, data, augmentation, and 
stratified cross-validation were employed to avoid over-fitting and 
enhance generalization. The model was examined using three diverse 
databases, including a private dataset of low image quality, GDXray, 
and RIAWELC, which in turn, accomplished accuracy values of 75.83%, 
90.25%, and 98.75%.

Yadav et al. (Yadav et al., 2024) employed a CNN-SVM hybrid 
model and assessed it on the basis of several evaluation metrics with 
the purpose of welding flaw categorization. There were several flaw 
categories, including Slag Inclusion, Undercut, Porosity, Cracks, and 
Ideal Weld. For these categories, the suggested model had the values 
of more than 96% for F1-score, recall, and precision. The suggested 
model could classify the defects with an accuracy value of 96.92 using 
a database with 4880 images. The results demonstrated that the model 
could perform well and was superior to other models existing in the 
study. However, there might be some problems in the robustness and 
reliability of the current model.

Vasan et al. (Vasan et al., 2024) suggested a deep learning method 
on the basis of the ensemble for detecting and monitoring immersed 
weld flaws in adjacent regions and weld beads throughout Non-
Destructive Testing (NDT). The approach made use of an open-source 
dataset to classify immersed arc weld classes into three categories of 
defects, including lack of penetration, cracks, no defects, and porosity. 
To improve the investigation of images, preprocessing and feature 
extraction techniques were implemented in frequency and spatial 
domains while utilizing segmentation methods, such as the Grey Level 
Co-occurrence Matrix (GLCM), Grey Level Difference Method (GLDM), 
texture analysis, Fast Fourier Transform (FFT), and Discrete Wavelet 
Transform (DWT). Once the preparation of images has been conducted, 
the preprocessed data undergoes testing and training in the suggested 
deep learning model on the basis of the ensemble. The efficacy of 
the model was generally evaluated by the use of several evaluation 
metrics. Moreover, it is worth noting that the model could accomplish 
an accuracy value of 93.12% for the categorization and detection of 
faults in welding.

Ridgelet neural networks (RNNs) are one of the deep learning 
techniques that can be used as an efficient tool for image-based defect 
detection. However, using the conventional methods for selecting the 
RNN structure is not so promising. Using metaheuristics in this task is a 
better way to resolve this issue.

The Pufferfish Optimization Algorithm (POA) is a newly introduced 
metaheuristic algorithm with lucky solutions for complicated 
optimization problems. In addition, based on the free lunch theorem, 
the original POA may not be so effective in optimizing the structure of 
the RNN. So, providing an enhanced version of this algorithm can be 
useful for welding defect detection.

The present study provides a new framework for detecting welding 
defects through the use of an RNN that is optimized by an enhanced 
variant of the POA. The proposed methodology will be tested on a 
dataset comprising welding images that exhibit a range of defects.

2. Data source benchmark

The present study uses the “GDXray” benchmark dataset for 
validating the proposed model. The GDXray consists of 19,407 x-ray 
images for weld defect detection, which is collected by Brewster Angle 
Microscopy (BAM) (Carrasco Zambrano 2023). The dataset is divided 
into five categories: welds, castings, natural entities, and luggage, each 
containing multiple series of images. For this study, we focus on the 
“welds” category, which comprises 88 images organized into three 
series: “W0001”, “W0002”, and “W0003”.

 Series W0001 and W0002 contain 10 x-ray images each, while 
series W0003 consists of 68 digitized radiographs images (Mery et al., 
2015) (Table 1). These images represent various types of weld defects, 
including porosity, cracks, and lack of fusion, making them suitable 

for evaluating the performance of the proposed weld defect detection 
method.

Fig. 1 shows some samples of the GDXray dataset.
The GDXray dataset can be considered a trustworthy and 

standardized reference for assessing the effectiveness of the proposed 
method, removing the necessity for costly X-ray machinery and 
guaranteeing the consistency of the results.

3. Methodology

Fig. 2 shows the graphical illustration of the proposed method. As 
can be observed, the images downloaded from the “GDXray” dataset 
have been improved by two distinct preprocessing stages. The first 
stage is to apply a CLAHE filter for contrast enhancement of the images. 
Then, some augmentations have been applied to increase the number 
of images (Hayati et al., 2023; Xu et al., 2023). This is done because the 
number of datasets for training a deep learning model is small.

The images are then trained by an RNN for the diagnosis task. As 
can be observed from the image, an EPOA has been applied to the 
network to improve the efficiency of the RNN. Finally, the network has 
been analyzed based on some different metrics, and its results have also 
been compared with state-of-the-art methods to show its superiority for 
using in the diagnosis task for welding applications.

4. Preprocessing

The preprocessing is an important stage in our work to prepare 
the data for the analysis and processing steps. This part includes two 
key components: contrast enhancement (based on CLAHE) and data 
augmentation. CLAHE is a powerful technique for enhancing the 
contrast of images, especially in cases where the contrast is low or the 
dynamic range is limited. In addition to contrast enhancement, the 
data augmentation technique is used to artificially increase the size of 
our data, which involves applying a series of transformations to the 
original data to produce new samples similar to the original data but 
with changes that help. In the following, the two methods are explained 
in detail.

4.1 Contrast enhancement

Contrast enhancement is an important stage in image processing 
that aims to improve the visibility of features in an image by adjusting 
the contrast between different regions. In this study, contrast-limited 
adaptive histogram equalization (CLAHE) has been used to enhance 
the contrast of X-ray welding images. The AHE divides the image 
into small regions called tiles and applies histogram equalization to 
each tile separately. CLAHE, on the other hand, limits the stretch of 
contrast to avoid excessive amplification of noise in the image. The 
CLAHE algorithm can be summarized by the following stages (Musa et 
al., 2018):

– Dividing the original image into non-overlapping tiles, usually 8×8 
(in this paper) pixels.

– Calculating the histogram of the tiles.
– Trimming the histogram to the maximum value, which is a user-

defined parameter.

Fig. 1. Some samples of the GDXray dataset for welding.
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– Applying the histogram smoothing to the tiles based on the clipped 
histogram.

– Interpolating the results from the tiles to create a unified image

Fig. 3 shows an example of clarification of the effect of CLAHE on 
the welding image, with the top image showing the original image and 
the bottom image the improved image after applying CLAHE, along 
with the histograms of both images.

As can be observed from Fig. 3, the original image appears dark and 
lacks detail, with a narrow dynamic range, which makes it challenging 
to distinguish between different features, while the histogram shows 
a narrow peak with a low intensity value, indicating low contrast. 
Although the CLAHE-enhanced image shows a significant improvement 
in contrast and feature visibility, appearing brighter and more detailed, 
with a wider dynamic range, and a more uniform distribution of 
intensity values, with a higher peak value histogram, indicating 
contrast. Above, the CLAHE algorithm has effectively enhanced the 
contrast of the welding image, making it easier to distinguish between 
different features and increasing the contrast by stretching the intensity 

values. It improves the visibility of details and features and increases 
the dynamic range. This shows the effectiveness of CLAHE in enhancing 
the contrast and visibility of features in a welding image for image 
analysis and processing.

4.2 Augmentation

To enhance the size of the input dataset and strengthen the 
resilience of the model, various image augmentation techniques have 
been implemented on the original images. The augmentations included:

Flipping: Creating mirrored versions of the original images by 
flipping them horizontally and vertically.

Rotating: Generating new images by rotating the originals at angles 
of 180 degrees. Contrast Adjustment: Modifying the contrast levels of 
the images to produce variations in contrast (Xu et al., 2023).

These augmentations were applied randomly to the original images, 
resulting in a more extensive and diverse dataset. The augmented 
images were subsequently utilized for training and testing our model, 
thereby enhancing its capacity to generalize new, unseen data. Fig. 4 

Fig. 2. The graphical illustration of the proposed method.

Fig. 3. One example of clarification of the effect of CLAHE on the welding image. Fig. 4. Some examples of the augmentations performed on an original image.
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shows some examples of the augmentations performed on an original 
image.

Table 2 illustrates dataset statistics after augmentation.
Through these augmentation techniques, we successfully expanded 

our dataset and bolstered the robustness of our model, enabling 
improved performance on new, unseen data.

5. RNN

RNN has been considered an architecture of neural network that 
employs Rigdelet as a function of activation within the hidden layer. 
Rigdelet is the base of directional data description in domains with high 
dimensions and provides a better function in finding characteristics that 
are arranged based on particular orientations or directions. Rigdelet 
originates from the procedure of mathematical signals that are used 
for analyzing functions with the help of singularities of a hyperplane. 
The RNN could find and display directional information inside the data 
through merging Rigdelet in the hidden layer’s function of activation 
(Wang et al., 2024).

Rigdelet have been used for activation function in the RNN’s 
hidden layer, because they can display functions with singularities 
of hyperplane. Such singularities are related to the occasions that 
functions represent unexpected changes or irregularities among 
specific hyperplanes. Rigdelet has been the best in demonstrating these 
functions, which makes it a great choice for the tasks that comprises 
finding hyperplane singularities.

The RNN and Rigdelet’s cooperation could be beneficial in an 
exceptional way for implementing data with a high dimension, like 
vision of the computer recognizing, the patterns and procedure of 
image. The directional information, which Rigdelet is able to find, 
could help the network recognize and remove relevant features from 
the data, which in the end leads to improved action within tasks that 
need a directional consciousness of characteristics.

It is possible to achieve a more extensive comprehension and to be 
deeper to the subject that prepares particularized perceptions within 
the relation between Ridgelets in the neural network structure and 
emphasizes their benefits in displaying information of direction and 
operations with the singularities of hyperplanes. Actually, the results of 
the study include more data or modified versions of the RNN.

The conversion of Ridgelet is a mathematical procedure, which has 
been used to analyze and manage directional data. Its base is located 
in a function of neurons that � : R R�  and is acceptable when it 
assembles the recommended situation. Soc, if it does not meet the 
recommended condition, it is not allowed.

2( )  
ˆ

| |d
K dψ

ψ θ θ
θ

 
 = < ∞
 
 
∫ (1)

here, the Fourier conversion of the ψ  has been displayed by ˆ( )ψ θ .
The present situation guarantees that the function owns a limited 

energy and is square integrable. In fact, the transformation of Ridgelet 

uses the allowed function ψ  in the input data during various directions 
for extracting the directional data characteristics. The neural network 
prepares the resulting converted data for the task of regression or 
performing the intended categorization.

Through considering the word ζ , a neuron area � � ( ,� ,� )a u b  could 
be obtained:

� � � � �� ��� , , , , ,a b R a u S
D0 1 (2)

u = 1 (3)

Here, the placement of the Ridgelet function is displayed by b , the 
Ridgelet function’s scale is represented by a , the orientation of the 
function of the Ridgelet is illustrated by u , and the SD  illustrates a 
sphere in area RD .

When transformation, rotation, and the scaling process of the 
allowed functional neuron ψ  is completed, a Ridgelet group could be 
extracted through utilizing the formula below:

� � �
�

� � � �
��

�

�
�

�

�

�
�

1

a

u b

a
�

,
(4)

where the Ridgelet direction is displayed by the variable θ . The 
Ridgelet, which is a result of the transformation, rotation, and scaling 
of the original function ψ , is illustrated by �� .

The Ridgelets bank’s use of the input data in various directions is 
a method applied by the Ridgelet conversion for extracting the data’s 
directional characteristics.

Moreover, the transform of Ridgelet is an important device to 
estimate the singularities of hyperplane in a rapid way within a function 
group to be used for estimating function which are multivariate. Within 
present context, the function [ y y f x R R

n m| ( ) : ]� �  is divided into m  
computation (R R

n → ), and the estimated multivariable function has 
been obtained employing the formula below:

1

,
ˆ

N j j
i ij

j j

u
y c

a

θ β
ψ

=

 − = ×  
 
 

∑ (5)

u
j
2 1= (6)

1 2, , , ,   1,ˆ ˆ ˆ 2,ˆ ,i my y y y i m = … = …  (7)

� , �u R
j

D� (8)

here, the Ridgelet’s superposition coefficient has been shown via c
ij

.
An RNN that has one hidden layer could be improved by using the 

conversion of Ridgelet as the function of activation in the hidden layer. 
The transformation of Ridgelet has been applied to eliminate the input 
data’s directional characteristics within different directions, after which 
it has been moved along the hidden layer. The Ridgelet coefficients 
achieved from the hidden layer are integrated in a linear manner to 
shape the RNN’s output layer.

The structure of the RNN has been depicted in Fig. 5. First, the input 
data was converted by employing the transformation of the Ridgelet, 
which removes the data’s directional characteristics. After that, the 
converted data was transported along the hidden layer where the 
transformation of Ridgelet was applied as the function of activation. 
Then, the coefficients of the Ridgelet produced by the hidden layer 
were integrated within the output layer for creating the network’s final 
output.

The structure of the RNN has many benefits over traditional 
neural networks which are traditional. First of all, it is more effective 
in preparing directional data since it concentrates on the directional 
characteristics of the data, decreasing the neural network’s calculation 
complexity. Then, it is less affected by the input direction, preparing it 
to be more resistant to changes within the data.

Table 1.  
Dataset statistics.

Category Number of images Series Number of images per series

Welds 88 W0001 10

W0002 10

W0003 68

Table 2.  
Dataset statistics after augmentation.

Category Number of images Series Number of images per series

Welds 1760 W0001 200

W0002 200

W0003 1360
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Lastly, it is displayed that traditional neural networks outperform 
in various applications, namely, seismic data analysis, medical image 
analysis, and remote sensing. The structure of the RNN is used in different 
areas within medical imaging, like X-ray. Within the analysis of medical 
images, RNN is utilized for segmenting, registering, classifying, and 
reconstructing the image. For instance, inside the recreation of the MRI 
image, the RNN is illustrated for decreasing the calculative complexity 
in comparison with the traditional neural network and enhancing the 
quality of the image.

A linear integration of the Ridgelets and weights (w
i
) is use to 

enhance the Ridgelet-NN’s estimation operation. The initial level 
in creating the Ridgelet-NN is to appropriately choose the network 
parameters. Such parameters have been explained below:

X w w w a a a b b b u u u
K K K K

� � � � ��� ��1 2 1 2 1 2 1 2, , , , , , , , , , , , , , ,� � � (9)

where the quantity of Ridgelets, employed in the network, is 
displayed via K , and the variables of the Ridgelet scalar are illustrated 
by a , b , and w , and the orientation is represented by u  as follows:

u u u u u u u u

u u u

m m

K K K

1 11 12 1 2 21 22 2

1 2

� ��� �� � ��� �� �

�

, , , , , , , , ,

, ,

� � �

���� ��,u
Km

(10)

A linear integration of the Ridgelts and weights were applied by the 
Ridgelet-NN in order to estimate the input data. The RNN computes 
the coefficients of the Ridgelet within the hidden layer as a linear 
integration of the Ridgelets and the input data. The RNN’s output 
layer is considered a linear integration of coefficients of the Ridgelet 
achieved from the hidden layer.

The scalar variables’ choice (a , b , and w ), the weights (w
i
), and 

the vectors of Ridgelet orientation (u ) are important for the RNN’s 
operation. The existing parameters should be chosen in a proper way 
to guarantee the efficient extraction of the input data’s directional 
characteristics and estimation of the intended output. The choice of 
the present parameters could be completed with the help of a trial-and-
error procedure or algorithms’ optimization and gradient descent. The 
network’s kth  output neuron is computed employing this formula:

e y d
kj kj kj
� � (11)

where,

y f w z w
kj lk kp l
� � �� �0 (12)

here, l m� �1 2, , , . 
For achieving a meticulous approximation of the issue, it is needed 

to decrease the cost function to its smallest quantity.

OF
T

e
j

L

i k

M

kj
�

� �� �1

1

2 (13)

To obtain a precise estimation of the issue, the cost function needs 
to be reduced. This cost function is a sum of squared errors between the 
actual outputs and forecasted outputs in all of the instances of training, 
and it is divided by the training instances of total number (T ). For 
minimizing the cost function, the parameters of the Ridgelet require to 
be chosen in an optimal way.

The primary goal of this search is to propose a novel change to an 
algorithm, which is metaheuristic, in order to obtain finer outcomes 
by choosing the parameters of the Ridgelet and reducing the cost 
function. The metaheuristic algorithm is a kind of optimizer that could 
be utilized to discover the optimum solution to a problem by exploring 
the solution space in an iterative way. The suggested change’s purpose 
is to enhance the algorithm’s effectiveness and efficiency within the 
optimum solution for the RNN.

6. EPOA

6.1 POA

In the beginning, the text explains the idea of algorithm’s 
arrangement. Then, it outlines the essential processes for addressing 
optimization problems.

6.2 Inspiration

The Pufferfish is a Tetraodontiformes species and a member of 
the Tetraodontidae family. It is mainly found in marine and estuarine 
areas. Pufferfish have large spines just like porcupinefish, and they are 
usually small to medium-sized, growing up to 50 cm long (Al-Baik et 
al., 2024). They are known for their beak-like teeth. They have four 
beak-like teeth. Such candidates have unique characteristics, such as 
a pelvis lacking pectoral fins and ribs. This design helps them inflate 
their bodies by taking in water through their mouth as a mechanism 
of defense.

Such individuals are famous for moving slowly, making them easy 
prey. However, they defend themselves by taking in a lot of water, 
turning into a big, spiky ball. This candidate has a sharp spine, which 
makes it difficult for hunters to eat, turning it from an easy target into 
a challenging one. While a predator notices this, it quickly retreats. 
The Pufferfish shows unique behaviors, including utilizing its defensive 
mechanism to turn into a big ball, which is spiky, and fighting 
with hunters. The determined algorithm (POA) offers a detailed 
demonstration of the way that individuals present natural manners in 
the following procedure.

6.3 Initialization

The current algorithm employs the population’s abilities to find 
optimum solutions for optimizing problems inside the search space. It 
is worth mentioning that the current process has been iterative, and 
all of the individuals adjust their values of decision variables based on 
their location in the search space.

The POA consists of individuals represented as mathematical 
vectors, where all vector factors correspond to a decision variable. The 
population of the algorithm includes all members of POA, and their 
vectors are able to be represented in a mathematical way by employing 
the matrix shown in Eq. (3). The candidates’ primary position is 
computed by Eq. (15).
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(14)

y lb e ub lb
i d d d d, ( ),� � � � (15)

where, the variable Y  demonstrates the matrix of the algorithm’s 
population. The variable y

i d,  displays the dimension of d  in the search 

Fig. 5. The Ridgelet-NN’s structure.
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space. The variable m  represents the number of decision variables. 
The variable Y

i
 shows the present algorithm’s individual solution. The 

variable N  specifies the number of candidates within the population. 
The dth  decision variable’s lower bound is displayed through lb

d
, and 

the higher bound of the dth  decision variable has been shown via b
d
.  

The e  factor illustrates a random quantity that is between 1 and 0.
In fact, the individuals are the potential solutions that are used for 

evaluating the problems’ cost function. The cost function’s evaluated 
values have been illustrated via a vector in the subsequent formula:
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(16)

where, the G  variable shows the cost function’s evaluated value. The 
assessed cost function is indicated by G

i
, and it is on the basis of the ith  

individual of the algorithm.
The cost function’s evaluated value is a suitable requirement to 

estimate the amount of the individual solution recommended by the 
algorithm. The cost function’s greatest evaluated value shows the 
optimum individual solution, but the least evaluated one illustrates 
the worst solution of the individual. All the iterations must enhance 
the candidate’s situation within the search space, and the optimum 
individual solution must be improved in accordance with the cost 
function’s recent evaluated values.

6.4 Mathematical model

The POA has improved the candidate’s situation within the search 
space by replicating the natural manners of pufferfish and their hunters. 
Within the current process, the hunter attacks the pufferfish, and the 
pufferfish turns into a ball, employing its mechanism of defense that 
frightens the hunter. As a result, the individuals’ situation is improved 
in two phases. The first phase involves a global search that includes the 
attack of the hunter’s imitation. The next phase includes local search 
that mimics the individual’s mechanism of defense.

6.4.1 Exploration

The procedure starts with simulating a hunter’s attack to update 
the candidate’s situation. Slow-moving individuals are not hard targets 
for predators because they make their positions easy to alter. During 
the predating process, the algorithm mimics the predator’s moving 
to improve the individual’s position in the search space. Through 
incorporating the hunters’ technique, the algorithm improves its global 
search capabilities, leading to important modifications within the POV 
candidates’ situations and the global search power enhancement.

The algorithm of POV treats each candidate as a predator. While 
discovering a fish in order to attack, it considers the other candidates’ 
situation with a better action. The set of individuals for each of the 
populations is displayed below: 

FQ Y G G h i c i N k N
i h h i
� � � � �[ : ,� ] , ,� ,�.�.�.�,� [ ,� ,�.�.�.,� ]1 2 1 2  (17)

Here, the situation of candidates’ set for the ith  predator has been 
illustrated via FQ

i
. The candidate with a high-cost function compared 

with the ith  hunter has been displayed via Y
h

, and its cost function has 
been specified via G

h
.

It is suggested that the predator selects a fish stochastically amid 
the fish in the FQ  that are called chosen pufferfish (SP ). By mimicking 
the predators’ moving, a novel situation inside the search space is 
computed for POA candidates using Eq. (18). If the recent situation has 
enhanced the cost function, the new situation substitutes the former 
one employing the Eq. (19):

y y e SP K y
i j
Q

i j i j i j i j i j, , , , , ,(1 � � � � � (18)

Y
Y G G

Y else
i

i
Q

i
Q

i

i

�
��

�
�

��

1 1,� ;

,� ,��������������
(19)

here, the randomly selected fish from the FQ
i
 set has been displayed 

via SP
i
, and its dimension j  has been shown via SP

i j, . Based on the 

recommended algorithm, the new situation of the predator i  has 
been illustrated via YQ1, and its dimension j  has been demonstrated 
via y

i j
Q
,
1 . The cost function’s value has been displayed via G

i
Q1. The 

random amounts have been shown via e
i j, . The constant K

i j,  has been 
equivalent to 2 or 1.

6.4.2 Exploitation

During the second phase, the candidate’s position has been enhanced 
by stimulating the defensive mechanism of these fish. When they are 
threatened, they take in water in order to become a ball, deterring 
the predator. Through mimicking the predator’s retreat movement, 
the algorithm can even detect small changes within the individual’s 
position and increase its local search potential.

A new situation for a candidate could be calculated by simulating 
the predator’s movement using Eq. (20). Consuming that the candidate’s 
cost function has been improved, it will replace their prior situation 
employing Eq. (21). There have been many attempts to enhance the 
algorithm, leading to using the Eq. (21). An evaluation is arranged for 
cost function after finding a new situation for candidates. In the case 
that the cost function is greater than the prior one, the new situation 
is accepted, and in the case that it is not superior to the previous one, 
the candidate remains in their prior locations. Additionally, the update 
process for the individuals in the POA relies on the improvement of the 
cost function’s value.

y y e
ub lb

ti j
Q

i j i j

j j

, , ,( ,2 1 2� � � �
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(20)
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where, the predator’s new situation has been shown via Y
i
Q2  in 

accordance with the second phase of the algorithm, its dimension 
of j  has been displayed via y

i j
Q
,
2 . The amount of iteration has been 

demonstrated via t . The cost function’s value has been represented 
through G

i
Q2 . The e

i j,  variable is a random number ranging from 1 to 0.

6.5 Procedure of iteration

The algorithm’s first iteration ends by improving the candidates’ 
situation based on the local and global search. After that, the next 
stage of the algorithm begins, and the candidates’ situation has been 
improved through using Eq. (17) to Eq. (21) until the final iteration. 
The optimum candidate’s situation in each iteration has been improved 
and remains based on the evaluated cost function values. Eventually, 
the optimum candidate’s situation suggests the solution.

6.6 EPOA

The POA has been considered a novel metaheuristic inspired by the 
pufferfish’s natural manner and aimed at solving complex issues. In fact, 
its primary aim is to stimulate the pufferfish’s defensive mechanism of 
inflating its body to scare the predators. The POA has been arranged 
to address the limitations of these optimization approaches, including 
computational costs, insufficient convergence, and low accuracy. The 
improved POA or IPOA introduces several improvements, including 
a harmony between local and global search, managing adaptive 
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parameters, and a new technique that all of them upgrade the capability 
of the algorithm’s accuracy and effectiveness.

A major improvement is made through incorporating an adaptive 
weight element, which is nonlinear. This gets expanded in a finer solution 
space based on the candidate solutions’ quality. This adjusting element 
is important because it avoids the population’s early convergence and 
promotes the distinction, resulting in a better function. It must be 
mentioned that the improved equation of X  might show fluctuations 
between the negative and positive values.

y y w SP K y
i j
Q

i j i i j i j i j, , , , ,
1 � � � � �� � (22)

The weight element of ith  value has been illustrated via w
i
, and it 

has been calculated utilizing the following equation:

w
f f

f f
i N

i
i

P
�

�

�
� �, , , , ,�1 2 (23)

where the cost function’s greatest value has been represented via 
f , and its least value has been displayed via f . The cost function of 
i  has been demonstrated via f

i
. Candidates with a lower quantity 

of cost functions are capable of exploring wider solution spaces 
through using a weighting element, while the ones with greater cost 
function values are limited to constrained solution spaces. The present 
approach assists in maintaining a harmony between the capacity of 
local and global search within the algorithm. Another improvement 
uses a chaotic map γ  instead of random r  through the subsequent 
formula:

y lb ub lb
i d d t d d, ,� � � �� �� (24)

The current search employs Bernoulli shift map through using the 
subsequent equation:
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(25)

where, the quantity of iterations has been displayed via t , and � � 0 4. .  
The Bernoulli shift map is capable of enhancing the algorithm’s 
convergence. 

This study uses the EPOA for computing the parameters of new 
fractional model to optimize the neural network for correction of 
writing. The present model has been represented in Fig. 6.

The main aim of this study is to enhance the architecture of the RNN 
by employing the EPOA to develop an effective system for detecting 
welding defects.

7. Results and Discussion

This section outlines the simulation outcomes of the proposed 
approach for detecting welding defects through the use of an RNN 
that has been optimized by the EPOA. Given the stochastic nature of 
metaheuristic algorithms, the results can differ with each execution. 
Consequently, each experiment was conducted 25 times, adhering to 
the parameter configurations.

Various other algorithms were employed for comparative analysis. 
To ensure a fair comparison, all algorithms were executed with a 
limit of 200 iterations (equating to 5,000 function evaluations). The 
programming was carried out in MATLAB R2019b 64-bit, and the 
computations were performed on a system equipped with an Intel Core 
i7 CPU running at 2.00GHz, 2.5GHz, with 16GB of RAM and a 64-bit 
operating system.

7.1 Algorithm validation of the EPOA

To validate the effectiveness of the EPOA, we performed a series 
of experiments. The algorithm was validated on a set of standard 
benchmark functions, consisting of around different functions extracted 
from the “CEC-BC-2017 test suite” that are continuously employed to 
assess the effectiveness of the algorithms. According to these functions, 
different varieties of the optimization problems have been evaluated. 
The results of the proposed EPOA are compared with five other 
metaheuristic algorithms, including Squirrel search algorithm (SSA), 
Billiard-based Optimization Algorithm (BOA), Black hole (BH), Locust 
Swarm Optimization (LS), and World Cup Optimization (WCO). Table 
3 indicates the algorithm parameter values for the analyzed algorithms.

To confirm the robustness of the results, the comparative algorithm 
was run during 25 runs on each of the benchmark functions. Table 4 
indicates the comparison results of the proposed EPOA with the other 
analyzed methods. This analysis is based on the mean value, the best 
value, and the standard deviation (StD) value of the objective function.

The results indicated in Table 4 highlight the superiority of the 
EPOA compared to the other methods examined. The EPOA consistently 
outperforms these algorithms regarding the best, mean, and standard 
deviation values of the objective function across all 12 benchmark 
functions. Notably, the EPOA secures the best results in 11 of the 12 
functions, with the exception of F4, where it is surpassed by the SSA.

Furthermore, the EPOA demonstrates the lowest mean and standard 
deviation values in most functions, reflecting its capability to reliably 
converge towards the optimal solution. The results also indicate that 

Fig. 6. The optimization of model on the basis of EPOA.
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the EPOA effectively addresses complex optimization challenges 
characterized by multiple local optima, such as F1, F2, and F3, where 
it significantly outshines the other algorithms. Additionally, the EPOA 
successfully attains optimal solutions in functions with multiple global 
optima, such as F12, where all algorithms reach the optimal solution. 
The EPOA's superiority can be attributed to its adaptive parameter 
adjustment and effective exploration of the search space, which 
enables it to evade local optima and converge to the global optimum. 
Its performance remains robust across various types of optimization 
problems, including both unimodal and multimodal functions, 
underscoring its versatility and efficacy as an optimization algorithm.

7.2 Preprocessing results

In this section, a comprehensive analysis was performed based on 
the RNN/EPOA architecture's performance prior to and following the 

Table 3.  
Algorithm parameter values for the analyzed algorithms.

Algorithm Standard values Reference

SSA Nfs = 4 , Gc = 2 , Pdp = 0 2. (Jain et al., 2019)

BOA No of pockets. = 50 , w = 0 8. , ES = 0 2. (Kaveh et al., 2020)

BH a = 0 5. , Number of stars = 200 (Hatamlou 2013)

LS F = 0 6. , L = 1 , g = 50 (Cuevas et al., 2020)

WCO Play off� � 0 05. , ac = 0 5. (Razmjooy et al., 2016)

GA Population size=100, Crossover rate=0.8, 
Mutation rate=0.01

(Alhijawi and Awajan 
2024)

PSO Swarm size=50,c1 =2.0,c2 =2.0,w=0.9 (Abualigah et al., 
2024)

Table 4.  
The comparison results of the proposed EPOA toward the other analyzed methods on the CEC-BC-2017 test suite.

Function Index SSA BOA BH LS WCO GA PSO EPOA

F1 Best 2.392 67.745 0.889 1.686 48.349 1.154 1.287 0.952

Mean 10.035 154.528 13.952 5.327 122.436 8.456 7.894 7.332

StD 13.721 98.313 9.577 11.058 52.058 9.234 8.765 7.560

F2 Best 5.523 2.922 2.596 4.375 3.351 1.234 1.567 0.077

Mean 84.484 47.579 40.168 48.031 34.909 45.678 42.345 0.377

StD 27.894 37.281 25.850 17.568 36.084 28.987 26.789 0.630

F3 Best 1.352 25.954 18.170 1.199 20.359 0.123 0.156 0.009

Mean 10.536 25.541 50.580 8.134 16.663 12.345 11.456 0.017

StD 9.109 13.443 5.769 5.572 8.342 10.123 9.456 0.000

F4 Best 5.872 4.129 5.195 5.041 3.943 4.567 4.890 0.094

Mean 6.907 6.033 4.230 3.111 3.563 5.678 5.234 0.118

StD 1.809 1.400 0.539 0.900 0.755 1.234 1.123 0.072

F5 Best 0.157 2.722 3.934 0.133 2.205 0.056 0.078 0.000

Mean 0.897 5.291 4.699 0.990 2.412 1.234 1.123 0.008

StD 1.286 1.185 0.827 0.732 0.696 1.123 1.012 0.000

F6 Best 1.212 0.149 0.150 0.666 0.115 0.012 0.015 0.000

Mean 1.094 0.989 0.561 0.801 0.592 0.567 0.512 0.000

StD 1.716 1.523 1.215 1.098 1.089 1.123 1.056 0.000

F7 Best 0.487 0.723 1.273 0.401 0.358 0.567 0.589 0.651

Mean 1.458 1.395 0.688 1.440 1.223 1.567 1.456 0.704

StD 0.273 0.207 0.226 0.183 0.209 0.234 0.212 0.221

F8 Best 8.603 7.695 4.515 6.675 7.562 6.123 6.456 5.474

Mean 21.869 15.700 14.493 14.896 11.700 16.789 15.678 10.033

StD 4.453 4.352 2.554 2.150 3.215 3.456 3.123 3.411

F9 Best 0.145 6.521 8.126 0.107 5.794 0.023 0.034 0.000

Mean 2.799 25.565 14.870 1.363 13.738 2.345 2.123 0.000

StD 1.256 14.896 6.425 0.788 8.183 2.123 1.987 0.000

F10 Best 2.888 3.749 48.538 2.326 2.797 3.123 3.456 0.118

Mean 10.923 8.230 154.679 7.430 7.544 12.345 11.456 2.242

StD 7.027 5.260 15.932 6.825 6.055 10.123 9.876 2.608

F11 Best 0.120 0.084 0.058 0.066 0.050 0.012 0.015 0.000

Mean 0.393 0.116 0.123 0.201 0.070 0.123 0.112 0.008

StD 0.119 0.044 0.067 0.089 0.033 0.056 0.045 0.000

F12 Best 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

StD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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implementation of the preprocessing technique. This technique was 
employed to resolve the issue of class imbalance present in the dataset. 
The objective of applying the preprocessing was to establish a more 
equitable representation of the welding data, thereby enhancing model 
performance and ensuring more accurate classification outcomes. The 
results and effectiveness of the RNN/EPOA architecture were assessed 
and compared in both scenarios to evaluate the influence of the 
preprocessing step on the model's overall performance. The results of 
the welding defect detection, both pre- and post-preprocessing, have 
been detailed in Table 5.

The findings illustrated in the results highlight the considerable 
influence of the preprocessing technique on the efficacy of the 
RNN/EPOA architecture in identifying welding defects. Before the 
implementation of preprocessing, the model recorded a precision of 
0.875, a specificity of 0.801, and an accuracy of 0.894, while it was 
unable to report a sensitivity and F1-score due to class imbalance issues. 
Conversely, following the application of the preprocessing technique, 
there was a notable enhancement in the model's performance, achieving 
a PR of 0.895, SN of 0.925, SP of 0.845, AC of 0.915, F1-score of 0.909, 
and Matthews Correlation Coefficient (MCC) of 0.835. These outcomes 
suggest that the preprocessing technique successfully mitigated the 
class imbalance problem, resulting in a more equitable representation 
of the welding data and significantly improving the model's ability to 
detect welding defects.

7.3 Ablation analysis

To thoroughly assess the efficacy of our proposed methodology, 
an ablation analysis was performed to examine the contributions of 
each element within the design. Here, the following three variants were 
evaluated: 

(1) Original RNN (RNN): This serves as the baseline model, lacking any 
optimization

(2) RNN with Original POA (RNN/POA): This variant merges the RNN 
with the original Pufferfish Optimization Algorithm.

(3) RNN with EPOA (RNN/EPOA): This represents our proposed 
approach, which integrates the RNN with the EPOA.

To assess the performance of each variant, a detailed array of 
metrics, including accuracy, precision, recall, F1-score, Mean Squared 
Error (MSE), and computational time, were employed. Accuracy was 
defined as the ratio of correctly identified welding defects, while 
precision represented the proportion of true positives relative to the 
total of true positives and false positives.

Recall was calculated as the ratio of true positives to the total of 
true positives and false negatives, and the F1-score was determined 
as the harmonic mean of precision and recall. Furthermore, we 
computed the Mean Squared Error (MSE) as the average of the squared 
differences between predicted and actual values, and we documented 
the computational time required for training and testing each model. 
This approach provided a comprehensive evaluation of each variant's 
performance concerning both classification accuracy and computational 
efficiency. Table 6 illustrates the classification performance of the 
ablation analysis.

The results of the ablation analysis demonstrate the effectiveness 
of our proposed approach, with the RNN/EPOA variant achieving the 
best performance across all metrics, including precision, sensitivity, 
specificity, accuracy, F1-score, and MCC. Specifically, the RNN/EPOA 
variant achieves the highest precision, indicating its ability to correctly 
classify a higher proportion of true positives and reduce false positives, 
as well as the highest sensitivity, indicating its ability to detect a 
higher proportion of true positives and improve the model's ability to 
detect welding defects. Additionally, the RNN/EPOA variant achieves 
the highest specificity, accuracy, and F1-score, indicating its ability to 
correctly classify a higher proportion of true negatives, welding defects, 
and strike a good balance between precision and recall, respectively.

Furthermore, the RNN/EPOA variant achieves the highest MCC, 
indicating a strong correlation between the predicted and actual classes 
and demonstrating the effectiveness of the enhanced optimization 
algorithm in improving the model's ability to predict welding defects 
accurately.

7.4 Regression performance

In addition to analyzing the classification effectiveness of our 
proposed method, its regression performance is also examined by using 
the Mean Squared Error (MSE) metric. MSE quantifies the average 
squared deviation between the predicted values and the actual values of 
the welding defect severity. The results of the regression performance 
evaluation have been presented in Fig. 7.

The regression performance evaluation shows that our proposed 
RNN/EPOA shows superior performance in terms of MSE. This finding 
shows that the proposed EPOA significantly increases the model's 
ability to accurately predict the severity of welding defects.

In contrast, the original type of RNN shows the highest MSE, which 
reflects the largest mean squared deviation between the predicted 
and actual values. This result shows that RNN alone is insufficient to 
achieve accurate regression performance, and optimization is necessary 
to increase its effectiveness.

The variant RNN/POA shows a decrease in MSE compared to 
the original RNN, which indicates that the original POA positively 
contributes to the regression performance of the model. Nevertheless, 
the RNN/EPOA variant achieves an even lower MSE, which indicates 
that the advanced optimization algorithm is more adept at improving 
the regression capabilities of the model.

The increase in regression performance observed in the RNN/
EPOA variant can be attributed to the superior ability of the advanced 
optimization algorithm to fine-tune the model parameters. This leads 
to more accurate prediction of weld defect severity, which is very 
important in industrial fields where accurate defect detection and 
classification are critical

7.5 Computational time

Computational time is a key factor in the creation of machine 
learning models, especially in industrial frameworks where prompt 
decision-making is important. In this research, we evaluated the 
computational time associated with our proposed method, RNN/EPOA, 
and compared it with the original RNN and RNN/POA variants. The 
findings from the computational time assessment have been displayed 
in Fig. 8.

The computational time evaluation results show that the RNN/
EPOA variant requires the longest computational time, followed by the 
RNN/POA variant, and then the original RNN, which is expected to 
be increased due to the complexity added by the POA. The increased 

Table 5.  
The results of the welding defect detection, both pre- and post-preprocessing.

Model PR SN SP AC F1 MCC

Before preprocessing 0.875 NA 0.801 0.894 NA 0.781

After preprocessing 0.895 0.925 0.845 0.915 0.909 0.835

Table 6.  
Classification performance.

Model PR SN SP AC F1 MCC

RNN 0.835 0.859 0.812 0.852 0.846 0.718

RNN/POA 0.862 0.903 0.822 0.885 0.882 0.775

RNN/EPOA 0.895 0.925 0.845 0.915 0.909 0.835

Fig. 4. Some examples of the augmentations performed on an original image 

 

Fig. 5. The Ridgelet-NN’s structure 

 

Fig. 6. The optimization of model on the basis of EPOA 

 

Fig. 7. The results of the regression MSE performance evaluation 
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computational time of the RNN/EPOA type can be attributed to various 
factors, including optimization complexity, which is due to a more 
complex algorithm, model architecture, which is more complex with 
additional layers and connections, and more training data, which 
requires more calculations to optimize the model parameters. Despite 
the increased computational time, the RNN/EPOA variant achieves the 
best performance in terms of classification and regression accuracy, 
indicating that the improved optimization algorithm is effective 
in improving model performance, albeit at the cost of increased 
computational time, which represents a trade-off. There is a gap 
between model performance and computational efficiency

7.6 Comparative analysis

To comprehensively evaluate the performance of the current RNN/
EPOA model, a 5-fold comparative analysis was performed with five 
existing models: Convolutional Neural Network (CNN) (Alhijawi and 
Awajan 2024), DCNN (Madhav et al., 2023), YoloV7 (Block et al., 
2024), CNN-SVM (Yadav et al., 2024), and deep learning (Vasan et al., 
2024). Comparison analysis was performed using the following criteria: 
precision, sensitivity, specificity, accuracy, F1 score, and MCC. The 
results of the 5-fold comparison analysis have been presented in Fig. 9.

The findings from the comparative analysis indicate that the RNN/
EPOA model surpasses the current models regarding classification 
performance. The CNN and DCNN models exhibit lower values in 
precision, sensitivity, specificity, accuracy, F1-score, and MCC when 
compared to the RNN/EPOA model. Although the YoloV7 model 
performs slightly better than both CNN and DCNN, it still falls short of 
the performance demonstrated by the RNN/EPOA model. Furthermore, 
while the CNN-SVM and DL models show improved performance 
relative to CNN and DCNN, they do not reach the performance level of 
NasNet/AWCA.

7.7 Cross-validation analysis

To evaluate the reliability and robustness of the proposed RNN/
EPOA model, we conducted a k-fold cross-validation analysis for 
the GDXray dataset. Cross-validation k is a very popular method to 
evaluate a model’s performance by dividing a dataset into k subsets 

(folds) and training the model on the k-1 folds and validating it on the 
kth fold. This is repeated k times, with each fold being the validation 
set one time. In this work, we developed a 10-fold cross-validation, 
allowing each image in the dataset to be used in both training and 
validation stages. Cross-validation analysis results show up in Table 7; 
in this table, we can see how many times our model was stable and 
generalizable.

Results of ten-fold cross-validation show that RNN/EPOA has 
performance and robustness invariant in different subsets of the data. 
Model performance, summarized in Table 7, demonstrates that the 
model behaves consistently across different configurations of the 
datasets, establishing its robustness and generalization ability. This 
negligible difference in performance across the folds illustrates that the 
model is not over-fitting towards certain parts of the dataset and has the 
capability to tackle varied patterns of welding defects. Additionally, 
the consistently high accuracy and F1-score corroborate that the model 
is able to minimize both false positives and false negatives, which is 
essential for defect detection applications. These results demonstrate 
the efficacy of the RNN/EPOA framework for practitioners and lend 
credence to its applicability for real-world welding defect detection 
tasks. However, more works are needed to stabilize the model by 
incorporating more regularization factors or increasing data sizes.

8. Conclusion

Welding is connecting the metal parts in general and steel parts 
using different methods. This can be done based on heat, pressure, or a 
combination of both. Welding defects production of healthy and defect-
free welds, along with reducing costs, is one of the desired goals in the 
welding operation of metal structure joints. The main welding defects 
that cause the welding connection to break are among the things that 
every welder should be aware of. One of the most important reasons 
to be aware of these issues is the production of quality welds and the 
reduction of welding inspection time. The materials to be welded together 
(sheet or pipe) should be checked for weld surface defects. Because pipe 
welding defects are one of the most common defects. Image processing 
and machine learning as one useful Non-destructive techniques for this 
purpose. This study proposed a new method based on deep learning 
and a metaheuristic algorithm for the detection of welding defects. 
Here, a RNN was used as a classifier of the defects. The RNN efficiency 
was improved by optimizing its parameters to get optimal results. 
The optimization was performed by an EPOA. The proposed RNN/
EPOA model was assessed using a benchmark dataset, called GDXray 
and its outcomes were compared with several leading techniques, 
including Convolutional Neural Network (CNN), DCNN, YoloV7, CNN-
SVM, and Deep learning (DL) to demonstrate the superiority of the 
method. The results reveal that the proposed RNN/EPOA model can 
effectively identifying a range of welding defects. Future works will 
concentrate on enhancing the efficacy of the proposed detection system 
based on using different deep learning frameworks and optimization 
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Table 7.  
Results of 10-fold cross-validation.

Fold Precision 
(PR)

Sensitivity 
(SN)

Specificity 
(SP)

Accuracy 
(AC)

F1-Score 
(F1)

MCC

Fold 1 0.881 0.895 0.852 0.879 0.888 0.765

Fold 2 0.874 0.892 0.848 0.876 0.883 0.758

Fold 3 0.885 0.901 0.858 0.885 0.893 0.774

Fold 4 0.878 0.898 0.854 0.882 0.888 0.769

Fold 5 0.879 0.896 0.851 0.881 0.887 0.767

Fold 6 0.883 0.903 0.856 0.886 0.893 0.773

Fold 7 0.880 0.897 0.853 0.880 0.888 0.766

Fold 8 0.876 0.894 0.849 0.878 0.885 0.762

Fold 9 0.882 0.900 0.855 0.884 0.891 0.771

Fold 10 0.884 0.902 0.857 0.886 0.893 0.775

Average 0.880 0.898 0.853 0.882 0.889 0.768
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techniques. A capable direction is to use transfer learning and domain 
adaptation methods to modify the system for this purpose. Moreover, 
incorporating additional NDT methods, such as ultrasonic testing and 
radiography, alongside the proposed system could yield a more holistic 
approach to defect detection. Also, the practical application in real-time 
or industrial settings may be hindered due to the high computational 
time, which can primarily be attributed to the sophisticated nature of 
EPOA. But this extra computational cost may be an impediment to 
implementing it in time-critical applications. Indeed, future studies 
can be also focus on improving model computational efficiency, either 
by simplifying the optimization algorithm applied, adapting it to 
the use of conventional methods such as parallelization or hardware 
revolution, preserving the performance achieved by the model. Sources 
of defects include more focused data, infinities; new methods of coding 
deeps. These would be the basis of making the higher-performance 
RNN/EPOA model more malleable and, more importantly, more 
useful in real-time applications where quick, accurate prediction of 
defect production is necessary. We will also focus on increasing the 
performance of the proposed detection system using other deep 
learning frameworks and optimization methods. Moreover, the study is 
not considering transferring learning to the proposed model, where the 
model, successfully trained on one dataset, can be used for a different 
dataset. Additive techniques such as transfer learning would enable 
the model to build on currently available networks and retrain on new 
datasets with less data loss. Meanwhile, domain adaption techniques 
could make the model adaptable to environmental or material-specific 
noise. Additionally, the addition of supplementary NDT techniques, 
including ultrasonic testing and radiography, harmonizing with the 
proposed system offered, would present a more comprehensive means 
of detecting defects covering wider industrial challenges.
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