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Abstract Microbial insecticides are effective, environmental friendly and are widely used world-

wide to control insect pests. Nucleopolyhedroviruses and granuloviruses belonging to family Bac-

uloviridae are widely used for control of caterpillar pests on wide varieties of crops and vegetables.

The selected baculoviruses (BVs) were evaluated for oviposition preference by Trichogramma chilo-

nis (Ishii) of virus treated and untreated (water: control) host eggs (Sitotroga cerealella Olivier),

which revealed no significant difference among the used concentrations regarding oviposition pref-

erence. All the used concentrations of Helicoverpa armigera nucleopolyhedrovirus (HaNPV), Spo-

doptera exigua nucleopolyhedrovirus (SeMNPV) and Cydia pomonella granulovirus (CpGV)

including 12.5�, 6.25�, 2.5�, 1.25� and 0.625� were harmless (E > 30%) for parasitism by T. chi-

lonis as comparison of virus treated and untreated control eggs showed similar parasitism i.e.,

615% reduction over control in parasitism. Thus it was concluded that all three types of bac-

uloviruses were compatible with the parasitism by T. chilonis at all treated concentrations.
� 2016 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Biological control is globally preferred over synthetic pesticides
for its effective role to suppress the population of insect pests
(Omkar and Kumar, 2016). Determination of adverse impacts

of pesticide on beneficials is required to find chemicals not com-
patible with natural enemies, in order to effectively integrate
both chemical and biological controls (Croft, 1990; Ruberson

et al., 1998; Stark et al., 2007; Shoeb, 2010; Khan et al., 2014;
2015a,b). Integrated pest management and sensible use of pesti-
cides are needed to keep the losses caused by pests under eco-

nomic threshold levels (Karuppuchamy and Venugopal, 2016).
Insecticides resistance to the broad-spectrum pesticides led

to limit the effectiveness of many such chemicals and this
resulted in intensive efforts to find out alternate methods of

control (Nathan et al., 2004; Sagheer et al., 2008). Selective
insecticides may be valuable to effectively overcome increasing
pesticide resistance (Nabil and El-Wakeil, 2013). Thus use of

selective insecticides to manage pests contributes to the conser-
vation of natural enemies associated with crops (Thomson
et al., 2000).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksus.2016.06.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksus.2016.06.002
http://www.sciencedirect.com/science/journal/10183647
http://dx.doi.org/10.1016/j.jksus.2016.06.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Biopesticides including botanical insecticides and microbial
pesticides are safe, ecologically acceptable, and are highly
effective against target pest but are relatively safe to natural

enemies (Sagheer et al., 2008). The microbial insecticides can
be equally as effective as synthetic chemicals to control insect
pests (Khan et al., 2014).

Nucleopolyhedroviruses (NPVs) and granuloviruses (GVs)
are microbial insecticides belonging to the major group of
viruses known as baculoviruses. They are widely used as natu-

ral enemies of insect pests (Moscardi, 1999; Khan et al., 2014),
and have been used since the early 1890s (Huber, 1986; Khan
et al., 2014). They are obligate pathogens and are commonly
used to control Lepidoptera and Hymenoptera (Mazzone,

1985; Khan et al., 2014). They are host specific (Federici,
1997; Khan et al., 2014), and replicate in the host cells. They
usually infect their larval hosts following ingestion

(Andreadis, 1987; Khan et al., 2014).
Trichogramma species are the most widely used among the

parasitoids for pest management worldwide (Jalali et al.,

2016). They have been extensively used as natural enemies
(Shoeb, 2010), and have achieved appreciable pest control suc-
cess in many crop ecosystems, while their role in the biological

control programs of pest management is well understood
(Smith, 1996; Sorokina, 1999; Hussain et al., 2010). They were
recognized as biological control agents in the 1900s, which led
to their mass rearing, aiming to use them in pest control pro-

grams (Smith, 1996; Bastos et al., 2006). They control pests
particularly among the Lepidoptera (Khan et al., 2015a).
Around 18 different species of Trichogramma are being mass

reared in 16 countries to control insect pest on 18 million of
hectares (Hassan, 1994).

Trichogramma chilonis (Ishii) is widely distributed through-

out the Indian subcontinent and has been effectively used to
control caterpillar pests in the field (Manjunath et al., 1985;
Khan et al., 2014). They control common pests in Pakistan

including sugarcane borer (Chilo sacchariphagus) in sugar
cane, diamondback moth (Plutella xylostella) in cabbage and
other vegetables, and cotton bollworms (Helicoverpa armigera)
in cotton and corn.

The baculoviruses used in this work are: HaNPV (HELI-
COVEX), SeMNPV (SPEXIT) and CpGV (MADEX), two
of them are NPVs and the other is a GV. They were evaluated

for their effect on the oviposition preference by T. chilonis.
2. Materials and methods

2.1. Rearing of Sitotroga cerealella

The young larvae of grain moth S. cerealella hatched and
infested the wheat grain within a week host eggs were sprinkled
on sterilized grains in a plastic/metal tray (30 � 18 cm) in the

laboratory of Entomology Division, NIFA, Peshawar, (Pak-
istan). The infested wheat was then shifted to plastic rearing
jars (15 � 20 cm), and their openings were subsequently cov-
ered with a piece of cotton cloth, and were maintained in the

laboratory at average conditions of 24 ± 6 �C, 65 ± 10% rel-
ative humidity (RH) and 16:8 (L:D) until adults’ emergence
after 20–25 days.

Regular collections of emerged moths from the rearing jars
every 24 h were carried out by an electric suction apparatus in
the oviposition jar (10 � 15 cm) covered at bottom by mesh
(mesh No. 30–40 pore size). The jar containing adult moths
was placed over the corn flour in a metal/plastic tray, and
was given a single turn to adhere the flour to the jar mesh at

the bottom for egg laying. The jar was then carefully placed
on metal/plastic tray until next day (24 h) allowing the moths
to lay eggs in the flour. Next day, the host eggs were collected

by sieving the flour and the eggs were used in the experimental
work as well as for maintenance of S. cerealella culture in the
laboratory.

2.2. Rearing of Trichogramma chilonis

Approximately 1000–1300 eggs of S. cerealella (less than 24 h

old) were glued onto a hard paper card (5 � 8 cm). Several
cards were prepared and dried for one h. and each card was
subsequently exposed for parasitism in glass jar (5 � 12 cm)
for 24 h containing approximately 30–40 adults (mixed-

gender) of T. chilonis. The opening of the glass jars was tightly
covered with muslin cloth to prevent escape of the adults. Dro-
plets of honey were scattered on the inner surface of the glass

jar walls as food for the parasitoid. The jar was placed in the
lamp light in order to obtain good parasitism by the tiny wasp.
Subsequently, the parasitized card was removed and was trans-

ferred to another glass jar of the same size, and the jar was
incubated at the 23 ± 3 �C, 70 ± 10% RH and 14:10 (L:D)
conditions until adult emergence. Stock culture of T. chilonis
was produced for use in the experimental work.

2.3. Preparation of different concentrations of pesticides solution

Commercially available three types of BVs (Table 1) including

HaNPV, SeNPV and CpGV were diluted with tap water to
prepare their respective stock solutions. The stock solution
was diluted (serial dilutions) and 5 different concentrations

(12.5�, 6.25�, 2.5�, 1.25� and 0.625�) of insecticides were
prepared for use in the experiments by the formula:
C1V1 = C2V2, where C1 and V1 are the concentration and vol-

ume of commercial pesticides/stock solution, respectively,
while C2 and V2 are the concentration and volume of the
required pesticide solutions (diluted), respectively.

2.4. Testing for oviposition preference by Trichogramma chilonis

Approximately 60–65 fresh S. cerealella eggs were glued on the
hard paper card (5 � 8 cm). The card was dried for 1–2 h and

was subsequently cut into six card strips (0.9 � 8 cm each) each
containing 10 host eggs. Card strips were treated by dipping
for 1–2 s in the different solution of each type of BVs or con-

trol in the laboratory. Each card was dried at the aforemen-
tioned laboratory conditions, and subsequently one card
containing virus treated host eggs and the other containing

water treated (control) host eggs were exposed to a pair of
T. chilonis (<24 h old) in the glass vial (1 � 10 cm) to evaluate
their effect on oviposition preference in choice design. The vial
was exposed to light for 3 h for completion of parasitization.

The trial consisted of six replications for each concentration
and treatment. The exposed parasitizing female was removed
after 3 h from each vial and all the vials were incubated at

aforementioned conditions until pupae formation. The data
were recorded by counting darkened eggs (pupae) 7 days after
exposure to the parasitoids separately for each card, and data
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were compared for both virus treated and control to determine
oviposition preference by the parasitoid.

2.5. Data analysis

The data were analyzed using GLM (Statistix 9) on average
parasitization. Tukey HSD test (p = 0.05) were used for mean

separation. Reduction in parasitism (%) over controls were
evaluated by toxicity categories of International Organization
for Biological Control (IOBC)/West Palaearctic Regional Sec-

tion (WPRS) (Hassan et al., 1994; Sterk et al., 1999):
1 = harmless (E < 30%); 2 = slight harmful
(30 6 E 6 79%); 3 = moderately harmful (79 < E 6 99%);

4 = harmful (>99%), where ‘‘E” stand for effect of the pesti-
cide on the biological control agent measured as the reduction
in percentage of parasitism over control.
3. Results and discussion

All three types of BVs including HaNPV, SeMNPV and
CpGV were evaluated for oviposition preference of host eggs

(S. cerealella) by T. chilonis. Their active ingredient, supplier
of such products and the conditions used for their storage
are given in Table 1. The analysis of variance revealed (Table 2)

no significant difference for parasitism among the used concen-
trations regarding both viruses treated and untreated (control:
water) host eggs (p > 0.05).

All the used concentrations of selected BVs were found
harmless for parasitism by T. chilonis based on the comparison
of virus treated and control host eggs which showed 615%
reduction over control in parasitism (Fig. 1). Furthermore,

both types of host eggs were similarly preferred for parasitism
by tiny parasitoid, and all used concentrations of BVs showed
statistically at par with control (Table 2). Therefore, results

demonstrated that both virus treated and untreated host eggs
observed similar parasitism.

Sufficient published studies are not available on effects of

the pesticides on Trichogramma spp. However, few experi-
ments were conducted by various scientists assessing toxicity
of microbial insecticides to beneficials including Trichogramma

(Khan et al., 2014). The compatibility of BVs with T. chilonis
in the current study were supported by Moscardi (1999) and
Khan et al. (2014), who described viral insecticides as not
harmful to humans and are compatible with natural enemies

of target pests. Similarly, Khan et al. (2014) described HaNPV
as very safe microbial insecticide for emergence of as well as
parasitism by T. chilonis and can effectively manage the target

pests. For example, Ramteke and Gangurde (2011) described
that both fresh HaNPV (2 � 109 POBs/ml @ 250 ml/ha and
1 � 109 POBs/ml @ 500 ml/ha), and stored HaNPV formula-

tions (stored for 1 year (2 � 109 POBs/ml @ 250 ml/ha and
1 � 109 POBs/ml @ 500 ml/ha) led to effectively reduced lar-
val populations of H. armigera and led to higher yields of

pigeon pea. Similarly, treatment of bacterium Pseudomonas
fluorescens did not exhibit adverse impacts on the parasitism
and emergence success of the T. chilonis (Gandhi et al., 2005;
Khan et al., 2014). Sagheer et al. (2008) reported that integra-

tion of bioinsecticides (neem and Bacillus thuringiensis-Bt) and
Trichogramma spp. can enhance effectiveness of the parasitic
wasps against rice leaf folder Cnaphalocrocis medinalis.



Table 2 Oviposition preference (mean ± SE) of previously virus treated and untreated (control) host eggs (S. cerealella) by single female T. chilonis under choice design, and means

comparison (Tukey’s HSD, p= 0.05% or 5%).

Type of BVs Concentration (mean ± SE); virus treatments and control

12.5� 6.25� 2.5� 1.25� 0.625�
T C T C T C T C T C

HaNPV 8.83 ± 0.75a 9.00 ± 0.63a 8.83 ± 0.48a 9.17 ± 0.48a 8.17 ± 0.91a 9.17 ± 0.40a 8.17 ± 0.60a 8.50 ± 0.43a 7.83 ± 1.60a 8.00 ± 0.45a

SeMNPV 8.67 ± 0.80a 9.00 ± 0.26a 7.50 ± 1.63a 7.50 ± 0.72a 8.00 ± 0.89a 8.00 ± 0.93a 8.17 ± 0.98a 8.17 ± 0.48a 7.50 ± 0.89a 8.83 ± 0.31a

CpGV 9.17 ± 0.40a 9.50 ± 0.34a 9.83 ± 0.17a 9.83 ± 0.17a 9.83 ± 0.17a 10.0 ± 0.00a 7.83 ± 0.95a 9.17 ± 0.65a 9.17 ± 0.48a 9.50 ± 0.22a

ANOVA results for HaNPV

Concentration df f p Remarks

T C T C T C

4 4 0.22 1.10 0.9246 0.3775 Not significant

ANOVA results for SeMNPV

Concentration df f p Remarks

T C T C T C

4 4 0.21 1.07 0.9321 0.3905 Not significant

ANOVA results for CpGV

Concentration df f p Remarks

T C T C T C

4 4 2.49 0.85 0.0690 0.5081 Not significant

All means sharing same letter ‘‘a” within a column/among columns, are not significantly different (Tukey’s HSD, p> 0.05). T stands for virus treatment and C stands for control.
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Figure 1 Percent reduction in parasitism over control by T.

chilonis in oviposition preference test (choice design).
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Plant extracts and microbial formulations may effectively
replace conventional synthetic insecticides (Khan et al.,
2014). Biopesticides replaced synthetic pesticides based on

their generally low environmental pollution, low toxicity to
humans, and other benefits (DeBach and Rosen, 1991; Qi
et al., 2001; Gandhi et al., 2005), and are effective under field

conditions when integrated with biological control (Huffaker,
1974; Beddington et al., 1978; Barclay, 1982; DeBach and
Rosen, 1991; Van Driesche and Bellows, 1996; Qi et al.,

2001; Gandhi et al., 2005).
Viruses belonging to family Baculoviridae have been used as

pesticides for biological control of pests (Copping and Menn,

2000; Souza de et al., 2007). They have narrow specificity, and
are harmless to people and wildlife and have been used in
many countries around the world (Souza de et al., 2007). More
than 600 species of baculoviruses attack pests belonging to

order Lepidoptera, Hymenoptera and Diptera (Souza de
et al., 2007). Successful pest controls rely on the use of chem-
icals and several viruses (Prasad and Srivastava, 2016).

According to modern classification based on ICTV (Interna-
tional Committee on Taxonomy of Viruses): the family Bac-
uloviridae have been divided into four genera: (1)

Alphabaculovirus (lepidopteran-specific NPV), (2) Betabac-
ulovirus (lepidopteran-specific Granuloviruses), (3)
Gammabaculovirus (hymenopteran-specific NPV) and (4)
Deltabaculovirus (dipteran-specific NPV) (Jehle et al., 2006).

Nucleopolyhedrovirus belonging to baculoviruses in the
family Baculoviridae, consists of large rod-shaped nucleocap-
sids with circular double-stranded DNA (Bilimoria, 1986;

Khan et al., 2014). The outer lipoprotein envelope surrounds
the nucleocapsid (Khan et al., 2014). The virions are invisible
by light microscope, however, large occlusion bodies (OB) pro-

duced in the host cell, range from 1 to 15 lm, are visible in a
compound microscope, and occlude many virions protecting
them to some degree during host-to-host transfer (Benz,

1987; Ignoffo et al., 1989; Khan et al., 2014). They are com-
monly associated with the Lepidoptera and Hymenoptera
(Mazzone, 1985) including cotton bollworm, beat armyworm
and codling moth. They are very effective to manage a variety

of pest insects, although some insects survive and show only
sublethal effects ranging from deformed pupae (Peng et al.,
1997) to slower development, lower weight, reduced reproduc-

tion and shorter life span (Rothman and Myers, 1996).
Attempts at controlling insect populations with nucleopolyhe-
droviruses (NPVs) date to at least the early 1890s (Huber, 1986).

Cydia pomonella granulosis virus (CpGV) is a granulovirus with
double-stranded DNA and forms small bodies called granules
containing a single virion. CpGV is a biological control agent
of Codling moth C. pomonella, and kills its host in the same

instar as infection.
H. armigera nucleopolyhedrovirus or HaNPV is a micro-

bial pesticide, marketed as ‘‘HELICOVEX” in the world

including Pakistan, and effectively control caterpillar pests
including, H. armigera (Hubner) in cotton, tomato, pea,
tobacco, maize, sweet corn and lettuce. Pulses, sunflower,

wheat, lucerne, potato and other crops are hosts of H. armi-
gera larvae in Pakistan (Ahmed et al., 1992; Khan et al.,
2014). The virus kills young instars (L1–L3) and infects older
larvae. It is well suited for organic and integrated pest manage-

ment strategies and resistance management programs
(Andermatt and Andermatt, 2015).

Spodoptera exigua nucleopolyhedrovirus available as

SPEXIT worldwide including Pakistan is a highly specific/
selective insecticide which effectively controls beet armyworms
Spodoptera exigua (Hübner) on various greenhouse and open

field crops including corn, cotton, soybean, alfalfa, sweet pep-
per, tomato, melon, cucurbit, strawberry, sugar-beet, bean,
cabbage, citrus, garlic, groundnut, lettuce, maize, onion,

potato, pea, rice and tobacco in many parts of the world.
The use of SPEXIT significantly reduces crop damage and pest
population (Andermatt and Andermatt, 2015).

MADEX, a bioinsecticide containing C. pomonella Gran-

ulovirus (CpGV) as active ingredient, is a highly specific/selec-
tive insecticide against the codling moth (C. pomonella
(Linnaeus) (Andermatt and Andermatt, 2015). They kill the

larvae in their early instars before causing damage to the plants
(Andermatt and Andermatt, 2015). At a lower dosage, the lar-
vae will be killed at a later instar providing excellent popula-

tion control. It can be used by organic growers, but is also
an effective product for use in IPM and conventional control
programs against codling moths in apple, pear, walnuts,

quinces, apricots, peaches, almonds, kakis, medlars, oranges
and others (Andermatt and Andermatt, 2015).

4. Conclusion

Selected baculoviruses were assessed for their effect on the
oviposition preference of virus treated and untreated host eggs
of Sitotroga cerealella by Trichogramma chilonis. All the three

types of baculoviruses including HaNPV, SeNPV and CpGV
tested at concentrations including 12.5x, 6.25x, 2.5x, 1.25x
and 0.625x against T. chilonis did not demonstrated oviposi-

tion preference of untreated host eggs compared to virus trea-
ted eggs. Therefore, it was concluded that all the three types of
BV are compatible with parasitism by parasitoids at the used

concentrations (under the choice).
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