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1. Introduction

Fractional calculus has procured expansive importance during
the past long time since the fractional derivative gives an immi-
nent execution to the depiction of the memory and characteristic
properties of different strategies. Lately, researchers center around
fractional derivatives, especially when a couple of utilizations in
biology, financial aspects, science, and engineering have displayed
up (Francesco, 2010; Mainardi, 1996; Williams et al., 2020; Bedi
et al., 2021; Bedi et al., 2020; Devi et al., 2021; Bedi et al., 2019;
Bedi et al., 2020; Bedi et al., 2021). For Researchers, fractional
derivatives have recently become a more interesting area, particu-
larly since numerous possible methods emerged in biology, eco-
nomics, science, and engineering. Fractional derivative definitions
were offered in both local and nonlocal forms. Nonlocal derivatives
are more interesting because the majority of these applications are
dependent on the function’s history.

Furthermore, integrodifferential equations are employed in a
range of scientific domains where an aftereffect or delay must be
taken into account, such as biology, control theory, ecology, and
medicine. In general, integrodifferential equations are always
employed to represent a model with hereditary characteristics, as
the researcher’s works (Mohan Raja et al., 2020; Dineshkumar
et al., 2021; Kavitha et al., 2021) demonstrate. Neutral systems
arise in a wide range of applied mathematics domains, including
electronics, fluid dynamics, biological models, and chemical kinet-
ics, and as a result, this type of equation has received a lot of atten-
tion in recent years, one can refer (Bedi et al., 2020; Bedi et al.,
2021; Kavitha et al., 2021; Mallika Arjunan et al., 2021).

Fractional differential equations (FDEs) in several physical phe-
nomena are difficult to handle via singular kernels. Subsequently,
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fractional derivatives were created involving non-singular kernels.
Hence a new fractional derivative was proposed by Caputo and
Fabrizio having exponential kernel in 2015. Caputo’s and
Riemann–Liouville’s fractional derivative is the most well-known
amongst the distinct fractional order differential operators with a
singular kernel. To counter this, a new derivative was formulated
by Atangana and Baleanu through the generalization of Mittag–
Leffler function involving a non-singular kernel (Atangana and
Baleanu, 2016) because non-singular kernel models can depict
actuality in explicit ways when contrasted with the standard frac-
tional calculus involving singular kernel, such as the Keller-Segel
model (Atangana and Alqahtani, 2018). Refer (Atangana and
Koca, 2016; Owolabi and Atangana, 2019; Ravichandran et al.,
2019; Saad et al., 2018; Saad et al., 2018; Kumar and Pandey,
2020; Baleanu and Fernandez, 2018; Fernandez et al., 2019) for a
list of Atangana-Baleanu derivative applications in several fields.
Atangana and Baleanu (2016) proposed the Atangana-Baleanu
(AB) fractional derivative in both the Riemann–Liouville and
Caputo senses in recent years. This derivative includes the gener-
alised Mittag–Leffler function as a kernel. The nonlocal behaviour
of the generalised Mittag–Leffler function allows for a more realis-
tic explanation of the macroscopic behaviour and memory effects
of systems with non-local exchanges. Authors developed a new
strategy for calculating the global conduct of difference equations
with delay of threshold dynamics of difference equations for the
SEIR model lately in Bentout et al. (2021). Bentout et al., 2021;
Bentout et al., 2021; Djilali and Bentout, 2021; Djilali and
Ghanbari, 2020; Khan et al., 2021; Zeb et al., 2021 for more
information.

Furthermore, as shown in (Atangana and Koca, 2016; Mallika
Arjunan et al., 2021; Owolabi and Atangana, 2019;
Balasubramaniam, 2021), the Atangana-Baleanu (AB) fractional
derivative retains all of the properties of previously known frac-
tional derivatives. In a recent paper (Ravichandran et al., 2019),
the authors used a fixed point approach to investigate the exis-
tence of AB fractional integro-differential and neutral systems.
The authors of Mallika Arjunan et al. (2021) employed the fixed
point approach given in Ravichandran et al. (2019) to show that
the Atangana-Baleanu fractional neutral integro-differential and
Volterra systems with or without delay exist. Motivated by these
papers, the authors of Williams and Vijayakumar (2021) utilised
fractional calculus, non-instantaneous impulses, the integro-
differential equation, and the Darbo fixed point approach to cover
the controllability and existence outcomes for fractional neutral
impulsive Atangana-Baleanu integro-differential systems with
delay. Recently, in Aimene et al. (2019), authors investigated the
controllability of Atangana-Baleanu semilinear differential equa-
tions of fractional order with impulses and delay through semi-
group theory and Darbo fixed point theorem along with
measures of non-compactness. One can also refer (Mallika
Arjunan et al., 2021; Williams and Vijayakumar, 2021) for the
result of Atangana-Baleanu with delay.

For analysing nonlinear system existence of mild solutions, the
fixed point technique can be regarded a useful and valuable tool.
The fixed point technique appears to be appropriate for the solu-
tion of many problems in existence of solutions, since it is con-
structive and incorporates a convergence theory. The fixed point
approach has yet to be widely used to stochastic impulsive control
systems, despite its widespread use in both theory and numerical
aspects of differential equations. Using this method, the problem
is turned into a fixed point problem in a function space for an
appropriate nonlinear operator. This technique relies heavily on
the existence of a fixed point for the appropriate operator. The
fixed point approach is the most successful method for examining
the existence and controllability of differential systems with inte-
ger and fractional orders. Because of its usefulness, a number of
2

academics have used various sorts of fixed point theorems to
investigate the issues provided by evolution equations. The Mönch
fixed point theorem is used to study the existence of mild solutions
for Atangana-Baleanu semilinear neutral fractional integro-
differential equations with finite delay.

Roused by the works above, we think about the accompanying
issue of fractional semilinear differential equations in Banach space
of the type

ABCDf w dð Þ �S1 d;wdð Þ½ � ¼ Ûw dð Þ þS2 d;wd;
R d
0 R d;r;wrð Þdr

� �
;

d 2 J ¼ 0;P½ �;
w0 dð Þ ¼ H dð Þ 2 U; d 2 �q;0½ �

8>><
>>:

ð1Þ
ABCDf is the Atangana-Baleanu-Caputo derivative of fractional order

0 < f < 1. The infinitesimal generator Û : D Û
� �

� X ! X of an f-

resolvent family Q f dð Þ� �
dP0; Pf dð Þð ÞdP0 is solution operator defined

on a complex Banach space X; k � kð Þ. Additionally,
S1 : J�U ! X;S2 : J�U�X ! X;R : K�U ! X where
K ¼ d;rð Þ : 0 6 r 6 d 6 Pf g. J :¼ 0;P½ �;P > 0 is a constant,
0 < d1 < d2 < . . . < dm < dmþ1 :¼ P;w0 2 X. Historically, wd repre-
sents the function wd : �q;0ð � ! X defined by wd qð Þ ¼ w dþ qð Þ
for d 2 0;P½ � and q 2 �q;0½ �.

2. Preliminaries

Definition 2.1 Podlubny, 1999. The Riemann–Liouville fractional
integral of order � 2 Rþ: If there exists a function h : Rþ ! R then

I�0þh dð Þ ¼ 1
C �ð Þ

Z d

0
d� ið Þ��1h ið Þdi; d > 0;

where the RHS is pointwise on Rþ, where C is a gamma function.
Definition 2.2 Podlubny, 1999. The Caputo fractional derivative of
order � 2 n� 1;nð �: If there exists a continuous function
h : Rþ ! R, then

CD�
0þh dð Þ ¼ 1

C n� �ð Þ
Z d

0
d� ið Þn�1��h nð Þ ið Þdi; d > 0;

where the integrals (2.1) and (2.2) are taken in Bochner’s sense.
Definition 2.3. The Riemann–Liouville fractional derivative of
order � 2 n� 1;nð �: If there exists any function h : Rþ ! R, then

RLD�
0þh dð Þ ¼ 1

C n� �ð Þ
Z d

0
d� ið Þn�1��h ið Þdi; d > 0;

where the function h has absolutely continuous derivatives up to
order n� 1.
Definition 2.4. Atangana and Baleanu, 2016. The Caputo sense of
A-B fractional derivative: For q 2 T1 e; Pð Þ; e < P and at d 2 e; Pð Þ of
order f we have

ABCDf
eþq dð Þ ¼ B fð Þ

1� f

Z d

e
q ið ÞHf �b d� ið Þf

� �
di; ð2:1Þ

where the function b ¼ f= 1� fð Þ;Hf �ð Þ is Mittag Leffler, and
B fð Þ ¼ 1� fð Þ þ f=C fð Þ is the normalization function fulfilling
B 0ð Þ ¼ B 1ð Þ ¼ 1.
Definition 2.5 Atangana and Baleanu, 2016. The Riemann–Liou-
ville sense of A-B fractional derivative: For q 2 T1 e; Pð Þ; e < P and
at d 2 e; Pð Þ of order f we have
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ABRDf
eþq dð Þ ¼ B fð Þ

1� f
d
dd

Z d

e
q ið ÞHf �b d� ið Þf

� �
di: ð2:2Þ

For f ¼ 1 in (2.1), let @d be the classical derivative.
The fractional integral order related to the A-B derivative is

given by

ABIfaþ ¼ 1� f
B fð Þ q dð Þ þ f

B fð ÞC fð Þ
Z d

a
d� ið Þ f�1ð Þq ið Þdi: ð2:3Þ
Definition 2.6 Pazy, 1983. The resolvent set is given by
f Að Þ ¼ - 2 ℂ; -� Að Þ : D Að Þ ! H is invertiblef g, the through

closed graph theorem, R -;Að Þ ¼ -� Að Þ�1, is the bounded opera-
tor for - 2 f Að Þ on H which is known to be the resolvent of A at
-. Hence, AR -;Að Þ ¼ -R -;Að Þ � I;8 - 2 f Að Þ.
Definition 2.7 Pazy, 1983. If closed and linear operator A is a sec-
torial operator then 9 a constant T > 0; / 2 R and b 2 p

2 : p
� �

;3
the conditions

1.
P

b;/ð Þ ¼ - 2 C;-– /; j arg -� /ð Þjbf g � f Að Þ,
2. kR -;Að Þk 6 T

j-�/j ;- 2P b;/ð Þ,

are fulfilled.
Definition 2.8 Aimene et al., 2019. If w : C �q;P½ �;Xð Þ ! X is a
mild solution of (1) then w0 qð Þ ¼ H qð Þ;q 2 �q;0½ � and

w dð Þ ¼

H dð Þ; d ¼ �q;0½ �;
GPf dð Þ H 0ð Þ �S1 0;w0ð Þ½ �

þKG 1�fð Þ
B fð ÞC fð Þ

R d
0 d� ið Þf�1

S2 i;wi;
R i
0R i; h;whð Þdh� �

di

þKG 1�fð Þ
B fð ÞC fð Þ

R d
0 d� ið Þf�1r�S1 i;wið Þdi

þ fG2

B fð Þ
R d
0Q f d� ið ÞS2 i;wi;

R i
0R i; h;whð Þdh� �

di

þ fG2

B fð Þ
R d
0Q f d� ið ÞÛS1 i;wið Þdi; d 2 0;P½ �;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2:4Þ

where G ¼ r� r�I � Û
� ��1

; K ¼ �ĉ�Û r�I � Û
� ��1

with r� ¼ B fð Þ
1�f ,

ĉ ¼ f
1�f ; Û ¼ �B fð ÞK

fG and

Pf dð Þ ¼ Xf �Kdf
� � ¼ 1

2pi

R
C e

-d-f�1 -fI �Kð Þ�1d-:

Q f dð Þ ¼ df�1Xf;f �Kdf
� � ¼ 1

2pi

R
C e

-d -fI �Kð Þ�1d-

and 9 C lying on
P

~d;xð Þ;S2 2 C J;Xð Þ.
Definition 2.9 (Deimling, 2010; Heinz, 1983). The Kuratowski mea-
sure of noncompactness: Consider a banach spaceX andS Xð Þ � X

is bounded then a : S Xð Þ ! 0;1½ Þ is a mapping which can be
specified by a Bð Þ ¼ inf � > 0 : B#[n

i¼1Bi
�

and diam Bið Þ 6 �g,
where B 2 S Xð Þ and diam Bið Þ ¼ sup kw� xk : w; x 2 Bf g.
Definition 2.10 Ji et al., 2011. Let Dþ be the positive cone of an
ordered Banach space D;6ð Þ. A function E defined on the set of
all bounded subsets of Banach space Z with values in Dþ is called
a measure of noncompactness(MNC) on Z if and only if
E coTð Þ ¼ E Tð Þ for all bounded subsets T#Z, where coT stands
for the closed convex hull of T. The MNC of E is said to be:

1. monotone if and only if for all subsets T1;T2 of Z, we have
T1 #T2ð Þ ) E T1ð Þ 6 E T2ð Þð Þ;

2. nonsingular if and only if E af g [Tð Þ ¼ E Tð Þ for every

a 2 Z;T � Z;
3

3. regular if and only if E Tð Þ ¼ 0 if and only ifT is relatively com-
pact in Z. One of the many examples of MNC is the noncom-
pactness measure of Hausdroff r defined on each bounded
subset T of Z by
r Tð Þ ¼ inf � > 0; T can be covered by a finite numberf
of balls of radii smaller than �g:

For all bounded subsets T;T1;T2 of Z,
4. r T1 þT2ð Þ 6 r T1ð Þ þ T2ð Þ, where T1 þT2 ¼ zþ y : z 2f

T1; y 2 T2g;
5. r T1 [T2ð Þ 6 max r T1ð Þ;r T2ð Þf g;
6. r kTð Þ 6 jkjr Tð Þ for any k 2 R;
7. If Q : D Qð Þ#Z ! Y is lipschitz continuous with constant w,

then rY DTð Þ 6 wr Tð Þ for any bounded subset T#D Qð Þ,
where Y is Banach space.
Lemma 2.11 (Deimling, 2010; Heinz, 1983). ConsiderX as a Banach
space, suppose B is bounded and equicontinuous in C c; d½ �;Xð Þ we
get a B dð Þð Þ is continuous on c; d½ �, along with
a Bð Þ ¼ supd2Ua B dð Þð Þ; d 2 c; d½ �;whereB dð Þ ¼ w dð Þ : w 2 Bf g � X.
Lemma 2.12 (Deimling, 2010; Heinz, 1983). IfB is a bounded set in
C c; d½ �;Xð Þ, then B dð Þ is bounded in X, and a B dð Þð Þ 6 a Bð Þ.
Lemma 2.13 (Deimling, 2010; Heinz, 1983). If a bounded and
countable set B ¼ vnf g � C c; d½ �;Xð Þ n ¼ 1;2; ::ð Þ then a B dð Þð Þ is
Lebesgue integrable on c; d½ � with

a
Z d

c
vn dð Þdd

( )1

n¼1

 !
6 2

Z d

c
a B dð Þð Þdd:
Theorem 2.14 Mönch, 1980. Let U be a closed convex subset of a
Banach space Z and 0 2 U. Assume that X : U ! Z is a continu-
ous map which satisfies Mönch’s condition, that is, (M #U is
countable, M # cov 0f g [ X Mð Þð Þ ) M is compact). Then X has a
fixed point in U.
3. Main Results

Now, let us look into the existence of (1). Suppose Û 2 Uf a0; l0ð Þ
then kPf dð Þk 6 Teld and kQ f dð Þk 6 Celd 1þ df�1� �

;8 d > 0; l > l0.

Thus, T̂ ¼ supdP0kPf dð Þk; T̂1 ¼ supdP0Celd 1þ df�1� �
. So we get

kPf dð Þk 6 T̂ and kQ f dð Þk 6 df�1T̂1. One can also refer (Shu et al.,
2011).

Now we assume the following assumptions.

H1ð Þ S2 : J�U�X ! X is a function that fits the following
requirements

ið Þ It satisfies Carathedory condition i.e. S2 �; �; �;wð Þ is Lebes-
gue measurable and S2 d; �; �; �ð Þ is continuous.

iið Þ 9 a non decreasing continuous function

TS2 : 0;1½ Þ ! 0;1ð Þ and a function u 2 L
1
f1 U;Rþð Þ, where

f1 2 0; fð Þ 3

kS2 d;u1;u2ð Þk 6 u dð ÞTS2 ku1k þ ku2kð Þ;
and
lim inf
n!1

TS2 nð Þ
n

¼ v < 1:
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iiið Þ 9 constants L1 2 L
1
f1 0;P½ �;Rþ� �

for any countable set
u1;u2 � X,
a S2 d;u1;u2ð Þð Þ 6 L1 a u1ð Þ þ a u2ð Þ½ �;8d 2 0;P½ �:

H2ð Þ For each d;rð Þ 2 K;R : K�U ! X is a continuous function

and it fits the following requirements
ið Þ there exist constants TR, such that,
kR d;r;u1ð Þk 6 TR 1þ ku1k½ �;

for u1 2 X; d;r 2 J.

iið Þ 9 L2 2 L
1
f1 U2;Rþ
� �

, for any bounded subset u2 � X ! X
a TR d;r;u2ð Þð Þ 6 L2 d;rð Þ a u2ð Þ½ � for a:e: d 2 U;
with L�
2 ¼ R r0 L2 d;.ð Þ < 1.

H3ð Þ For a function S1 : J�U ! X is continuous then it should
fulfill the following
ið Þ 9 a constant TS1 ; T̂S1 3

kS1 d;u1ð Þk 6 TS1 1þ ku1kð Þ for d 2 U; # 2 X;

kS1 d;u1ð Þ �S1 d; u2ð Þk 6 T̂S1ku1 � u2k8u1;u2 2 X:
iið Þ 9 constants L3 3 for any countable set u3 � X,
a S1 d;u3ð Þð Þ 6 L3a u3ð Þ;8d 2 U:
H4ð Þ For a bounded linear operators G and K from X 9 positive
constants t and l fulfilling
kGk 6 t and kKk 6 l:
Theorem 3.1. If H1ð Þ- H4ð Þ are fulfilled, the system (1) has at least
one mild solution, assuming that,
2 n�L1 1þ 2L�
2

� �þ n��L3
� �

< 1: ð3:1Þ
Proof. To show that, the operator E : U0 ! U0 defined by

Ew dð Þ ¼

H dð Þ; d ¼ �q; 0½ �;
GPf dð Þ H 0ð Þ �S1 0;w0ð Þ½ �
þKG 1�fð Þ

B fð ÞC fð Þ
R d
0 d� ið Þf�1

S2 i;wi;
R i
0R i; h;whð Þdh� �

di

þKG 1�fð Þ
B fð ÞC fð Þ

R d
0 d� ið Þf�1r�S1 i;wið Þdi

þ fG2

B fð Þ
R d
0Q f d� ið ÞS2 i;wi;

R i
0R i; h;whð Þdh� �

di

þ fG2

B fð Þ
R d
0Q f d� ið ÞÛS1 i;wið Þdi; d 2 0;P½ �;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð3:2Þ
has fixed point, which is a mild solution of (1). Rewriting the prob-

lem (1) as follows. For H 2 U, we define Ĥ by

Ĥ dð Þ ¼ H dð Þ; d 2 �q;0½ �;
GPf dð ÞH 0ð Þ; d 2 J:

	

Then Ĥ 2 U0. Let w dð Þ ¼ M dð Þ þ Ĥ dð Þ;�q < d 6 P. Hence M satis-
fies M0 ¼ 0 and
M dð Þ ¼ GPf dð Þ �S1 0;w0ð Þ½ �
þKG 1�fð Þ

B fð ÞC fð Þ
R d
0 d� ið Þf�1

S2 i;Mi þ Ĥi;
R i
0R i; h;Mh þ Ĥh

� �
dh

� �
di

þKG 1�fð Þ
B fð ÞC fð Þ

R d
0 d� ið Þf�1r�S1 i;Mi þ Ĥi

� �
di

þ fG2

B fð Þ
R d
0Q f d� ið ÞS2 i;Mi þ Ĥi;

R i
0R i; h;Mh þ Ĥh

� �
dh

� �
di

þ fG2

B fð Þ
R d
0Q f d� ið ÞÛS1 i;Mi þ Ĥi

� �
di

if and only if w satisfies
4

w dð Þ ¼ GPf dð Þ H 0ð Þ �S1 0;w0ð Þ½ �
þKG 1�fð Þ

B fð ÞC fð Þ
R d
0 d� ið Þf�1

S2 i;Mi þ Ĥi;
R i
0R i; h;Mh þ Ĥh

� �
dh

� �
di

þKG 1�fð Þ
B fð ÞC fð Þ

R d
0 d� ið Þf�1r�S1 i;Mi þ Ĥi

� �
di

þ fG2

B fð Þ
R d
0Q f d� ið ÞS2 i;Mi þ Ĥi;

R i
0R i; h;Mh þ Ĥh

� �
dh

� �
di

þ fG2

B fð Þ
R d
0Q f d� ið ÞÛS1 i;Mi þ Ĥi

� �
di; d 2 0;P½ �;

and w dð Þ ¼ H dð Þ; d 2 �q;0½ �.
We define an operator U00 ¼ M 2 U0 : M0 2 Uf g. Let

Bn ¼ M 2 U00 : jMj jjU0 6 n
� 


for some n > 0, then Bn #U00 is uni-
formly bounded, we have.

kMd þ ĤdkU 6 kMdk þ kĤdk 6 nþ jĤd

��� ���j
U0

¼ n0.

Define an operator Ê : U00 ! U00 by

E^w dð Þ

¼

0; d 2 �q;0½ �;
GPf dð Þ �S1 0;w0ð Þ½ �
þKG 1�fð Þ

B fð ÞC fð Þ
R d
0 d� ið Þf�1

S2 i;Mi þ Ĥi;
R i
0R i; h;Mh þ Ĥh

� �
dh

� �
di

þKG 1�fð Þ
B fð ÞC fð Þ

R d
0 d� ið Þf�1r�S1 i;Mi þ Ĥi

� �
di

þ fG2

B fð Þ
R d
0Q f d� ið ÞS2 i;Mi þ Ĥi;

R i
0R i; h;Mh þ Ĥh

� �
dh

� �
di

þ fG2

B fð Þ
R d
0Q f d� ið ÞÛS1 i;Mi þ Ĥi

� �
di; d 2 0;P½ �:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Visibly, the operator E has a fixed point that is identical to Ê has
one. Therefore, it is enough to prove Ê has fixed point.

Step 1: For a positive number n > 0; Ê Bnð Þ#Bn.
We assume the contrary, i.e, 8n; 9 Mn 2 Bn but Ê Mn

� �
R Bn, i.e,

kÊ Mn
� �

dð Þk > n for some d 2 J.
Applying H1ð Þ � H4ð Þ, we have

n 6 kÊ Mn
� �

dð Þk
6 kGPf dð Þ �S1 0;w0ð Þ½ �

þ kKG 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1

S2 i;Mi þ Ĥi;

Z i

0
R i; h;Mh þ Ĥh

� �
dh

� 
dik

þ kKG 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1r�S1 i;Mi þ Ĥi

� �
dik

þ k fG2

B fð Þ
Z d

0
Q f d� ið ÞS2 i;Mi þ Ĥi;

Z i

0
R i; h;Mh þ Ĥh

� �
dh

� 
dik

þ k fG2

B fð Þ
Z d

0
Q f d� ið ÞÛS1 i;Mi þ Ĥi

� �
dik

6 tT̂TS1 1þ kw0kð Þ

þ lt 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1u ið ÞTS2 kMi þ Ĥik

h

þk
Z i

0
R i; h;Mh þ Ĥh

� �
dhk
�
di

þ lt
C fþ 1ð Þ P

fTS1 1þ kMi þ Ĥik
h i

þ t2

B fð Þ T̂1

Z d

0
d� ið Þf�1u ið ÞTS2 kMi þ Ĥik

h

þk
Z i

0
R i; h;Mh þ Ĥh

� �
dhk
�
di

þ ltT̂1
Pf

f
TS1 1þ kMi þ Ĥik

h i
6 tT̂TS1 1þ kw0kð Þ
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þ lt 1� fð Þ
B fð ÞC fþ 1ð Þ P

fkuk TS2 n0 þTR 1þ n0ð ÞPð Þ� 

þ lt
C fþ 1ð Þ P

fTS1 1þ n0½ �

þ t2

B fð Þ T̂1P
fkuk TS2 n0 þTR 1þ n0ð ÞPð Þ� 


þ ltT̂1
Pf

f
TS1 1þ n0½ �

6 tT̂TS1 1þ kw0kð Þ

þ lt 1� fð Þ
B fð ÞC fþ 1ð Þ P

f þ t2T̂1P
f

B fð Þ

" #
kuk TS2 n0 þTR 1þ n0ð ÞPð Þ� 


þ ltPf

C fþ 1ð Þ þ
ltT̂1P

f

f

" #
TS1 1þ n0½ �

6 tT̂TS1 1þ kw0kð Þ þ n�kuk TS2 n0 þTR 1þ n0ð ÞPð Þ� 
þ n��TS1 1þ n0½ �:

Let m ¼ n0 þTR 1þ n0ð ÞP. At the moment, m! 1 as n ! 1. Now
dividing (3.3) by n and allowing n ! 1, one can obtain

1 6 tT̂TS1 1þ kw0kð Þ
n

þ n�kukTS2 mð Þ
m

� m
n
þ n��TS1 1þ n0½ �

n

then by H1ð Þ, we obtain 1 6 0.
This is a contraction. Hence, for some positive integer

n; Ê Bnð Þ#Bn.
Step 2: Ê is continuous on Bn.

kE2wn dð Þ � E2w dð Þk 6 kKG 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1

S2 i;Mni þ Ĥni;

Z i

0
R i; h;Mnh þ Ĥnh

� �
dh

� �

�S2 i;Mi þ Ĥi;

Z i

0
R i; h;Mh þ Ĥh

� �
dh

� �
dik

þ kKG 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1r� S1 i;Mni þ Ĥni

� �h

�S1 i;Mi þ Ĥi

� �i
dik þ k fG2

B fð Þ
Z d

0
Q f d� ið Þ

S2 i;Mni þ Ĥni;

Z i

0
R i; h;Mnh þ Ĥnh

� �
dh

� �

�S2 i;Mi þ Ĥi;

Z i

0
R i; h;Mh þ Ĥh

� �
dh

� �
dik

þ k fG2

B fð Þ
Z d

0
Q f d� ið ÞÛ S1 i;Mni þ Ĥni

� �
�S1 i;Mi þ Ĥi

� �h i
dik

6 lt 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1

kS2 i;Mni þ Ĥni;

Z i

0
R i; h;Mnh þ Ĥnh

� �
dh

� 

�S2 i;Mi þ Ĥi;

Z i

0
R i; h;Mh þ Ĥh

� �
dh

� 
k

þ lt
C fð Þ

Z d

0
d� ið Þf�1kS1 i;Mni þ Ĥni

� �

�S1 i;Mi þ Ĥi

� �
k þ ft2T̂1

B fð Þ
Z d

0
d� ið Þf�1

kS2 i;Mni þ Ĥni;

Z i

0
R i; h;Mnh þ Ĥnh

� �
dh

� 

�S2 i;Mi þ Ĥi;

Z i

0
R i; h;Mh þ Ĥh

� �
dh

� 
k

þ lt
Z d

0
Q f d� ið ÞkS1 i;Mni þ Ĥni

� �
�S1 i;Mi þ Ĥi

� �
k:
5

We acquire limn!1E Mni þ Ĥni

� �
¼ E Mi þ Ĥi

� �
Þ in Bn, since the

functions S1;S2 are continuous.
Hence E is continuous on Bn.
Step 3: Ê Bnð Þ is equicontinuous family of function on J.
For w 2 Ê Bnð Þ and 0 < d1 < d2 6 P then 9 M 2 Bn 3
k Eð Þ d2ð Þ � Eð Þ d1ð Þk 6 kG Pf d2ð Þ � Pf d1ð Þ½ � H 0ð Þ �S1 0;w0ð Þ½ �k

þkKG 1�fð Þ
B fð ÞC fð Þ

R d1
0 d2 � ið Þf�1 � d1 � ið Þf�1
h i

S2 i;Mi þ Ĥi;
R i
0R2 i; h;Mh þ Ĥh

� �
dh

� �
þ r�S1 i;Mi þ Ĥi

� �h i
dik

þk fG2

B fð Þ
R d1
0 Q f d2 � ið Þ � Q f d1 � ið Þ� �

S2 i;Mi þ Ĥi;
R i
0R2 i; h;Mh þ Ĥh

� �
dh

� �
þ ÛS1 i;Mi þ Ĥi

� �h i
dik

þkKG 1�fð Þ
B fð ÞC fð Þ

R d2
d1

d2 � ið Þf�1

S2 i;Mi þ Ĥi;
R i
0R2 i; h;Mh þ Ĥh

� �
dh

� �
þ r�S1 i;Mi þ Ĥi

� �h i
dik

þk fG2

B fð Þ
R d2
d1
Q f d2 � ið Þ

S2 i;Mi þ Ĥi;
R i
0R2 i; h;Mh þ Ĥh

� �
dh

� �
þ ÛS1 i;Mi þ Ĥi

� �h i
dik:

When d1 ! d2 ) RHS tends to 0, and the compactness of strongly
continuous operators Pf dð Þ and Q f dð Þ for d > 0 implicit the continu-
ity in the uniform operators topology.

) Ê Bnð Þ is equicontinuous.
Step 4: To prove: Mönch’s condition holds.
Let N#Bn is countable and N# conv 0f g [ Ê Nð Þ� �

. Now, we
show that a Nð Þ ¼ 0 where a Hausdorff MNC. Without loss of gen-
erality we consider N ¼ Mnf g1n¼1. Now we need to show that
Ê Nð Þ dð Þ is relatively compact in X 8d 2 J. By referring lemma
(2.12) we have,

a Ê rð Þ1n¼1

� 
� �
6 a

KG 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1

	

S2 i;Mnh þ Ĥnh;

Z i

0
R i;h;Mnh þ Ĥnh

� �
dh

� 
di

þKG 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1r�S1 i;Mnh þ Ĥnh

� �
di

þ fG2

B fð Þ
Z d

0
Q f d� ið ÞS2 i;Mnh þ Ĥnh;

Z i

0
R i;h;Mnh þ Ĥnh

� �
dh

� 
di

þ fG2

B fð Þ
Z d

0
Q f d� ið ÞÛS1 i;Mnh þ Ĥnh

� �
di
�1

n¼1

6 2
lt 1� fð Þ
B fð ÞC fð Þ

Z d

0
d� ið Þf�1

	

a S2 i;Mnh þ Ĥnh;

Z i

0
R i;h;Mnh þ Ĥnh

� �
dh

� � � �
di

þ lt
C fð Þ

Z d

0
d� ið Þf�1 a S1 i;Mni þ Ĥni

� �� �h i
di

þ ft2

B fð Þ
Z d

0
Q f d� ið Þ

a S2 i;Mnh þ Ĥnh;

Z i

0
R i;h;Mnh þ Ĥnh

� �
dh

� � � �
di

þtl
Z d

0
Q f d� ið ÞÛ a S1 i;Mnh þ Ĥnh

� �� �h i
di
�

6 2
lt 1� fð ÞPf

B fð ÞC fþ 1ð Þþ
t2T̂1P

f

B fð Þ

" #
L1 1þ2L�

2

� �
a w ið Þð Þ

(

þ tlPf

C fþ1ð Þ þ
tlT̂1P

f

f
L3

" #
a w ið Þð Þ

)

6 2 n�L1 1þ2L�
2

� �þ n��L3
� �

a w ið Þð Þ;

) from lemma (2.10),
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a Ê Nð Þ� �
6 ~La Nð Þ.

Through Mönch’s condition, we get.
a Nð Þ 6 a conv 0f g [ Ê Nð Þ� �� � ¼ a Ê Nð Þ� �

6 ~La Nð Þ, which gives

a Nð Þ ¼ 0. Thus, from Theorem (2.13) Ê has a fixed point M 2 Bn,

then w ¼ Mþ Ĥ is the mild solution of the system (1). This com-
pletes the proof.

4. Example

This part focus mostly on the application of our theoretical
findings.

ABCDf
d w d; hð Þ � e�d

25þ ed
jw d� q; hð Þj

1þ jw d� q; hð Þj
� � �

¼ @2

@h2
w d; hð Þ

þ e�d

49þ ed
jw d� q; hð Þj

1þ jw d� q; hð Þj
� 

þ
Z d

0

e�i

50

�  jw i� q; hð Þj
1þ jw i� q; hð Þj di;

d 2 0;1½ �; d –
1
2
;

w d;0ð Þ ¼ w d;pð Þ ¼ 0; d 2 0;1½ �;
w d; hð Þ ¼ H d; hð Þ; d 2 �q; 0½ �; h 2 0;p½ �: ð4:1Þ

Set X ¼ L2 0;p½ �, and Û : D Û
� �

� X ! X an operator defined as

ÛZ ¼ Z00;Z 2 D Û
� �

, whereas the domain D Û
� �

¼ Z 2 X;Z;Z0f
are absolutely continuous, Z00 2 X;Z 0ð Þ ¼ Z 1ð Þ ¼ 0g. Then

ÛZ ¼
X1
n¼1

n2 Z;Znð ÞZn;Z 2 D Û
� �

:

At this moment Zn ið Þ ¼
ffiffiffi
2
p

q
sin nið Þ;n 2 N is the orthogonal set of

eigenvectors of Û. It is obvious that Û is a generator of an analytic
semigroup P dð Þð Þd60 in X defined as

P dð ÞZ ¼
X1
n¼1

e�n2d Z;Znð ÞZn;Z 2 X; d > 0:

Hence P dð Þð ÞtP0 is a uniformly bounded compact semigroup, in

order that R k; Û
� �

¼ k� Û
� ��1

is a compact operator 8
k 2 l Û

� �
) Û 2 Ûf a0;Z0ð Þ. Futhermore, the subordination princi-

ple of solution operator Pf dð Þð Þd P 0 3 kPf dð Þk 6 M̂ for d 2 0;1½ �.
Thus, for d; hð Þ 2 0;1½ � � 0;p½ �;a 2 �q;0½ � and

/ 2 C 0;1½ �; �q;1½ �ð Þ, where

w dð Þ hð Þ ¼w d;hð Þ;S2 d;wd;

Z d

0
R d;r;wrð Þdr

� 
hð Þ

¼ e�d

49þ ed
jw d� q;hð Þjj

1þ jw d� q;hð Þj
� 

þ
Z d

0

e�i

50

�  jw i� q;hð Þj
1þ jw i� q;hð Þjdi;

S1 d;wdð Þ hð Þ ¼ e�d

25þ ed
jw d� q;hð Þjj

1þ jw d� q;hð Þj
� 

:

The system (4.1) is the theoretical form of (1). Additionally, the con-
ditions H1ð Þ- H4ð Þ are fulfilled. Hence there exist at least one mild
solution in the system (4.1).

5. Conclusion

As a result, we studied Atangana-Baeanu fractional neutral
delay integro-differential systems in Banach spaces. We proved
our major conclusions by applying the abstract notions associated
with fractional calculus and the fixed point approach. Through
Mönch fixed point theorem, the system existence is proved. The
6

theoretical outcomes are demonstrated through an application
provided. In the future, we will extend our text to study the con-
trollability of Atangana-Baeanu fractional neutral delay integro-
differential systems.
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