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A B S T R A C T   

Advanced sensor tech integrates into diverse applications, including remote sensing, robotics, and IoT. 
Combining artificial intelligence (AI) with sensors enhances their capabilities, creating smart sensors, revolu-
tionizing remote sensing and Internet of Things (IoT). This synergy forms a potent technology in the field. This 
study carries out a comprehensive analysis of the progress made in Hyperspectral sensors and AI-based classi-
fication techniques that are employed in remote sensing fields that utilize hyperspectral images. The classifi-
cation of images obtained from Hyperspectral Sensors (HSS) has emerged as a prominent research subject within 
the domain of remote sensing. HSS offer a wealth of information across numerous spectral bands, supporting 
diverse applications such as land cover classification, environmental monitoring, agricultural assessment, change 
detection, and more. However, the abundance of data present in HSS also poses the challenge called the curse of 
dimensionality. The reduction of data dimensionality is crucial before applying any machine learning model to 
achieve optimal results. The present study introduces a new hybrid strategy combining the Back-Propagation 
algorithm with a variable adaptive momentum (BPVAM) and principal component analysis (PCA) for the pur-
pose of classifying hyperspectral images. PCA is first applied to obtain an optimal set of discriminative features 
by eliminating highly correlated and redundant features. These features are then fed into the BPVAM model for 
classification. The addition of the momentum term in the weight update equation of the backpropagation al-
gorithm helped achieve faster convergence with high accuracy. The proposed model was subjected to evaluation 
through experiments conducted on two benchmark datasets. These results indicated that the hybrid model based 
on BPVAM with PCA is an efficient technique for HSS classification.   

1. Introduction 

The use of AI techniques based on Deep Learning and IoT technol-
ogies has brought about a revolutionary period in the discipline of 
remote sensing. This synergy has not only enabled more sophisticated 
and efficient data acquisition, analysis, and interpretation but has also 
marked a transformative phase in remote sensing. The integration of 
deep learning algorithms empowers the processing of vast datasets with 
heightened precision and speed, while IoT technologies facilitate real- 
time monitoring and seamless data transmission, further enhancing 
the capabilities of remote sensing systems. These advancements have 
significantly broadened the scope of remote sensing applications and 
have opened up new avenues of research and development in the field 
(Anand et al., 2022; Grewal et al., 2023; Firat et al., 2022a, 2022b; 
Krishna et al., 2022; Li et al., 2022; Liu and Dhakal, 2020; Sharma and 
Biswas, 2022). IoT plays a critical role in the data collection process for 

remotely sensed images, resulting in a marked improvement in the ac-
curacy of various classification methods (Sharma and Biswas, 2022; Ullo 
and Sinha, 2021; Wang et al., 2019). The integration of advanced sensor 
technology has enabled the acquisition of Hyperspectral Images (HSIs) 
that possess a high degree of resolution both in the spatial and spectral 
domains. These images have become a ubiquitous tool in a multitude of 
domains, ranging from mineral detection to crop evaluation, environ-
mental management, etc. (Liu and Dhakal, 2020; Ullo and Sinha, 2021; 
Deepa et al., 2023; Grewal et al., 2023; Zhao et al., 2023; Zhou et al., 
2023). 

Hyperspectral sensors produce images of high-resolution which 
contain a large set of bands. These images are captured by high-quality 
sensors that use different spectral frequencies (Elmaizi et al., 2019). For 
HSS, the wavelength varies between the visible and infrared spectrum 
(Zhang et al., 2021). HSS provides rich information about the object of 
interest that can help discriminate a wide range of objects. It is 
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impossible to acquire such a large number of bands with multispectral 
sensors as they normally capture 3–12 bands (Praveen and Menon, 
2021; Zhao et al., 2021). The HSS has been extensively utilized across 
numerous applications such as change detection (Wen et al., 2021), 
plant phenotyping (Sarić et al., 2022), tomographic reconstruction 
(Huang et al., 2022), natural gas leakage identification (Ran et al., 
2022), object detection (Wen et al., 2021), etc. This indicates the 
important role of HSS which can help solve many problems. 

While the multitude of spectral bands in hyperspectral data offers 
valuable insights, it also introduces the challenge of higher dimension-
ality, which can potentially hinder classifier performance. The data 
across various bands may exhibit high correlations, noise, or even 
irrelevance. The presence of such extensive correlated and redundant 

Fig. 1. Block diagram of the BPVAM-PCA method.  

Table 1 
Quantitative comparison of BPVAM-PCA and BP-PCA on three different feature 
sizes for the Indian Pines dataset for HSS classification (%).  

Feature Size Method Training Testing 

Accuracy SSE Accuracy SSE 

10 BP-PCA  94.82  2.5716  88.53  2.42 
BPVAM-PCA  96.43  2.0408  91.00  1.90 

40 BP-PCA  97.04  1.6328  93.39  1.56 
BPVAM-PCA  98.23  1.4545  95.23  1.38 

80 BP-PCA  98.69  1.2350  96.71  1.19 
BPVAM-PCA  98.83  1.1233  97.30  1.06  
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information not only degrades the performance of the classifier but also 
amplifies the complexity of processing such voluminous data. It is 
imperative to address these issues carefully to fully exploit the potential 
of hyperspectral data for diverse classification tasks. 

This paper proposes a hybrid approach for HSS classification, which 
integrates two techniques: PCA and BPVAM. PCA is a powerful tech-
nique used for feature extraction, while BPVAM is used for classification. 
A variable adaptive momentum term in the BPVAM has improved the 
performance of the model. This innovative combination is developed to 
address the challenges in accurately classifying hyperspectral images, 

which are typically high-dimensional and complex in nature. The 
BPVAM algorithm allows for the dynamic adjustment of the learning 
rate throughout the training process, while PCA helps in reducing the 
dimensionality of the data, thereby simplifying the classification task. 
The study aims to demonstrate the efficacy of this hybrid strategy in 
providing more accurate and efficient results compared to traditional 
approaches. Consequently, the combination of BPVAM and PCA yields a 
remarkably robust classifier for HSS. It has been shown that the model’s 
performance improves for HSS not only in terms of accuracy but also in 
terms of faster convergence. 

The paper is organized in the following manner: In Section 2, the 
datasets conducted in the study are presented. The proposed approach is 
explicated in Section 3. The experimental results are discussed in Section 
4. Finally, the paper is completed with a conclusion. 

2. Materials 

In this study, the effectiveness of the proposed methods was assessed 
using two widely used hyperspectral datasets, namely the Indian Pines 
and the University of Pavia datasets. To give a complete understanding 
of each dataset, the following sections have been dedicated to providing 
an in-depth explanation of each one of them. 

2.1. Indian Pines 

The Indian Pines dataset was obtained through the use of an airborne 
sensor named Airborne Visible/Infrared Imaging Spectrometer (AVI-
RIS). With dimensions of 145 × 145 pixels and a total of 220 spectral 
bands, this dataset is a valuable resource for hyperspectral imaging 
analysis. The wavelength range of the bands spans from 0.4 to 2.5 μm, 
providing comprehensive spectral information that can be utilized to 
identify different areas and substances with great precision. The ab-
sorption bands are removed for this study, and the remaining 200 bands 

Table 2 
Pre, Rec, Spe, and F1 results of BPVAM-PCA and BP-PCA on 10, 40, and 80 feature sizes for the Indian Pines dataset.  

Method Label Class Feature Size (10) Feature Size (40) Feature Size (80) 

Pre. Rec. Spe. F1 Pre. Rec. Spe. F1 Pre. Rec. Spe. F1 

BP-PCA 1 Alfalfa  0.00  0.00  1.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  1.00  0.00 
2 Corn-notill  0.95  0.88  0.99  0.91  0.97  0.96  1.00  0.96  0.99  0.98  1.00  0.98 
3 Corn-mintill  0.82  0.92  0.98  0.86  0.93  0.95  0.99  0.94  0.94  0.98  0.99  0.96 
4 Corn  0.63  0.71  0.99  0.67  0.76  0.85  0.99  0.80  0.95  0.92  1.00  0.93 
5 Grass-pasture  0.86  ’0.77  0.99  0.81  0.90  0.92  1.00  0.91  0.96  0.98  1.00  0.97 
6 Grass-trees  0.91  0.99  0.99  0.95  0.94  0.96  0.99  0.95  0.98  0.98  1.00  0.98 
7 Grass-pasture-mowed  0.00  0.00  0.99  0.00  0.00  0.00  0.99  0.00  0.23  0.50  1.00  0.32 
8 Hay-windrowed  0.97  0.63  1.00  0.77  0.97  0.65  1.00  0.78  1.00  0.92  1.00  0.96 
9 Oats  0.00  0.00  0.99  0.00  0.22  1.00  0.99  0.36  0.60  1.00  1.00  0.75 
10 Soybean-notill  0.89  0.99  0.99  0.94  0.97  0.98  1.00  0.98  0.98  0.99  1.00  0.98 
11 Soybean-mintill  0.97  0.96  0.99  0.97  0.98  0.99  0.99  0.99  0.99  0.99  1.00  0.99 
12 Soybean-clean  0.93  0.91  1.00  0.92  0.96  0.94  1.00  0.95  0.98  0.97  1.00  0.98 
13 Wheat  0.62  0.84  0.99  0.72  0.82  0.88  1.00  0.85  0.89  0.96  1.00  0.92 
14 Woods  0.92  0.92  0.99  0.92  0.96  0.97  0.99  0.97  0.97  0.97  1.00  0.97 
15 Buildings-Grass-Trees-Drives  0.74  0.75  0.99  0.75  0.85  0.89  0.99  0.87  0.88  0.93  1.00  0.90 
16 Stone-Steel-Towers  0.00  0.00  1.00  0.00  1.00  0.43  1.00  0.61  0.93  0.61  1.00  0.74 

BPVAM-PCA 1 Alfalfa  0.00  0.00  1.00  0.00  0.00  0.00  1.00  0.00  0.00  0.00  1.00  0.00 
2 Corn-notill  0.96  0.92  0.99  0.94  0.98  0.96  1.00  0.97  0.98  0.99  1.00  0.99 
3 Corn-mintill  0.87  0.94  0.99  0.90  0.92  0.97  0.99  0.94  0.96  0.98  1.00  0.97 
4 Corn  0.64  0.71  0.99  0.67  0.77  0.86  0.99  0.82  0.92  0.93  1.00  0.92 
5 Grass-pasture  0.95  0.83  1.00  0.89  0.95  0.93  1.00  0.94  0.98  0.98  1.00  0.98 
6 Grass-trees  0.91  1.00  0.99  0.95  0.96  0.97  1.00  0.97  0.98  0.98  1.00  0.98 
7 Grass-pasture-mowed  0.00  0.00  0.99  0.00  0.08  0.17  1.00  0.11  0.33  0.50  1.00  0.40 
8 Hay-windrowed  0.99  0.82  1.00  0.89  1.00  0.89  1.00  0.94  0.98  0.95  1.00  0.97 
9 Oats  0.00  0.00  1.00  0.00  0.40  1.00  1.00  0.57  0.71  0.83  1.00  0.77 
10 Soybean-notill  0.91  0.98  0.99  0.94  0.97  0.97  1.00  0.97  0.99  0.99  1.00  0.99 
11 Soybean-mintill  0.98  0.97  0.99  0.97  0.99  0.98  1.00  0.99  0.99  1.00  1.00  0.99 
12 Soybean-clean  0.92  0.91  1.00  0.91  0.95  0.97  1.00  0.96  0.99  0.97  1.00  0.98 
13 Wheat  0.62  0.82  0.99  0.71  0.85  0.90  1.00  0.88  0.91  0.96  1.00  0.93 
14 Woods  0.93  0.93  0.99  0.93  0.97  0.98  1.00  0.97  0.98  0.98  1.00  0.98 
15 Buildings-Grass-Trees-Drives  0.80  0.79  0.99  0.80  0.90  0.91  1.00  0.90  0.91  0.94  1.00  0.92 
16 Stone-Steel-Towers  1.00  0.26  1.00  0.41  1.00  0.65  1.00  0.79  0.94  0.65  1.00  0.77  

Fig. 2. Convergence behavior of BP-PCA and BPVAM-PCA methods using 
different features on sthe Indian Pines dataset. 
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are used. It consists of sixteen different land cover classes. 

2.2. University of Pavia 

The University of Pavia dataset encompasses an urban area within 
the city of Pavia, Italy, and was collected through the application of a 
Reflective Optics System Imaging Spectrometer (ROSIS-3). It comprises 
115 spectral bands with a wavelength range of 0.43–0.86 μm and a 
spatial resolution of 1.3 m/pixel, represented by 610 × 340 pixels. 

Despite its high spatial resolution, the dataset contained some noisy 
channels that were subsequently removed, remaining only 103 channels 
to be employed in this study for the purpose of classification. It consists 
of nine land-cover classes. 

3. Proposed method 

Hyperspectral images contain a huge number of input bands (usually 
in hundreds). Although these bands provide useful details of the objects 

Fig. 3. Predicted classes by BP-PCA and BPVAM-PCA methods using different features for Indian Pines dataset. a) BP-PCA with 10 features. b) BPVAM-PCA with 10 
features. c) BP-PCA with 40 features. d) BPVAM-PCA with 40 features. e) BP-PCA with 80 features. f) BPVAM-PCA with 80 features. 
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of interest, this may also lead to a high correlation between channels. 
The presence of excessive redundancies can have an adverse impact on 
the efficacy of the classification technique. This study employs a two- 
step approach, in which the PCA is initially utilized to reduce the data 
dimensional, followed by the deployment of the BPVAM to classify each 
individual pixel within the input image. BPVAM is an improvement of 
the BP algorithm; therefore, in this section, the BP algorithm is 
described, first followed by BPVAM, and an introduction to PCA. Finally, 
we describe the application of these hybrid techniques for HSS 
classification. 

3.1. BPVAM algorithm 

To take full advantage of the momentum term, an optimal value of 
momentum should be selected. A small value may not help take the 
model out of local minima and a large value can make the model fluc-
tuate around the optimal value. To overcome these issues, an adaptive 
momentum (α) term is introduced in the weight update step in the BP 
algorithm by (Hameed et al., 2019). The new algorithm is termed 
BPVAM. This adaptive momentum dynamically adjusts α during 
training, promoting convergence without getting stuck in local minima. 
The BPVAM algorithm ensures that momentum effectively guides the 
optimization process. By fine-tuning α, it strikes a balance between 
stability and progress, making it a valuable addition to the field of neural 
network training techniques. In practical applications, BPVAM has 
demonstrated improved convergence and optimization performance, 
offering a promising solution for training deep neural networks more 
efficiently. 

3.2. Principal component analysis (PCA) 

PCA, also referred to as Karhunen-Loeve transform, was first 

proposed by Pearson (Pearson, 1901). The method is a multivariate 
statistical analysis technique, which effectively reduces the dimension-
ality of the data through reduction. Its work is started by receiving d- 
dimensional input vectors. The objective of PCA is to represent these d- 
dimensional vectors using k-dimensional vectors, where k≪d. It first 
calculates the mean vector (μ) and covariance matrix Σ using the d- 
dimensional space. The computation and arrangement of the eigen-
values and their corresponding eigenvectors are performed to allocate 
the dimensional space with maximal variance. The original data is then 
transformed using the newly generated Eigenvectors. 

3.3. BPVAM-PCA HSS classification 

The input data consists of a high number of channels. Before 
applying the BPVAM algorithm, the utilization of PCA was employed to 
reduce the dimensional magnitude of the input features. The robustness 
of the system was improved when highly redundant features with low 
variance were discarded using PCA. This improved the likelihood of the 
model reaching convergence early in the training process without 
affecting its performance. 

The original data set for the Indian Pines data consisted of 220 bands, 

Table 3 
Quantitative comparison of BPVAM-PCA and BP-PCA on three different feature 
sizes for the University of Pavia dataset for HSS classification (%).  

Feature Size Method Training Testing 

Accuracy SSE Accuracy SSE 

5 BP-PCA  99.53  3.5268  98.48  3.5002 
BPVAM-PCA  99.54  3.2405  98.61  3.1362 

10 BP-PCA  99.56  3.2101  98.62  3.2007 
BPVAM-PCA  99.58  3.0997  98.71  3.0923 

20 BP-PCA  99.64  2.7325  98.88  2.7260 
BPVAM-PCA  99.71  2.1678  99.11  2.1586  

Table 4 
Pre, Rec, Spe, and F1 results of BPVAM-PCA and BP-PCA on 5, 10, and 20 feature sizes for the University of Pavia dataset.  

Method Label Class Feature Size (5) Feature Size (10) Feature Size (20) 

Pre. Rec. Spe. F1 Pre. Rec. Spe. F1 Pre. Rec. Spe. F1 

BP-PCA 1 Asphalt  0.99  0.97  1.00  0.98  0.99  0.97  1.00  0.98  0.99  0.98  1.00  0.98 
2 Meadows  0.99  1.00  0.99  0.99  0.99  1.00  1.00  0.99  0.99  1.00  1.00  1.00 
3 Gravel  0.97  0.98  1.00  0.97  0.97  0.98  1.00  0.98  0.98  0.98  1.00  0.98 
4 Trees  0.98  0.99  1.00  0.98  0.98  0.99  1.00  0.99  0.99  0.99  1.00  0.99 
5 Painted metal sheets  0.96  0.97  1.00  0.97  0.97  0.98  1.00  0.97  0.97  0.98  1.00  0.98 
6 Bare Soil  0.99  0.99  1.00  0.99  0.99  0.99  1.00  0.99  0.99  0.99  1.00  0.99 
7 Bitumen  0.94  0.97  1.00  0.96  0.95  0.97  1.00  0.96  0.96  0.98  1.00  0.97 
8 Self-Blocking Bricks  0.97  0.98  1.00  0.98  0.97  0.98  1.00  0.98  0.97  0.99  1.00  0.98 
9 Shadows  0.99  0.90  1.00  0.94  0.98  0.89  1.00  0.94  0.99  0.92  1.00  0.95 

BPVAM-PCA 1 Asphalt  0.99  0.97  1.00  0.98  0.99  0.97  1.00  0.98  0.99  0.98  1.00  0.99 
2 Meadows  0.99  1.00  0.99  0.99  0.99  1.00  1.00  1.00  1.00  1.00  1.00  1.00 
3 Gravel  0.97  0.98  1.00  0.98  0.97  0.98  1.00  0.98  0.98  0.99  1.00  0.98 
4 Trees  0.98  0.99  1.00  0.99  0.99  0.99  1.00  0.99  0.99  0.99  1.00  0.99 
5 Painted metal sheets  0.97  0.98  1.00  0.97  0.97  0.98  1.00  0.97  0.98  0.99  1.00  0.98 
6 Bare Soil  0.99  0.99  1.00  0.99  0.99  0.99  1.00  0.99  0.99  1.00  1.00  1.00 
7 Bitumen  0.95  0.97  1.00  0.96  0.95  0.97  1.00  0.96  0.97  0.98  1.00  0.97 
8 Self-Blocking Bricks  0.97  0.98  1.00  0.98  0.97  0.99  1.00  0.98  0.98  0.99  1.00  0.98 
9 Shadows  0.98  0.90  1.00  0.94  0.98  0.90  1.00  0.94  0.99  0.93  1.00  0.96  

Fig. 4. Convergence behavior of BP-PCA and BPVAM-PCA methods using 
different features on The University of Pavia dataset. 
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while The University of Pavia consisted of 115 bands. PCA was applied 
to select the most suitable number of bands to obtain highly discrimi-
native features. We experimented with three different feature sizes for 
the University of Pavia (5, 10, and 20). Increasing the dimensional 
beyond 20 did not improve accuracy. Moreover, reducing features 
below ten also decreased the performance of the model. Similarly, for 
the Indian pines dataset, we empirically selected feature sizes of 10, 40, 
and 80. The features that have been selected were then taken as input to 
the BPVAM model for the classification of each pixel into one of the 

categories. We observed that the BPVAM reached a low steady-state 
error faster during training using features with high variance and low 
autocorrelation. 

The workflow of the proposed BPVAM-PCA model will whole steps is 
illustrated in Fig. 1. The initiation of the learning process involves the 
random initialization of the weight vectors and other learning parame-
ters of the model. The input data is passed to the PCA algorithm first and 
then fed it BPVAM model for classification. The training process is 
iterative over several epochs to obtain optimal values for both weights 

Fig. 5. Predicted classes by BP-PCA and BPVAM-PCA methods using different features for Pavia University dataset. a) BP-PCA with 5 features. b) BPVAM-PCA with 5 
features. c) BP-PCA with 10 features. d) BPVAM-PCA with 10 features. e) BP-PCA with 20 features. f) BPVAM-PCA with 20 features. 
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and biases. Two possibilities are used to stop the training process: 
maximum number of iterations and stopping criteria. The training will 
continue until the error reaches the acceptable threshold value or reach 
the maximum number of iterations. After training is completed, the 
optimized weights and biases will be stored and taken into consideration 
for the subsequent stage of processing. Finally, the test data is passed to 
the trained/optimized model which will then produce the final class 
labels for each pixel. 

4. Experimental results 

This section describes the performance evaluation of the proposed 
method for HSS classification on two well-known benchmark datasets: 
the Indian Pines and the Pavia University datasets. It is preferable to test 
data with known characteristics and challenges to assess the level and 
size of the impact of the proposed model and its ability to achieve 
competitive results compared to the recently published methods. 

The performance of the proposed hybrid BPVAM-PCA is compared 
with BP, BP-PCA, and BPVAM on both datasets. The number of features 
for the dimensionality reduction were empirically selected. Therefore, 
three different experiments were conducted using different sizes of 
features from PCA to obtain the optimal subset. The datasets were 
divided into training (75 %) and testing (25 %) subsets. The maximum 
number of iterations was set to 200 as all evaluated models converged 
before reaching 200 iterations. The hyperparameters used in this study 
as follows: for Indian Pines (BP: η = 0.1, α = 0.1, and BPVAM: η = 0.1, 
λ = 0.001, and β = 0.99), and for Pavia University (BP: η = 0.1, α =

0.1, and BPVAM: η = 0.1 , λ = 0.05 , and β = 0.9). To evaluate the 
proposed method, feature extraction size, accuracy, sum of squared 
error (SSE), Precision (Pre), Recall (Rec), Specificity (Spe), and F1-score 
(F1) metrics (Bhosale and Patnaik, 2023) were used for both training 
and testing. The following subsection describes the comparison of the 
proposed model with other techniques for both datasets. 

4.1. Indian Pines dataset 

Table 1 summarizes the quantitative results obtained for the Indian 
Pines dataset. The best feature sizes used in this dataset for PCA are 10, 
40, and 80. It can be seen that the BPVAM-PCA algorithm produced 
relatively better performance compared to BP-PCA for all three sizes of 
extracted features. Data with 80 features produced better results with an 
accuracy of 98.83 % and SSE of 1.1233 for the training dataset, while the 
accuracy of 97.30 % and SSE of 1.0665 for the testing dataset. The 
performance of BP-PCA was relatively similar to BPVAM-PCA which 
achieved accuracy = 0.9869 and error = 1.2350 in training, and accu-
racy = 96.71 % and SSE = 1.19 in the testing. BPVAM-PCA produces on 
average 2 % better accuracy for other feature sizes than the BP-PCA 
algorithm. 

Initially, all models produced higher SSE due to random initializa-
tion. As the iterations proceeded, all models started to gradually 
converge. 

In Table 2, Pre, Rec, Spe, and F1 results for two methods, BP-PCA and 
BPVAM-PCA, are compared across different feature sizes for the Indian 
Pines dataset with 16 distinct classes. BPVAM-PCA consistently exhibits 
superior performance over BP-PCA in terms of Pre, Rec, and F1 across 
most classes and feature sizes. This suggests that BPVAM-PCA not only 
minimizes false positives and maximizes true positives more effectively 
but also strikes a better balance between Pre and Rec. Both methods 
demonstrate high Spe, indicating their proficiency in identifying true 
negatives among actual negative instances. The overall trend in the re-
sults indicates that BPVAM-PCA is better suited for the Indian Pines 
dataset, delivering more accurate and reliable predictions than BP-PCA. 

Fig. 2 shows the convergence behavior of BP-PCA and BPVAM-PCA 
methods for different feature sizes on the Indian Pines dataset. The vi-
sual results confirm the performance of the proposed model shown in 
Tables 1, and 2 by providing significant performance enhancement for 

BPVAM-PCA over BP-PCA. The data extracted with 80 features give 
better results by achieving less error and faster convergence. The 
improved performance also demonstrates that learning of BPVAM-PCA 
is robust by dealing with different size and feature characteristics. 

It can be seen from Fig. 2 that both models resulted in relatively 
higher SSE when the feature size was set to 10. This indicates that 
dimensionality reduction from large dimensional space to very low 
dimensional space resulted in the loss of important information. In 
addition, this also leads the models to converge slowly to reach a steady- 
error state. Especially, BPVAM-PCA took almost 180 iterations to reach a 
stable error state. For features sizes of 40 and 80, the overall behavior of 
the models was similar. It can be noticed that BPVAM-PCA not only 
converged faster but also resulted in lower SSE from the very beginning 
till the end of iterations. 

The following Fig. 3 shows the behavior of each experiment con-
ducted on the Indian Pines dataset and the effect of each experiment 
under some conditions and hyperparameters. Where, we notice some 
models give better results than others depending on the type of features 
extracted, as well as their impact on the model during learning. Some 
models are weak in finding all classes, but we note the best result ob-
tained by BPVAM-PCA with 80 features. 

4.2. Pavia University dataset 

The second experiment is performed using The University of Pavia 
hyperspectral dataset. Since the number of bands in The University of 
Pavia dataset was relatively less (103) than the Indian Pines dataset 
(200), a set of smaller features was selected. Three different combina-
tions were tested for different feature sizes: 5, 10 and 20. As mentioned 
earlier, these sizes were empirically calculated by running the experi-
ment several times. The dataset was split into training (75 %) and testing 
(30 %) subsets. 

Table 3 summarizes the results obtained for BP-PCA and BPVAM- 
PCA models for the Pavia University dataset with varying size of fea-
tures. It is clearly seen from the table that the proposed BPVAM-PCA 
model outperformed BP-PCA by improving the classification accu-
racies with all three different feature sizes. BPVAM-PCA for feature size 
of 20 produced more accurate results with accuracy = 99.71 % and 
error = 2.16 for training and accuracy = 99.11 % and SSE = 2.15 for 
testing dataset. Compared with BPVAM, BP-PCA achieved relatively low 
performance with accuracy = 99.64 % and SSE = 2.73 for training, and 
accuracy = 98.88 % and SSE = 2.72 for the test datasets. For features 
size 5, BP-PCA produced the lowest testing accuracy (99.53 %) with high 
SSE (3.5). In contrast, the performance of BPVAM-PCA was relatively 
better in terms of accuracy (99.54 %) and SSE (3.2). Similarly, for 
feature size 10, both models exhibited similar behavior, yet BPVAM-PCA 
proved to be more accurate for both test and training. This shows that 
BPVAM-PCA maintains its robustness by iteratively adapting itself using 
variable momentum, then gives better results than other models when 
tested with varying sizes of features. 

Table 4 presents Pre, Rec, Spe, and F1 results for two classification 
methods, BP-PCA and BPVAM-PCA, evaluated across three distinct 
feature sizes (5, 10, and 20) using the University of Pavia dataset, which 
comprises nine land cover classes. BPVAM-PCA demonstrates slightly 
higher precision, recall, and specificity values across most classes and 
feature sizes, indicating its proficiency in classifying land cover types. 
The performance comparison between BP-PCA and BPVAM-PCA, as 
shown in the presented results, reveals that BPVAM-PCA consistently 
achieves F1-scores close to 1, suggesting a well-balanced trade-off be-
tween precision and recall. 

Fig. 4 shows that the BPVAM-PCA model maintained the best per-
formance in terms of low error and speed of convergence for all three 
extracted features. This indicates that the variable adaptive momentum 
provided significant performance enhancement for BPVAM-PCA over 
BP-PCA. Fig. 5 confirms the results shown in Tables 3, and 4 where the 
experiment was tested on the University of Pavia dataset in 6 different 
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cases under different conditions and hyperparameters. It is clear that the 
best result was obtained by BPVAM-PCA with 20 features, where the 
extracted features and selected hyperparameters have a very large 
impact on the learning model and can also outperform the weaknesses 
challenges of other comparable models in finding all classes. 

When the performance of the two models are compared for both 
Indian Pines and Pavia University datasets, the best classification results 
are obtained by the proposed method. In case of the Indian Pines dataset, 
the feature size of 80 produced the best result, while for the University of 
Pavia dataset the best performance was obtained for BPVAM-PCA with 
20 features. It can be concluded that selecting a few number of features 
may not be useful as most of the features that carry most significant 
information are lost. This lead to a suboptimal performance of model in 
understanding the true patterns of the data. It is worth noting that the 
dataset had some class imbalance issues, yet the BPVAM-PCA was able 
to overcome this issue and adapt to learn more about the input patterns 
with few samples. Generally, when models are trained with imbalance 
data, their performance may be severely degraded. However, the pro-
posed model’s performance remain intact even with imbalance data. 
This is a highly desirable feature as many multi-class classification 
problems may have class imbalance issues. Special techniques need to be 
implemented to deal with it. BPCAM-PCA was able to deal with class 
imbalance to some extend with ease. 

5. Conclusion 

This comprehensive study delved into the realm of hyperspectral 
image classification, focusing on the application of a novel hybrid 
technique known as BPVAM-PCA. By integrating supervised (Back- 
Propagation) and unsupervised (Principal Component Analysis) 
methods, this approach demonstrated significant promise in the field. 
PCA was initially employed to extract highly discriminant features from 
hyperspectral images, followed by the application of the BPVAM clas-
sifier for pixel-wise classification. The incorporation of a variable 
adaptive momentum term proved instrumental in enhancing the 
training speed and overall accuracy of the model. Importantly, the 
model exhibited a rapid convergence to a steady-error state during the 
training process, further emphasizing its efficiency in hyperspectral 
image classification. Comparative analysis with alternative methods, 
including BP-PCA and BPVAM, on benchmark datasets (Indian Pines and 
Pavia University) showcased the superiority of the proposed BPVAM- 
PCA approach. It consistently outperformed its counterparts across 
various feature sizes and datasets, underscoring its effectiveness in 
handling the intricacies of hyperspectral image classification. 

In the future, the work will be extended to include the exploration of 
deep feature extraction through convolutional neural networks inte-
grated with the backpropagation model. This promises to eliminate the 
need for manual feature engineering while further elevating classifica-
tion accuracy. Additionally, parallel implementations of BPVAM will be 
explored to leverage GPU capabilities for training models on large-scale 
datasets. The application of BPVAM in remote sensing, coupled with 
advancements in smart sensors and IoT, will continue to be a focal point, 
offering promising prospects in diverse domains, including crop moni-
toring, environmental assessment, landslide detection, and soil quality 
evaluation. However, it’s important to note that while BPVAM-PCA 
shows significant promise, potential weaknesses or limitations, such as 
computational complexity or sensitivity to hyperparameter settings, 
should also be thoroughly investigated and addressed in future research 
to ensure its robustness and reliability in real-world applications. 
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