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In low but finite b (thermal to magnetic pressure ratio) collisionless nonextensive electron-positron-ion
plasma, we have derived linear dispersion relation of kinetic Alfvén waves (KAWs) and have also inves-
tigated solitary KAWs through Sagdeev pseudopotential approach in small amplitude limit. Linear anal-
ysis of KAWs shows a decrease in frequency of the wave with increase in each of the parameters, viz. r
(equilibrium positron-to-ion density ratio), a (electron-to-positron temperature ratio) and q (nonexten-
sive parameter). Nonlinear analysis of KAWs reveals that the nonextensive plasma model considered here
supports only compressive solitary waves at sub-Alfvénic speeds. The effects of q, r, a and a (soliton par-
allel velocity) on the characteristic properties of solitary KAWs are depicted in graphical plots. The results
of our present investigation may have relevance to the understanding of low-frequency electromagnetic
noises/localized fluctuations in strongly magnetized electron-positron-ion plasmas having nonextensive
electrons and positrons.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is widely believed that electron-positron plasmas form the
major constituents of several astrophysical situations such as the
early universe (Rees,1983; Sadiq et al., 2014), active galactic nuclei
(Miller and Witta, 1987), pulsar magnetosphere (Michel, 1991),
solar atmosphere (Tandberg-Hansen and Emslie, 1988; Kozlovsky
et al.,2004) etc. However, most of the astrophysical plasmas usu-
ally contain ions, in addition to the electrons and positrons forming
electron-positron-ion (e-p-i) plasmas. For instance, outflows of
electron-positron plasma from pulsars, when enters into interstel-
lar cold low density electron-ion plasmas, forms two temperature
e-p-i plasmas. Similarly, in many astrophysical contexts such as
interstellar medium, positrons are created due to the interactions
of cosmic ray nuclei with interstellar atoms thereby forming the
e-p-i plasmas. In laboratories, e-p-i plasmas can be created (Surko
and Murphy, 1990; Greaves and Surko, 1995) by injecting
positrons into tokamak plasmas. During the last few decades, a
great deal of work has been done on linear and nonlinear behavior
of unmagnetized as well as magnetized e-p-i plasmas to under-
stand the basic properties of waves excited there and to explain
different aspects of astrophysical environments. Among these,
investigations of nonlinear structures of kinetic Alfvén waves
(KAWs) in e-p-i plasmas have also drawn much attention of several
authors (Kakati and Goswami, 1998, 2000; Mahmood et al., 2005;
Sah, 2010; Akbari-Moghanjoughi, 2011; Dubinov et al., 2012;
Adnan et al., 2016). KAWs are basically dispersive Alfvén waves
and can be excited in plasmas for Q� b� 1 (b is the thermal to
magnetic pressure ratio; Q is the electron-to-ion mass ratio) when
shear Alfvén waves, modified by perpendicular wave length effects,
propagate obliquely to the direction of ambient magnetic field. The
dispersive character of KAWs when balanced with nonlinear steep-
ening may lead to the formation of nonlinear structures like soli-
tons and double layers. Investigations of nonlinear structures of
dispersive Alfvén waves in plasmas are important because they
can play a significant role in explaining electromagnetic fluctua-
tions, particle energization process and solitary structures
observed in space, astrophysical and laboratory plasmas (Jafelice
and Opher, 1987; Stasiewicz et al., 2000). This type of study has
got rich support from space based satellite observations
(Wahlund et al., 1994; Louran et al., 1994) which have revealed
strong electromagnetic solitary like structures having possible
interpretations of being dip or hump-type solitary KAWs.
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In their study of solitary KAWs in Maxwellian e-p-i plasma,
Kakati and Goswami (1998) reported the existence of two types
of compressive solitary waves whose existence regions were deter-
mined by the positron densities and other plasma parameters. In
the same plasma model, they also predicted the existence of small
amplitude kinetic Alfvén compressive double layers (DLs) at sub-
Alfvénic speeds and rarefactive double layers in sub and super-
Alfvénic regions (Kakati and Goswami, 2000). Later, Sah (2010)
extended this study by including finite ion temperature effect
and reported the existence of compressive solitons and double lay-
ers both at sub and super-Alfvénic speeds. In all these investiga-
tions, electrons and positrons were assumed to follow
Maxwellian distributions. Recently, Adnan et al. (2016) has
reported the existence of small amplitude sub-Alfvénic compres-
sive solitary KAWs in superthermal e-p-i plasma. However, in most
of the astrophysical plasmas, the velocity distributions of energetic
particles are not purely Maxwellian. The deviation from the Max-
wellian distribution can be attributed to the fact that the high
energy plasma particles interact via long-range Coulomb forces
together with the gravitational effect. It has been suggested that
such high energetic particles can be modeled more effectively by
nonextensive q-distribution (Silva et al., 1998; Lima et al., 2000;
Ferdousi et al., 2015) which is based on non-additive q entropic
measure (Tsallis, 1988). A number of articles have been published
recently dealing with different nonlinear wave modes in nonexten-
sive electron-ion plasmas (Tribeche et al., 2010; Liu et al., 2011;
Ahmed and Sah, 2014; Saha and Chatterjee, 2015; Saha et al.,
2015) as well as e-p-i plasmas (El-Awady and Moslem, 2011; El-
Tantawy et al., 2012; Ferdousi et al., 2015). To the best of our
knowledge, no study has yet been reported on nonlinear structures
of KAWs in nonextensive e-p-i plasmas.

In this paper we, therefore, wish to extend the kinetic Alfvén
wave problem in three component e-p-i plasma whose con-
stituents are extensive ion fluid, and nonextensive electrons and
positrons. It is to be noted that if the ion temperature becomes
comparable to electron/positron temperature, Landau damping
becomes appreciable and fluid dynamics will be broken down.
Moreover, for large electron-to-ion temperature ratio the ion
nonextensive parameter has the little effect (Liu et al., 2009).
Hence, in the present work, the ions are treated as the fluid to
get rid of Landau damping effect; and electrons, positrons are trea-
ted as nonextensive, obeying q-distribution to include long range
interactions. The result of this investigation, therefore, may be rel-
evant to long-range interaction systems such as interstellar and
astrophysical plasmas. Our investigation shows that the plasma
system considered here can support only sub-Alfvénic compressive
kinetic Alfvén solitons whose amplitude and width decrease with
increasing nonextensive parameter (q). This is quite different from
the behavior of kinetic Alfvén solitons in superthermal e-p-i
plasma (Adnan et al., 2016) where both amplitude and width of
solitary KAWs increase with the rise of superthermal parameter
kappa (j).
2. Linear dispersion relation of KAWs

We consider three-component magnetized collisionless plasma
comprising of inertial ions, warm electrons and positrons obeying
q-nonextensive distributions. The direction of ambient magnetic
field is supposed to be along Z-axis i.e. Bo ¼ Boez .The highly mag-
netized electrons and positrons of negligible inertia are assumed to
flow along the direction of ambient magnetic field (Kalita and
Bhatta, 1997). For time scales of the order of inverse of ion cyclo-
tron frequency, electrons and positrons have time to relax into dis-
tributions (Sheerin and Ong, 1979) which we consider to be q-
nonextensive along Z-axis. In order to model the effects of elec-
trons’ nonextensivity, we refer to the following one dimensional
q-distribution function (Silva et al., 1998; Liu et al., 2011)

f ðvz;wÞ ¼ Cq 1� ðq� 1Þ mev2
z
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where the parameter q stands for the strength of electrons’ nonex-
tensivity, me is the mass of an electron, Te (neo) is the temperature
(equilibrium density) of electrons, vz is the electron parallel veloc-
ity, �e is the electronic charge, w is the electrostatic potential and C
is the standard gamma function. It is to be noted that for q < �1, the
distribution function given by Eq. (1) becomes unnormalizable and
in the extensive limiting case (q?1), it reduces to the well-known
Maxwell-Boltzmann velocity distribution. The distribution function
(Eq. (1)) exhibits a thermal cut off on the maximum value that can
be allowed for the velocity of the particles for q > 1 and is given by

vmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Te

meðq� 1Þ �
2ew
me

s
ð3Þ

Hence, the limits of integration of f ðvz;wÞ over the velocity
space should be from �1 toþ1 for �1 < q < 1 and �vmax to
þvmax for q > 1. However, the integration yields the same result
in either of these cases (Liu et al., 2011).

neðwÞ ¼ neo 1þ ðq� 1Þ ew
Te

� � 1
q�1þ1

2

ð4Þ

In the same way, we can model nonextensive positrons by the
following distribution function

npðwÞ ¼ npo 1� ðq� 1Þ ew
Tp

� � 1
q�1þ1

2

ð5Þ

where npo is equilibrium positron density.
The equation of state of an ideal gas of electrons at thermal

pressure P and temperature Te in the nonextensive kinetic theory
(Liu et al., 2011) is obtained as

P ¼ 2
3q� 1

neoTe ¼ neoTeff ð6Þ

where Teff ¼ 2
3q�1 Te is the effective temperature for nonextensive

electrons.
In the limit q? 1, the effective temperature reduces to the ther-

mal temperature for the Maxwellian distribution.The effective
temperature will change with the values of Te on keeping q con-
stant. From Eq. (6), we find that q > 1=3. Hence, the range of q val-
ues greater than 1=3 will be used in our subsequent analysis.

The ratio between the effective plasma thermal pressure and

magnetic pressure is beff ¼ bTeff =Te (b ¼ 2lonioTe
B2o

; nio being equilib-

rium ion density). We assume that beff and hence b is small but
much larger than the electron-to-ion mass ratio i.e.
me=mi � beff � 1. Under low b plasma assumption, the compres-
sive component of the magnetic field perturbations, B1z can be
ignored. This fact leads us to use two potential fields
(Kadomtsev, 1965) to represent the electric field as

Ex ¼ � @u
@x

; Ez ¼ � @w
@z

ð7Þ

This allows that only shear perturbations in the magnetic field
are present which are expressed as Bz ¼ Bo (constant), Bx ¼ 0.



M.K. Ahmed, O.P. Sah / Journal of King Saud University – Science 30 (2018) 375–380 377
The set of equations governing the dynamics of KAWs (Yu and
Shukla, 1978) for small but finite b (me=mi � beff � 1) e-p-i plasma
are as follows

@ni
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þ @
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ðnivxÞ þ @

@z
ðnivzÞ ¼ 0 ð8Þ

@vz

@t
þ vx

@vz

@x
þ vz

@vz

@z
¼ � e

mi

@w
@z

ð9Þ

vx ¼ � mi

eB2
0

@2u
@x@t

ð10Þ

where vx is the polarization drift velocity for ions along X- direction.
For current density in the Z-direction, Faraday’s law and

Ampere’s law together give
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Contributions to parallel current density jz come from electrons,
positrons and ions. Thus, by making use of continuity equations for
electrons and positrons, we get
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Quasi-neutrality condition reads

ni þ np ¼ ne ð13Þ
Number densities of electrons and positrons are given by Eqs.

(4) and (5).
Linearizing Eqs .(4), (5) and (8)–(13) and assuming that all the

perturbed physical quantities vary as eiðkxxþkzz�xtÞ, one can form a
matrix equation about amplitude vectors of perturbed electric
fields, in which coefficient matrix involves wave frequency x and
wave vector (kx;0; kz). The dispersion relation is then obtained by
letting the determinant of the coefficient matrix equal to zero.
Thus,we get the following dispersion relation for our nonextensive
e-p-i plasma model
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where rð¼ npo=nioÞ is the equilibrium positron-to-ion density ratio,
að¼ Te=Tp) is the elctron-to-positron temperature ratio,

vA ¼ B2o
miniolo

� �1
2

� �
is the Alfvén speed, Cs ¼ Te

mi

� �1
2

� �
is the ion acoustic

speed and X (¼ eBo=mi) is the ion cyclotron frequency.
In the absence of positrons (r ¼ 0), the dispersion relation (Eq.

(14)) reduces to that obtained by Liu et al. (2011). On the other
hand, in the limit q? 1 and r ¼ 0, this dispersion relation can be
reduced to that well-known form obtained by Hasegawa (1977).
Eq. (14) shows the coupling of Alfvén wave with ion acoustic wave.
However, these modes decouple for low b plasma and the disper-
sion relation of KAWs becomes

x2 ¼ k2zv
2
A½1þ k2xq

2
ms� ð15Þ

where q2
ms ¼ 2

ðqþ1Þðrþraþ1Þq
2
i ; qi ¼ Cs=X is the equivalent ion

gyroradius.
The dispersion relation of KAWs in Maxwellian e-p-i plasma

(Shukla et al., 2004) can be recovered from Eq. (15) in the limit
q? 1. Eq. (15) indicates that for its oblique propagation to the
direction of ambient magnetic field, Alfvén wave becomes disper-
sive due to finite ion gyroradius effect (qi).

In order to see how the frequency of KAWs varies with positron
density and nonextensive parameter, we have plotted parallel
phase velocity of KAWs against r and q while keeping kxvA=X as
constant (Fig. 1). The values of other parameters are indicated in
each of the panels of Fig. 1. It is evident from the panels of Fig. 1
that the frequency of KAWs decreases with increase in positron
density (r), nonextensive parameter (q) and electron temperture
(a). The reduction of frequency of KAWs due the presence of posi-
tron compoent (Fig. 1(a)) in e-i magnetoplasma agrees to the pre-
diction of Shukla et al.(2004).We also find from Fig. 1 that
frequency of KAWs is greater (for q < 1) or less (for q > 1) than that
in usual Maxwellian (q? 1) plasma.

3. Derivation of Sagdeev potential in small amplitude limit

In order to obtain one dimensional time-stationary planar solu-
tions, we define moving co-ordinate by g ¼ Kxxþ Kzz�Mt, where
M ¼ V=Cs is the Mach number, V is the speed of nonlinear struc-
tures and Kx, Kz are direction cosines related by K2

x þ K2
z ¼ 1. Fur-

ther, on normalizing time to inverse of ion cyclotron
frequencyX�1,components of velocities to ion-acoustic speed Cs,
space coordinates to equivalent ion gyroradius (Cs=X), electric
potentials to Te=e and particle densities to their respective equilib-
rium values, we get from Eqs. (4), (5) and (8)–(13)
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Integrating Eqs. (18) and (19), we get
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Mvz ¼ KzH ð24Þ
where
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Eq. (20) along with Eqs. (23) and (24) gives
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Integrating Eq. (21) twice, we get after substitution of Eq. (24)
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In deriving Eqs. (23)–(27), we have replaced ni by n and use the

boundary condtions vx ¼ vz ¼ @gn ¼ 0 and n ¼ 1 at jgj =1 for
localized solutions to determine the constants of integrations.

Subtracting Eq. (27) from Eq. (26), we get
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where a ¼ M2
A=K

2
z is a function of speed and angle of propagation of

nonlinear KAWs, MA ¼ V=vA is the speed of nonlinear structures in
units of Alfvén speed. Eq. (28) can be put to the form



Fig. 1. Plots of x=kzvA against r (panel ‘a’) and q (panel ‘b’) depicting the effects of q and a respectively for constant kxvA=X. The values of other parameters are indicated in
each figure.
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@2w
@g2 ¼ � @VðwÞ

@w
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Eq. (29) looks like the equation of motion of a classical particle mov-
ing in a potential well VðwÞ which is often refered to as pseudopo-
tential or Sagdeev potential (Sagdeev, 1966) and is obtained by

VðwÞ ¼ �
Z w

0
FðwÞdw ð30Þ

The integral (Eq. (30)) can not simply have an analytical solu-
tion. So, we go for small amplitude limit to obtain the expression
for pseudopotential. Expanding Sagdeev potential near w � 0 and
retaining terms up to order w3, we get

Vðw � 0Þ ¼ �ðAw2 þ Bw3 þ � � � � � � � � �Þ ð31Þ
where
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The Eq. (29) can now be simplified to the form

1
2
ðdw
dg

Þ
2

� Aw2 � Bw3 ¼ 0 ð34Þ
4. Results and discussion

In order to obtain solitary wave solution in the small amplitude
limit, we impose the boundary condition VðwÞ ¼ 0 at w ¼ wmax (wmax

is the soliton amplitude) in the Eq. (31) to obtain

A ¼ �Bwmax ð35Þ
Using this result in Eq. (34) and then integrating it, we obtain

soliton solution of the form

w ¼ wmaxsech
2 A

2

	 
1
2

g

" #
ð36Þ

provided that A > 0 .The condition that A > 0 leads to the following
pair of inequalities which need to be satisfied separately.
a < 1 & a >
b

ðqþ 1Þðr þ raþ 1Þ ð37Þ

Or
a > 1 & a <
b

ðqþ 1Þðr þ raþ 1Þ ð38Þ

The inequalities (37) and (38) lead to the following condition if
we consider the fact that q > 1=3 and b � 1
b
ðqþ 1Þðr þ raþ 1Þ < a < 1 ð39Þ

which suggests that only sub-Alfvénic (a < 1) solitary KAWs can
exist in the nonextensive e-p-i plasma model under consideration.
On the other hand, the nature of solitary KAWs is determined solely
by the sign of B i.e. positive (negative) values of B yield rarefactive
(compressive) solitons.

In order to identify the nature of solitary KAWs, we have sur-
face plotted B against soliton parallel velocity (a) and nonexten-
sive paramter (q) for different values of other plasma parameters
based on the inequality given by (39) (Fig. 2). It is evident from
each of the panels of Fig. 2 that only compressive (B < 0) type of
solitary KAWs can exist in the nonextensive e-p-i plasma model
considered here. The result that the existence of sub-Alfvénic com-
pressive solitons in our nonextensive e-p-i plasma model agrees to
that reported in (Adnan et al., 2016; Kakati and Goswami, 1998)
but differs from (Sah, 2010) which showed the existence of both
sub and super-Alfvénic compressive solitons in Maxwellian e-p-i
plasma.

The shapes of sub-Alfvénic compressive solitary KAWs incorpo-
rating effects of various plasma parameters are shown in Fig. 3. It is
observed from the panel (a) of Fig. 3 that both amplitude and width
of solitary KAWs decrease with increase in nonextensive parame-
ter (q).

However, it has been reported in (Adnan et al., 2016) that both
amplitude and width of solitary KAWs increase with the rise of
superthermality parameter (j). It is seen from panels (b) and (c)
of Fig. 3 that amplitude as well as width of solitary KAWs decreases
with the rise of positron concentration (r) and electron tempera-
ture (aÞ. We find from the panel (d) of Fig. 3 that solitary KAWs
broaden with corresponding decrease of amplitudes as they prop-
agate with increasing sub-Alfvénic speeds.



Fig. 2. Surface plots of B against a and q indicating the nature of solitary KAWs for different values of r ¼ 0:5 (red surface), r ¼ 1 (green surface), r ¼ 1:5 (blue surface) [panel
(a)]; and a ¼ 0:5 (red surface), a ¼ 1:5 (green surface), a ¼ 2 (blue surface) [panel (b)].The values of other parameters are as indicated in each panel.

Fig. 3. Potential profiles of solitary KAWs for different values of (a) q, (b) r, (c) a and (d) a. The values of other parameters are as indicated in each panel.
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5. Conclusions

Following q-nonextensive distributions for electrons and posi-
trons in low but finite b collisionless e-p-i plasma, we have derived
linear dispersion relation of KAWs and have also investigated small
amplitude solitary KAWs through Sagdeev pseudopotential
approach. Linear analysis of KAWs shows that the frequency of
the wave decreases with increase in each of the parameters r, q
and a. Moreover, frequency of KAWs is found to be greater (for
q < 1) or less (for q > 1) than that in usual Maxwellian (q?1)
plasma. Nonlinear analysis of KAWs shows the existence of sub-
Alfvénic compressive solitary waves in the nonextensive e-p-i
plasma system under consideration. Amplitudes of solitary KAWs
are found to be decreased on increasing r, a and q. Moreover, soli-
tary KAWs broaden with corresponding decrease of amplitudes as
they propagate with increasing sub-Alfvénic speeds. Considering
the wide relevance of KAWs in space, astrophysical and other
plasma environments (Sah, 2010), the results of the present theo-
retical investigations might be useful in understanding the forma-
tion of low frequency electromagnetic noises/small amplitude
localized fluctuations in such regions dominated by magnetized
e-p-i plasmas having nonextensive electrons and positrons.
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