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1. Introduction nique of Shaw and Buckley (Shaw and Buckley, xxxx) to propose
The Lindley distribution; Lindley (Lindley, 1958); is a popular
distribution that can be used to model asymmetrical behavior. Dif-
ferent authors have explored this distribution. Ghitany et al.
(Ghitany et al., 2008) have studied the properties of the distribu-
tion in detail. The distribution has been generalized by Zakerzadeh
H. and Dolati (Zakerzadeh and Dolati, 2009) and Nadarajah et al.
(Nadarajah et al., 2011). Ghitany et al. (Ghitany et al., 2013) have
proposed a power transformation of the distribution. Benkhelifa
(Benkhelifa, 2017) has given yet another extension of the Lindley
distribution. Some applications of the power Lindley distribution
in quality control have been given by Shahbaz et al. (Shahbaz
et al., 2018).

Shankar (Shanker, 2017) and Shanker and Shukla (Shanker and
Shukla, 2017) have proposed the Rama and the Ishita distributions
which extends the Lindley distribution. These distributions have
also been extended by various authors. Garaibah and Al-Omari
(Garaibah and Al-Omari, 2019) have used the transmutation tech-
the transmuted Ishita distribution. Alhyasat et al. (Alhyasat et al.,
2021) have given an extension of the Rama distribution with wider
applicability.

Extensions in probability distributions have attracted various
authors to propose the families of distributions. Gupta et al.
(Gupta et al., 1998) have proposed the exponentiated class of distri-
butions by exponentiation of the distribution function (cdf) of any
distribution. This family of distributions has been discussed in
detaile by Al-Hussaini and Ahsanullah (Al-Hussaini and
Ahsanullah, 2015). Alzaatreh et al. (Alzaatreh et al., 2013) have sug-
gested a method to develop families of distributions using two ran-
domvariables and is named as the T–X family of distributions. Some
notable families of distributions that arise as members of the T–X
family of distributions are the gamma–G family of distributions;
Alzaatreh et al. (Alzaatreh et al., 2014) and Zografos and Balakrish-
nan (Zografos and Balakrishnan, 2009), the Lindley–G distributions
by Cakmakyapan and Ozel (Cakmakyapan and Ozel, 2017) among
others. The gamma–G family of distributions provides distribution
of record values; proposed by Chandler (Chandler, 1952) as a spe-
cial case. Alzaatreh et al. (Alzaatreh et al., 2021) have also proposed
a truncated version of the T–X family of distributions that provide
distributions for modeling of truncated data.

2. Material and methods

The Ishita distribution is useful for modeling of continuous phe-
nomenon. Theprobabilitydensity function (pdf) of this distribution is.
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f xð Þ ¼ h3

h3 þ 2
hþ x2
� �

exp �hxð Þ ; x ; h > 0 ð1Þ

This distribution can be viewed as a mixture of exponential and
gamma random variables with shape parameter 3. We will propose
an extension of this distribution alongside a new family of distribu-
tions based upon that extension. The new family will be proposed
by using the T–X family of distributions, proposed by Alzaatreh
et al. (Alzaatreh et al., 2013) where the cdf of the new family of dis-
tributions is given as.

FT�X xð Þ ¼
Z W G xð Þ½ �

a
r tð Þdt ¼ R W G xð Þf g½ � ; x 2 R ð2Þ

where W G xð Þ½ � is some absolutely continuous function of G xð Þ
and r tð Þ is pdf of random variable T such thata 6 T 6 b. Also
W 0ð Þ ! a andW 1ð Þ ! b.

This paper deals with an extension of (1) and a new family of
distributions using (2). This research is motivated by the fact that
there have always been situations where the data needs some
more flexible models for optimum modeling. The plan of the paper
follows.

An extension of the Ishita distribution is proposed in Section 3.
Section 4 contains useful properties of the proposed distribution.
Parameter estimation of the distribution is given in Section 5. In
Section 6, a new family of distributions has been proposed. The
simulation and real data application of the Ishita distribution have
been given in Section 7. Conclusions are given in Section 8.

3. The extended Ishita (EI) distribution

The pdf of Ishita distribution, withh ¼ b�1, is.

f xð Þ ¼ b 1þ 2b3� �� ��1
1þ bx2
� �

e�x=b ; x ; b > 0 ð3Þ
The cumulative distribution function (cdf) is.

F xð Þ ¼ 1� 1þ b 2b2 þ 2bxþ x2
� �
1þ 2b3 e�x=b ; x > 0

The density (3) is mixture of gamma variate with shape param-
eter 3; G 3; bð Þ; and exponential variate;E b�1� �

; with a mixing ratio

of 1þ 2b3� ��1
. The extended Ishita distribution can be obtained by

using mixture of E b�1� �
and G a; bð Þ with a mixing ratio

of 1þ baC að Þ½ ��1, where C að Þ is the complete.
gamma function. The pdf of the extended Ishita (EI) distribution

is, thus,

f EI xð Þ ¼ b 1þ baC að Þf g½ ��1 1þ bxa�1� �
e�x=b ; x ; a ; b > 0 ð4Þ

The cdf of EI distribution is.

FEI xð Þ ¼ 1� exp �x=bð Þf g þ baC a; x=bð Þ
1þ baC að Þ ð5Þ

where C a; x0ð Þ ¼ R x0
0 wa�1e�wdw is the incomplete gamma function.

This new distribution will be denoted byEI a;bð Þ. The reliability
function is.

R xð Þ ¼ 1� 1� exp �x=bð Þf g þ baC a; x=bð Þ
1þ baC að Þ

¼ exp �x=bð Þ þ bac a; x=bð Þ
1þ baC að Þ ð6Þ

where c a; x0ð Þ ¼ R1
x0

wa�1e�wdw ¼ C að Þ � C a; x0ð Þ.
The hazard rate function of is.

h xð Þ ¼ f xð Þ
R xð Þ ¼

xþ bxa

bxþ baþ1xe�x=bc a; x=bð Þ : ð7Þ
2

The mode is obtained by solving @ ln f xð Þ=@x ¼ 0 for x. Now.

ln f xð Þ ¼ � ln b 1þ baC að Þf g½ � þ ln 1þ bxa�1� �� x
b

So@ ln f xð Þ
@x ¼ � 1

b þ a�1ð Þb
bxþx2�a.

and hence the mode can be obtained by numerically solving.

�1
b
þ a� 1ð Þb
bxþ xa�2 ¼ 0 ) a� 1ð Þb2 � b bxþ x2�a

� � ¼ 0

The point of inflection is obtained by solving@2 ln f xð Þ=@x2 ¼ 0.
Now.

@2 ln f xð Þ
@x2

¼ a� 1ð Þb bþ a� 2ð Þx1�a� �
bxþ x2�að Þ

and hence the point of inflection can be obtained by solv-
ing a� 1ð Þb bþ a� 2ð Þx1�a� � ¼ 0, for x.

The graphs of density and hazard rate function for different val-
ues of the parameters are given in Fig. 1. The graphs show that for
large values ofa, the distribution has more than 1 points of inflec-
tion. Also, for large a and smallb, the hazard rate function first
decreases and then increases.

4. Distributional properties

The section deals with some properties of the EI distribution
which are discussed in the following subsections.

4.1. Moments

The rth raw moment of the EI distribution is.

l=
r ¼ E Xrð Þ ¼ 1

b 1þbaC að Þ½ �
R1
0 xr 1þ bxa�1
� �

exp � x
b

� �
dx

¼ br C rþ1ð ÞþbaC rþað Þ½ �
1þbaC að Þ �

ð8Þ

We can see that the above moment expression is the linear mix
of the moments of exponential and gamma random variables with

a mixing rate 1þ baC að Þ½ ��1. The mean and the variance of the dis-
tribution are.

l ¼ b 1þ baC aþ 1ð Þ½ �
1þ baC að Þ and

r2 ¼ b 2þ baC aþ 2ð Þf g
1þ baC að Þ � b 1þ baC aþ 1ð Þf g

1þ baC að Þ
� 	2

The mean and variance for the EI distribution are given in
Table 1.

From the table, we can see that, for fixeda, the mean increases
with an increase inb. Also, for fixedb, the mean increases witha.
The variance of the distribution exhibits the same sort of behavior.
We can also see, from Table 1, that the parameter b has a much lar-
ger effect on variance as compared witha.

4.2. Moment generating function

The moment generating function of the distribution is.

MX tð Þ ¼ E etX
� � ¼ Z 1

0
etx

1þ bxa�1
� �
b 1þ baC að Þ½ � exp � x

b


 �
dx

Using Gradshteyn and Ryzhik (Gradshteyn and Ryzhik, 2007),
we have.

MX tð Þ ¼ 1� btð Þa þ ba 1� btð ÞC að Þ
1� btð Þaþ1 1þ baC að Þ½ �

¼ 1� btð Þ�1 þ ba 1� btð Þ�aC að Þ
1þ baC að Þ½ � ð9Þ



Fig. 1. The Density and Hazard Rate Function of the Extended Ishita Distribution.
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The moments can be obtained from above.

4.3. The quantile function

The quantile function is obtained by solving F xð Þ ¼ p for x. The
quantile function for EI distribution is.

1� exp �x=bð Þf g þ baC a; x=bð Þ
1þ baC að Þ ¼ p
3

Random sample from EI distribution can be obtained by using
the quantile function.

The random sample can be obtained by direct inversion of the
quantile function or by using the acceptance/rejection method
with the following steps.

1. Use n,a, b and some initial value x0.
2. Obtain u from U 0;1ð Þ distribution.



Table 1
Mean and Variance for EI Distribution.

Mean
a b

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.5 0.361 0.680 0.987 1.285 1.579 1.869 2.155 2.440 2.723 3.004
1.0 0.500 1.000 1.500 2.000 2.500 3.000 3.500 4.000 4.500 5.000
1.5 0.560 1.235 1.965 2.715 3.472 4.232 4.993 5.753 6.512 7.271
2.0 0.600 1.500 2.538 3.600 4.655 5.700 6.736 7.765 8.788 9.808
2.5 0.643 1.856 3.268 4.648 5.985 7.293 8.583 9.862 11.134 12.400
3.0 0.700 2.333 4.113 5.765 7.345 8.891 10.419 11.938 13.451 14.960
3.5 0.784 2.922 4.996 6.870 8.675 10.452 12.217 13.977 15.733 17.487
4.0 0.909 3.571 5.857 7.938 9.968 11.982 13.988 15.992 17.995 19.996
4.5 1.094 4.223 6.678 8.974 11.238 13.494 15.746 17.998 20.248 22.499
5.0 1.357 4.840 7.467 9.990 12.496 14.998 17.499 19.999 22.500 25.000
Variance
a b

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.5 0.20 0.74 1.60 2.77 4.25 6.02 8.09 10.45 13.09 16.02
1.0 0.25 1.00 2.25 4.00 6.25 9.00 12.25 16.00 20.25 25.00
1.5 0.29 1.30 3.08 5.63 8.95 13.03 17.86 23.44 29.78 36.88
2.0 0.34 1.75 4.29 7.84 12.38 17.91 24.43 31.95 40.46 49.96
2.5 0.41 2.41 5.75 10.23 15.89 22.77 30.89 40.26 50.87 62.74
3.0 0.51 3.22 7.18 12.42 19.11 27.32 37.03 48.24 60.97 75.20
3.5 0.67 4.03 8.38 14.37 22.15 31.71 43.05 56.14 70.99 87.60
4.0 0.90 4.67 9.41 16.24 25.16 36.11 49.08 64.06 81.05 100.04
4.5 1.23 5.12 10.39 18.13 28.20 40.55 55.16 72.02 91.14 112.51
5.0 1.66 5.45 11.40 20.06 31.28 45.02 61.26 80.01 101.26 125.00
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3. Update x0 using x� ¼ x0 � R x0;a; b
� �

withR x0;a; b
� � ¼ FEI x;a; bð Þ � u0½ �=f EI x;a; bð Þ.

4. If x0 � x�
�� �� < e for some small e then use x� as a random variate

from EI a; bð Þ else setx0 ¼ x�.
5. Repeat steps (2) – (4) n times to get random sample

fromEI a; bð Þ.
4.4. Shannon entropy

The Shannon entropy; Shannon (Shannon, 1948); of a random
variable X with density function f xð Þ is given asIS ¼ E � ln f xð Þf g½ �.
Now, for EI distribution we have.

� ln f xð Þ ¼ lnbþ ln 1þ baC að Þ½ � � ln 1þ bxa�1
� �þ 1

b
x

and hence Shannon entropy for EI distribution is.

IS EIð Þ ¼ IS a;bð Þ ¼ R1
0 ln bþ ln 1þ baC að Þf g � ln 1þ bxa�1

� �þ 1
bX

h i
� 1

b 1þbaC að Þ½ � 1þ bxa�1
� �

exp � x
b

� �
dx:

Solving above integral, we have.

IS a;bð Þ ¼ ln bþ ln 1þ baC að Þf g � I þ 1þ baC aþ 1ð Þ
1þ baC að Þ ð10Þ

WhereI ¼ R1
0 ln 1þ bxa�1

� �
f EI xð Þdx. Shannon entropy can be

computed for different values of a; bð Þ.

4.5. Réyni entropy

Réyni entropy; Réyni (Rényi, 1961); is defined as.

IR dð Þ ¼ 1
1� d

ln I dð Þ½ � ; d > 0 ; d–1

I dð Þ ¼
Z 1

�1
f d xð Þdx

Now.
4

f d xð Þ ¼ 1
bd 1þbaC að Þ½ �d 1þ bxa�1

� �d exp � dx
b

� �

¼ 1
bd 1þbaC að Þ½ �d

P1
j¼0

C dþ1ð Þ
j!C d�jþ1ð Þb

jxd a�1ð Þ exp � dx
b

� �
;

So.

I dð Þ ¼ R1
�1

1
bd 1þbaC að Þ½ �d

P1
j¼0

C dþ1ð Þ
j!C d�jþ1ð Þ b

jxd a�1ð Þ exp � dx
b

� �
dx

¼ 1
bd 1þbaC að Þ½ �d

P1
j¼0

bajþ1C dþ1ð ÞC j a�1ð Þþ1½ �
j!dj a�1ð Þþ1C d�jþ1ð Þ ;

and hence,

IR dð Þ ¼ 1
1� d

ln
1

bd 1þ baC að Þ½ �d
X1
j¼0

bajþ1C dþ 1ð ÞC j a� 1ð Þ þ 1½ �
j!dj a�1ð Þþ1C d� jþ 1ð Þ

" #

ð11Þ
Réyni entropy can be computed for different values of the

parameters.

5. Parameter estimation and simulation

In this section, we have discussed estimation and simulation for
the EI distribution. We have discussed three methods of estimation
that include maximum likelihood and the method of moments.
These estimation methods are discussed below.

5.1. Maximum likelihood estimation

Suppose x1; x2; . . . ; xn be a random sample of size n from EI dis-
tribution. The likelihood function for a sample of size n is.

LF a;b; xð Þ ¼ 1
bn 1þ baC að Þ½ �n

Yn
i¼1

1þ bxa�1
i

� �
exp �1

b

Xn
i¼1

xi

 !

The log of likelihood function is.
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‘ a;b; xð Þ ¼ �n ln b� n ln 1þ baC að Þ½ � þ
Xn
i¼1

ln 1þ bxa�1
i

� �� 1
b

Xn
i¼1

xi

The derivatives of log–likelihood function with respect to a and
b are.

@

@a
‘ a; b; xð Þ ¼ n

Xn
i¼1

bxa�1
i ln xi

1þ bxa�1 � baC að Þ ln bþ w að Þf g
1þ baC að Þ

" #

and @
@b ‘ a; b; xð Þ ¼ 1

b2

Pn
i¼1xi þ n

Pn
i¼1

xa�1
i

1þbxa�1 � 1
b � aba�1C að Þ

1þbaC að Þ

h i
.

The likelihood equations to estimate the model parameters are.

n
Xn
i¼1

b̂xâ�1
i ln xi

1þ b̂xâ�1
�
b̂
â
C âð Þ ln b̂þ w âð Þ

n o
1þ b̂

a
C âð Þ

2
64

3
75 ¼ 0 ð12Þ

and.

1

b̂
2

Xn
i¼1

xi þ n
Xn
i¼1

xâ�1
i

1þ b̂xâ�1
� 1

b̂
� âb̂

â�1
C âð Þ

1þ b̂
â
C âð Þ

" #
¼ 0 ð13Þ

The maximum likelihood estimates can be obtained by numer-
ically solving (12) and (13). We know that the maximum likelihood

estimates are asymptotically normal such that h
^

�h is

Nk 0; I�1
h
^


 �� 	
; where k is the number of parameters, h is vector

of unknown parameters and I h
^


 �
is observed Fisher information

matrix whose entries are given as.

Ij;h hð Þ ¼ � @2

@hj@hh
ln L h; xð Þ

 !

The observed Fisher information matrix for EI distribution is.

I a;bð Þ ¼ Haa Hab

Hbb

� 	

where Haa ¼ @2‘ a; b; xð Þ=@a2 ; Hab ¼ @2‘ a; b; xð Þ=@a@b
andHbb ¼ @2‘ a; b; xð Þ=@b2. These entries are.

Haa ¼ @2

@a2 ‘ a;b; xð Þ ¼ n

1þbaC að Þ½ �2 ba lnbð Þ2C að Þ þ 2ba ln bð ÞC að Þw að Þ
h

þbaC að Þw2 að Þ þ baC að Þw= að Þ þ b2aC2 að Þw= að Þ
� 1� 2baC að Þ � b2aC2 að Þ
n oPn

i¼1

bxa�1
i

ln xið Þ2
1þbxa�1

i
� b2x2 a�1ð Þ

i
ln xið Þ2

1þbxa�1
ið Þ2


 �	
Hbb ¼ @2

@b2 ‘ a;b; xð Þ

¼ n
1þ aþ 1ð ÞbaC að Þ 2� aþ baC að Þf g

b2 1þ baC að Þf g2
�
Xn
i¼1

x2 a�1ð Þ
i

1þ bxa�1
i

� �2
" #

� 2
b3

Xn
i¼1

xi

and.

Hab ¼ @2

@a@b ‘ a;b; xð Þ ¼ n

b 1þbaC að Þ½ �2
Pn
i¼1

xa�1
i

ln xi
1þbxa�1

i
� bx2 a�1ð Þ

i
ln xi

1þbxa�1
ið Þ2


 ��

�b 1þ baC að Þf g2 � baC að Þ 1þ baC að Þ þ a ln bþ aw að Þf g
i
:

These entries can be computed for given data and hence the
variance–covariance matrix of parameters a and b can be obtained.
5

5.2. Moment estimation

The EI distribution has two parameters and these can be esti-

mated by using two moment equations l=
1 ¼ m=

1 andl=
2 ¼ m=

2.
Now, for EI distribution, the first two raw moments are.

l=
1 ¼ b 1þ baC aþ 1ð Þ½ �

1þ baC að Þ and l=
2 ¼ b2 2þ baC aþ 2ð Þ½ �

1þ baC að Þ
Equating the above raw moments with the corresponding sam-

ple moments, the moment equations are.

b̂ 1þ b̂
â
C âþ 1ð Þ

h i
1þ b̂

â
C âð Þ

¼ m=
1 ð14Þ

and.

b̂
2
2þ b̂

â
C âþ 2ð Þ

h i
1þ b̂

â
C âð Þ

¼ m=
2 ð15Þ

The moment estimate ofb, when a is known, can be explicitly
obtained from (14) and (15). For this, we first divide (15) by square
of (14) to get.

1þ b̂
a
C að Þ

n o
2þ b̂

a
C aþ 2ð Þ

n o
1þ b̂

a
C aþ 1ð Þ

n o2 ¼ m=
2

m=2
1

Solving the above equation we have.

b̂ ¼
2þ aþ a2 � 2m=

2=m
=2
1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 1ð Þ2C2 að Þ aþ 2ð Þ2 � 4am=

2=m
=2
1

n or
2m=

2C
2 aþ 1ð Þ=m=2

1 � 2C að ÞC aþ 2ð Þ

2
664

3
775

1=a

ð16Þ

which exist for aþ 2ð Þ2 > 4am=
2=m

=2
1 . Also the choice between ‘‘

+” or ‘‘-‘‘ depends upon the fact that the fraction remains positive.

5.3. Simulation

This section deals with simulation study to check consistency of
the estimation procedure. The simulation is conducted by generat-
ing random samples of different sizes from the EI distribution using
specified values of the parameters. Estimates of a and b are
obtained are computed using samples of different sizes and the
procedure is repeated 20,000 times. The average and mean square
error of the estimates are then computed to see the performance.
The results are given in Table 2.

From above, it can be seen that the estimation is consistent.

6. A new family of distributions

This section deals with a new family of distributions by using EI
distribution. The new family is proposed by using EI distribution as
a distribution of T in (2). The cdf of the new family is.

FEI�X xð Þ ¼
Z W G xð Þ½ �

0

1þ bxa�1
� �
b 1þ baC að Þ½ � exp � x

b


 �
dt

or.

FEI�X xð Þ ¼ 1
1þ baC að Þ 1� exp W G xð Þf g=b½ �f g þ baC a;W G xð Þ½ �=bf g½ �

ð17Þ
The pdf corresponding to (17) is.



Table 2
Simulation Results for Extended Ishita Distribution.

Sample Size True Values Average Estimate Mean Square Error

a b â b̂ â b̂

50 0.50 1.50 0.4964 1.5051 0.0836 0.2530
2.00 3.00 1.9972 2.9976 0.3521 0.5396
2.50 4.00 2.5025 3.9984 0.4363 0.6897
3.50 5.50 3.4979 5.5007 0.6318 0.9717

100 0.50 1.50 0.5098 1.5066 0.0431 0.1285
2.00 3.00 1.9989 2.9979 0.1715 0.2683
2.50 4.00 2.4992 3.9988 0.2106 0.3387
3.50 5.50 3.4976 5.4992 0.3076 0.4657

200 0.50 1.50 0.5048 1.5030 0.0222 0.0674
2.00 3.00 2.0042 2.9969 0.0857 0.1264
2.50 4.00 2.5017 3.9978 0.1073 0.1755
3.50 5.50 3.5016 5.5018 0.1559 0.2332

500 0.50 1.50 0.5026 1.4977 0.0088 0.0261
2.00 3.00 2.0019 3.0022 0.0353 0.0514
2.50 4.00 2.4996 3.9992 0.0422 0.0710
3.50 5.50 3.4978 5.5001 0.0611 0.0984

1000 0.50 1.50 0.4967 1.5019 0.0044 0.0126
2.00 3.00 2.0035 2.9999 0.0170 0.0269
2.50 4.00 2.5001 3.9996 0.0225 0.0358
3.50 5.50 3.4995 5.4995 0.0294 0.0466
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f EI�X xð Þ ¼
g xð ÞW= G xð Þ½ � 1þ b W G xð Þ½ �f ga�1

h i
b 1þ baC að Þ½ �

� exp �1
b
W G xð Þf g

� 	
; x 2 R ð18Þ

The family of distribution given above will be named as the ex-
tended Ishita–G (EI–G) family of distributions. We can see that the
EI–G family of distribution is a weighted sum of exponential–G and
gamma–G families of distributions.

The family of distributions given in (17) can be studied for dif-
ferent W G xð Þ½ � and any baseline distributionG xð Þ. One W G xð Þ½ � that
is of particular interest is.

W G xð Þ½ � ¼ RX xð Þ ¼ � ln 1� G xð Þ½ �
and in this case the density function of EI – X reduces to.

f EI�X xð Þ ¼ g xð Þ
b 1þ baC að Þ½ � 1þ b RX xð Þf ga�1

h i
1� G xð Þ½ �1=b�1 ; x 2 R

ð19Þ
which is a linear mix of exponentiated–G family of distributions

based upon survival function and 1=bð Þ th upper record value for
1=bð Þ to be an integer.
7. Real data applications

In this section, we have given some data applications of the EI
distribution. We have used three data sets to compare the pro-
posed EI distribution with some existing distributions. The data
sets used are Flood data based upon W; used by Akinsete et al.
(Akinsete et al., 2008); the rainfall data based upon annual maxi-
mum precipitation in Korea; used by Jeong et al. (Jeong et al.,
2014); and the pressure data based upon the life of fatigue frac-
tures; used by Abdul–Moniem and Seham (Abdul-Moniem and
Seham, 2015). The summary measures of three data sets are given
in Table 3. We can see, from Table 3, that the data sets are posi-
tively skewed.

We have compared the proposed EI distribution with some
existing distributions for fitting the above data sets. The distribu-
tions that we have compared are Lindley (LiD) distribution, Ishita
distribution (IsD), transmuted Ishita distribution (TID), Rama dis-
tribution (RaD), exponentiated exponential distribution (EED),
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gamma distribution (GD) and Weibull distribution (WD); Weibull
(Weibull, 1951).

We have fitted the above mentioned distributions on three data
sets. The maximum likelihood estimates of parameters alongside;
standard errors of estimates and some measures to see the good-
ness of fit for various distributions for three data sets are given
in Table 4, Table 5 and Table 6. These tables also contain the values
of the Akaike information criterion (AIC) and Bayesian information
criterion (BIC).

The goodness of fit is also tested using Kolmogorov–Smirnov (KS)
and Anderson–Darling (AD) tests. The value of test statistics along-
side the p–values for various distributions are given in Table 7.

We can see from the tables that the EI distribution is most suit-
able for modeling the given three data sets as it has the smallest
value of AIC and BIC for all three data sets as compared with the
other competing distributions. We can also see that the proposed
EI distribution is most suitable as it has the highest p–value for Kol-
mogorov–Smirnov and Anderson–Darling tests as compared with
the other distributions. The histograms and empirical cdf for three
data sets alongside some selected fitted distributions are given in
Fig. 2. From these plots, we can see that the proposed EI distribu-
tion is the most adequate fit for the data.
8. Conclusions

This paper deals with a new probability distribution which
extends the Ishita distribution. Ishita, Lindley and Rama distribu-
tion appear as special cases of the proposed distribution. The distri-
bution has been studied in detail and some useful properties are
discussed. Parameter estimation of the distribution is done along-
side some applications. It is found that the proposed distribution
fits the given data reasonably well as compared with the other dis-
tributions used in the study. A new family of distributions is also
suggested by using the proposed distribution and we have found
that the proposed family of distributions is a mixture of exponen-
tiated exponential and gamma families of distributions.
Funding

This research receives no funding.



Table 3
Summary Measures for Various Data Sets.

Data Sets Summary Measures
n Min Q1 Median Mean Q3 Max

Flood Data (Data 1) 72 0.100 2.125 9.500 12.204 20.125 64.000
Rainfall Data (Data 2) 105 20.7 101.6 131.6 144.6 165.5 354.7
Pressure Data (Data 3) 59 4.10 8.45 10.60 13.49 16.85 39.20

Table 4
Parameter Estimates of Different Distributions for Data 1.

a b SE(a) SE(b) LogLik AIC BIC

EID 0.8282 14.4735 0.1093 1.8856 �250.35 504.70 504.41
TID 0.2565 0.2382 0.1679 0.0187 �299.72 603.44 603.15
EED 0.8284 0.1024 0.1231 0.0117 �251.29 506.58 506.29
WD 0.9012 16.6323 0.0856 1.6136 �251.49 506.98 506.69
GD 0.8383 0.0987 0.1211 0.0133 �251.34 506.68 506.39
LiD – 0.9912 – 0.5242 �2101.2 632.40 632.26
ExD – 0.0819 – 0.0097 �252.13 506.26 506.12
IsD – 3.9919 – 0.2696 �300.89 603.78 603.64
RaD – 3.0643 – 0.1798 �324.93 651.86 651.72

Table 5
Parameter Estimates of Different Distributions for Data 2.

a b SE(a) SE(b) LogLik AIC BIC

EID 4.7702 30.3128 0.2635 1.1076 �574.50 1153.00 1153.04
TID �0.5748 0.0264 0.1197 0.0014 �580.89 1165.78 1165.82
EED 6.2703 0.0191 1.1059 0.0015 �582.39 1168.78 1168.82
WD 2.3186 163.408 0.1594 2.9829 �583.75 1171.50 1171.54
GD 4.7721 0.0360 0.6559 0.0047 �581.50 1167.00 1167.04
LiD – 0.0043 – 0.2341 �621.25 1244.50 1244.52
ExD – 0.0069 – 0.0007 �627.27 1256.54 1256.56
IsD – 9.1196 – 0.9379 �1439.1 2880.20 2880.22
RaD – 8.3775 – 1.4830 �1820.6 3643.20 3643.22

Table 6
Parameter Estimates of Different Distributions for Data 3.

a b SE(a) SE(b) LogLik AIC BIC

EID 3.6177 3.6144 0.6634 0.7033 �188.15 380.30 379.84
TID 0.6629 0.2174 0.3114 0.0238 �193.02 390.04 389.58
EED 5.5304 0.1787 1.4292 0.0232 �191.22 386.44 385.98
WD 1.8404 15.3060 0.1713 1.1724 �197.29 398.58 398.12
GD 3.6782 0.2727 0.6530 0.0518 �193.08 390.16 389.70
LiD – 0.4742 – 0.5812 �212.30 426.60 426.37
ExD – 0.0741 – 0.0097 �212.51 427.02 426.79
IsD – 2.5166 – 0.3369 �193.88 389.76 389.53
RaD – 3.3829 – 0.2198 �193.56 389.12 388.89

Table 7
Goodness of Fit Tests for Different Distributions.

Data Test Distribution
EID TID EED WD GD LiD ExD IsD RaD

1 KS 0.103 0.306 0.185 0.165 0.191 0.514 0.142 0.989 0.982
p–value 0.428 <0.001 0.015 0.165 0.011 <0.001 0.108 <0.001 <0.001
AD 0.766 21.884 4.355 3.270 4.691 120.309 1.459 698.64 639.10
p–value 0.506 <0.001 0.006 0.020 0.008 <0.001 0.006 <0.001 <0.001

2 KS 0.093 0.135 0.172 0.126 0.136 0.642 0.301 0.903 0.886
p–value 0.326 0.043 0.004 0.126 0.042 <0.001 <0.001 <0.001 <0.001
AD 0.841 2.703 4.039 1.585 2.585 95.839 15.715 698.645 639.103
p–value 0.452 0.039 0.008 0.157 0.008 <0.001 0.008 <0.001 <0.001

3 KS 0.109 0.181 0.156 0.143 0.134 0.773 0.303 0.385 0.675
p–value 0.490 0.042 0.113 0.143 0.243 <0.001 <0.001 <0.001 <0.001
AD 1.067 4.315 4.035 1.840 1.231 126.701 6.916 26.544 117.067
p–value 0.324 0.006 0.008 0.113 0.008 <0.001 0.008 <0.001 <0.001
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Fig. 2. Histograms and Empirical cdf’s of Three Data Sets with Fitted Distributions.
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