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ABSTRACT

Environmental factors (biotic and abiotic) are major depletion reasons in granaries. Fungi and insect pests
act synergistically in deterioration of grains in storages which results in nutritional damage to the stored
food which becomes unpalatable for the consumer. There is a need to establish a timeline for synergistic
damage caused by insect pests and mycotoxigenic fungi for better management. For this purpose, inter-
action of mycotoxigenic fungi (Aspergillus flavus, Aspergillus niger, Penicillium digitatum and Alternaria
alternata) with Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) was studied at different tem-
peratures. Development of C. maculatus was observed on fungus inoculated and uninoculated C. arietinum
seeds. In fungus inoculated grains the development (Fecundity, larval emergence, pupation rate and adult
emergence) of C. maculatus was found more better as compared on uninoculated grain. The population of
C. maculatus was decreased by increase in temperature but high temperatures favours more fungi devel-
opments. More egg laying was observed at 27 °C and 33 °C. At tested temperatures, larval emergence was
high as compared to other observed life attributes. Infestation of A. flavus and A. niger was also increased
with increase of temperatures. Penicillium digitatum and A. alternata infestation were increased in the C.
arietinum at 27 °C and 30 °C respectively. This study will help in measuring the control practices of fungi
and insect pest infestations in stored C. arietinum (chickpea) in Pakistan.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

infestations (Bhat, 1988; Delouche, 1980; Mills, 1986; Tuda,
1996). Mycotoxins are non-volatile secondary metabolites, pro-

Pakistan is fourth in chickpea (Cicer arietinum Linnaeus) produc-
tion worldwide. It has high carbohydrate (62.34 %) and protein
contents (23.67 %) (El-adawy, 2002) (Alajaji and El-Adawy, 2006;
FAO, 2018). Pakistan faces considerable losses (15-55 %) in chick-
pea crops during storage (Vanzetti et al., 2017). Contamination of
stored commodities is mostly due to microflora and insect
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duced by filamentous fungi which reduce the quality of stored food
by damaging their physical appearance and chemical composition
(Brdse et al., 2009). Mycotoxins mediated semiochemicals are con-
sidered as an indicator of rotten odor in grains and facilitate inter-
action among insects and fungus species (Bennett and Inamdar,
2015; Bennett et al., 2012).

In stored commodities, the species of genus Aspergillus and Peni-
cillium are more proliferating due to high relative humidity and
mycotoxins (Dawar et al., 2007; Kumar et al., 2009; Patil et al.,
2012; Shukla et al., 2012). Aspergillus flavus is responsible for
64 % more aflatoxin production in stored chickpea (Ramirez
et al.,, 2018). Chickpea contaminated with toxigenic fungi have an
detrimental effects on human health and animals (Urooj et al.,
2015).
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The granivorous cowpea weevil, Callosobruchus maculatus (F.)
(Coleoptera: Chrysomelidae) is the considerable causative agent
of severe losses in seed germination, weight and nutritional level
of legumes (Généfol et al., 2018; Staneva, 1982; Valencia et al,,
1986; Murugesan et al., 2021). The C. maculatus can destroy dry
beans in tropical and arid climatic zones, especially in stores
(Tuda et al., 2006). Resistance against the stress condition of store
houses is found in C. maculatus (Dongre et al., 1996). The penetra-
tion of storage fungi in stored commodities occurs due to the mis-
handling after harvest, presence of dust residues, cracks in seed
coat because of mechanical handling and insects (Woloshuk and
Martinez, 2012).

Temperature is also a fundamental aspect related to insect
physiology (Ratte, 1984) and biochemistry (Downer and Kallapur,
1981). The various ranges of temperature affect the survival of
Bruchidae species and insect activities (Giga and Smith, 1987;
Miyatake et al., 2008; Soares et al., 2015). Development of C. mac-
ulatus is highly responsive to ranges of temperature which are also
responsible for fungal development during post-harvest practices
(Kistler, 1995; Sautour et al., 2001; Umoetok Akpassam et al.,
2017). The well-studied temperature variables for all pathogenic
microbes ranges from 15 to 37 °C. The optimum temperature for
growth of A. flavus is 37 °C, while Penicillium species are also devel-
oped at lower temperatures i.e., from room temperature to 0 °C
(Asurmendi et al., 2015; Lahouar et al., 2016; Palou, 2014).

Current study was designed to interpret the relationship
between fungal species (Penicillium digitatum, Aspergillus flavus,
Aspergillus niger, Alternaria alternata) and population build-up of
C. maculatus in stored chickpea at different temperatures (25, 27,
33 and 35 °C) at constant level of R.H. (70 %). Current findings will
be helpful in developing effective IPM strategy for C. maculatus and
fungal infestation in stored products.

2. Materials and methods
2.1. Insect culture

Callosobruchus maculatus was cultured on sanitized chickpea
grains under constant laboratory conditions (25 + 5 °C and
55 + 5 % R.H.) to obtain a uniform population. Males and female
beetles were separated using the standard procedures (Beck and
Blumer, 2011).

2.2. Collection of chickpeas

For experiment, stored chickpea (‘kabuli’ variety) (stored for
one year) was obtained from the retailor shop at four different
locations (Fig. 1) (Dera Ghazi Khan, Lodhran, Muzaffargarh, and
Multan) and was kept at 25 + 5 °C and 55 + 5 % R.H. in Ecotoxicol-
ogy Laboratory, Department of Entomology, Bahauddin Zakariya
University (BZU) Multan, Pakistan. All the samples were stored in
autoclaved cylindrical glass jars (32 x 23 x 23 cm).

2.3. Isolation of mycotoxigenic fungi

To isolate fungi from C. maculatus, seven adult insects were
made sterile with 2 % solution of sodium hypochlorite, washed
twice with distilled water, dried on blotter paper, crushed and
placed on PDA (Potato Dextrose Agar) plate. The PDA plates were
prepared by potato starch (125 g), dextrose (10 g) and agar
(7.5 g) in 500 ml distilled water.

To isolate fungi from C. arietinum, five grains were disinfected
with 2 % sodium hypochlorite, washed with distilled water twice,
dried on blotting paper and placed on PDA plates for fungal growth
observation (Bosly and Kawanna, 2014; Taylor and Sinha, 2009).
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Fig. 1. Locations for C. arietinum sampling in Punjab Pakistan.

All the isolation procedures were done in a horizontal laminar flow
cabinet (Airstream® LHG) (Lamboni and Hell, 2009). The isolation
procedure for both insects and grains were replicated 10 times.

2.4. Identification of mycotoxigenic fungi

Identification of different fungi spp. was performed at Plant
Pathology Department of Bahauddin Zakariya University (BZU)
Multan, Pakistan. Mycological evaluation through microscopic
examination was done by staining the hyphae with methylene
blue on glass slides from fresh fungal cultures (Morishita and Sei,
2006).

2.5. Purification of mycotoxigenic fungi

Fungal cultures obtained through isolation were purified to
avoid other microbes. The PDA plates with required fungal species
were separated through sterile needles and incubated at 25 °C and
observed daily (Ko et al., 2001).

2.6. Percentage of fungus

Fungal growth frequency (isolated from C. maculatus and C. ari-
etinum) was determined by the following equation (Eq. (1))
(Ahmad and Singh, 1991):

Total no. of seeds containing particular fungus

Frequency of Fungus (%) = Total no. of seeds used

x 100

2.7. Spore suspension

Fungi isolated from C. arietinum and C. maculatus were used for
spore suspension. The suspensions were prepared from 7 days old
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cultures of fungus. Fungal spores of mycotoxigenic fungi species
were scraped with the help of glass slide by adding 20 ml auto-
claved distilled water, and then solution was stirred in magnetic
stirrer until conidia become separated from PDA. After agitation,
impurities of suspension were removed by filtering it through filter
paper. The numbers of spores were counted under a light micro-
scope through haemocytometer.

2.8. Inoculation of C. arietinum grains

Spore suspension was diluted to obtain 5 x 10° spores/ml to
inoculate C. arietinum. Cicer arietinum inoculated with fungal cul-
tures by adding 3 ml of spore suspension per 100 g grains in glass
jar (12.7 x 8.1 x 8.1 cm) (Nesci and Montemarani, 2011).

2.9. Influence of temperature on growth of C. maculatus and
mycotoxigenic fungi

The normal prevailing temperatures (27, 30, 33 and 35 °C) were
tested for the development of C. maculatus and mycotoxigenic
fungi, at 70 % R.H. All the selected temperatures were maintained
in a growth chamber (Versatile environmental test chamber,
MLR-352H, Japan).

2.10. Extent of fungi on life cycle of C. maculatus

Five pairs of surface sterilized (2 % sodium hypochlorite) adults
of C. maculatus were introduced into glass jars (12.7 x 8.1 x 8.1 ¢
m), each containing 100 g of inoculated C. arietinum, and were
removed after 24 h (Tsai et al., 2007). All the experimental units
were maintained in a growth chamber (Versatile environmental
test chamber, MLR-352H, Japan) with four constant temperatures
27 °C, 30 °C, 33 °C and 35 °C and 70 % R.H. Cicer arietinum were
checked for numbers of C. maculatus eggs, larvae, pupae and adults
by dissecting grains along with growth of fungal species (Howe
and Currie, 1964). Each temperature treatment was replicated 4
times.

2.11. Statistical analysis

Incidence (%) of fungal species in C. maculatus adults and C. ari-
etinum were analysed via frequency equation mentioned in section
2.6. While Chi square test and two-way ANOVA of the fungal isola-
tion frequency were performed by subjecting data to a computa-
tional based software SPSS (SPSS Version 7.0). As the data was
normal so data was not subjected to normality test. Developmental
activity of C. maculatus and fungal species at different tempera-
tures were calculated through software (SAS Institute, 2000).

3. Results
3.1. Isolation of mycotoxigenic fungi

3.1.1. From C. arietinum grains

Cicer arietinum was evaluated for fungal colonies. A. flavus, F.
oxysporum, P. digitatum and A. alternata were prominent in seed.
Samples of C. arietinum from all localities were high in A. flavus,
A. niger, A. alternata, P. digitatum and F. oxysporum. Results revealed
that samples of were significantly (F = 32.009; df = 4 (20);
P <0.001) highly infested with A. flavus (52.3 %) followed by A. niger
(27.3 %), F. oxysporum (21.33) and P. digitatum (22.0 %). While A.
alternata (8.0 %) exhibited the lowest frequency (Table 1).
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3.1.2. From C. maculatus

Fungal growth observation from the body of C. maculatus
revealed that A. flavus was most frequent (71.43 %) while A. alter-
nata was rarely isolated from adults (4.64) (Table 2). Diversity of
fungi on the bodies of C. maculatus was irrespective of the gender
of insect (X? = 6.339%; df = 4; P greater than 0.175).

3.2. Interaction among mycotoxigenic fungi and C. maculatus in C.
arietinum grains at different temperatures

3.2.1. Developmental period of C. maculatus

Life cycle attributes of (egg, larvae, pupae, and adult stages) C.
maculatus were tested on inoculated C. arietinum grains at four dif-
ferent temperatures (27, 30, 33, 35 °C). Population was developed
at all tested temperatures with significant responses (F = 81.85;
df = 3(60); P < 0.001). At highest tested temperature the life period
of C. maculatus was shortened. Similarly, intensification in temper-
ature also increased the development of A. flavus and A. niger in
grains. The life period of C. maculatus was 33 days (highest
recorded days) at 30 °C. Impact of fungal growth was found non-
significant (F=1.51; df = 12 (60); P = 0.146) with the life cycle attri-
butes of C. maculatus and all tested temperatures (Fig. 2).

3.2.2. Fecundity of C. maculatus

Oviposition rates of C. maculatus were significantly affected
(F =564.37; df = 3(60); P < 0.001) at all tested temperatures. The
females of C. maculatus preferred inoculated C. arietinum more than
sterilized C. arietinum grains for oviposition at all temperatures
treatments. At 27 °C and 33 °C, oviposition was 403.75 on C. ariet-
inum grains inoculated with A. flavus and A. niger. Reduction in the
oviposition occurs at 35 °C in inoculated and control C. arietinum. P.
digitatum inoculated grains exhibited a few oviposition (33.25).
Oviposition rate was highly significant (F = 83.05; df = 12 (60);
P < 0.001) with relation to fungal inoculation (F = 192.23; df = 4
(60); P < 0.001) and temperature (Fig. 3).

3.2.3. Incubation period

Incubation period of C. maculatus were not significantly
(F = 0.40; df = 4 (60); P = 0.80) influenced by interaction of fungi
and temperature (F = 0.66; df = 12 (60); P = 0.78). Highest incuba-
tion period was of 8.25 days at 27 °C and same number of days
were observed in presence of all tested fungal species on C. ariet-
inum. Temperature ranges exhibited highly significant (F = 35.93;
df = 3 (60); P < 0.001) effect on the incubation period of C. macula-
tus. Increase in temperature was also decreased the incubation per-
iod of C. maculatus as observed in P. digitatum infested C. arietinum
grains was shows shortest incubation period (3.5 days) at 35 °C
(Fig. 4).

3.2.4. Larval emergence of C. maculatus

Larvae of C. maculatus were significantly influenced due to tem-
peratures (F = 98.15; df = 3 (60); P < 0.001) and mycotoxigenic
fungi (F = 104.49; df = 4 (60); P < 0.001) infestation in C. arietinum.
Fungal prevalence in grains at different temperatures decreased
the larvae emergence. Moreover, opposite results for larvae emer-
gence were observed in instances of non-inoculated (323 at 27 °C)
and A. niger inoculated (275.5 at 33 °C) C. arietinum. The successive
highest rate of larvae emergence was observed in C. arietinum
infested with A. niger. Numbers of larvae emergence was also sig-
nificantly affected because of interaction among fungi and temper-
atures (F=19.38; df = 12 (60); P < 0.001). The results also revealed
the lowest number of larvae (33.25) emergence in P. digitatum
infested C. arietinum at 35 °C (Fig. 5).
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Table 1

Mycotoxigenic fungi isolated from C. arietinum samples purchased from different locations of Punjab Pakistan.
Species Multan Muzaffargarh Lodhran DG Total IsolationFrequency

(n=75) (n=75) (n=75) khan Isolates (%)
(n=75) (n = 300)

A. flavus 72 28 27 30 157 52.3 + 14.5a
A. niger 33 15 21 13 82 27.3 £6.0b
A.alternata 10 3 7 4 24 8.0 2.1b
F. oxysporum
30 8 7 19 64 213 +7.2b
P. digitatum 30 11 11 14 66 22.0 £6.1b

Means within a column followed by the same letter are not significantly different from each other (SPSS software at P = 0.05).

Table 2
Isolation of fungi from both male and female adults of C. maculatus.

Species No. of isolates IsolationFrequency
Female Male Total (%)
(n = 140) (n = 140) isolates
(n =280)
A. flavus 98 102 200 7143
A. niger 20 24 44 15.71
A. alternata 3 10 13 4.64
F. oxysporum
24 37 61
21.79
P. digitatum 32 26 58 20.7
(Chi square test at P = 0.05).
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Fig. 2. Callosobruchus maculatus development rate on fungal infected and non-infected C. arietinum at different temperatures. Bars on each column represents standard error
(£SE). Duncan test at P = 0.05. (Different fungus species and control are present on X-axis, developmental time at different temperatures is on Y-axis).

3.2.5. Pupation of C. maculatus

The mycotoxigenic fungi (F = 153.97; df = 4 (60); P < 0.001),
temperatures (F = 158.96; df = 3 (60); P < 0.001) and their interac-
tion (F = 38.90; df = 12 (60); P < 0.001) exhibited highly significant
effects towards pupation rate of C. maculatus. However, C. ariet-
inum infested with P. digitatum and A. alternata showed the lowest
pupation rate was 28.5 and 38, respectively, at 35 °C. High num-
bers of pupae emerged at 27 °C in inoculated and un-inoculated
C. arietinum as compared to other temperatures (Fig. 6).

3.2.6. Adult emergence
Adult emergence of C. maculatus were inversely correlated with
fluctuating temperatures (F = 202.02; df = 3 (60); P < 0.001), myco-

toxigenic fungi (F = 97.95; df = 4 (60); P < 0.001) (F=18.30; df =4
(60); P < 0.001) and their interactions (F = 17.37; df = 12 (60);
P < 0.001). Results demonstrated that, at 27 °C maximum adults
were emerged in inoculated and non-inoculated C. arietinum. How-
ever, the lowest adult emergence rate at 35 °C in P. digitatum inoc-
ulated C. arietinum was 23 (Fig. 7).

4. Discussion

Results of the current study revealed high frequencies of A. fla-
vus and A. niger isolates from C. maculatus adults. Similar results
reported that infestation of mycotoxigenic fungi in Triticum aes-
tivum observed because of T. castaneum and Sitophilus granarius
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Fig. 3. Callosobruchus maculatus egg laying on fungal infected and non-infected C. arietinum at different temperatures. Bars on each column represents standard error (+SE).
Duncan test at P = 0.05. (Different fungus species and control are present on X-axis, developmental time at different temperatures is on Y-axis).
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Fig. 4. Callosobruchus maculatus incubation period on fungal infected and non-infected C. arietinum at different temperatures. Bars on each column represents standard error
(+SE). Duncan test at P = 0.05. (Different fungus species and control are present on X-axis, developmental time at different temperatures is on Y-axis).

activities (Agrawal et al.,, 1957; Bosly and Kawanna, 2014). The
presence of mycotoxigenic fungi in an insect body illustrates that
insects were able to transfer fungal flora in grains. Red flour beetle
had been associated with dissemination of mycotoxigenic fungi to
their hosts (Bosly and Kawanna, 2014) and also observed in stored
rice grains (Yun et al., 2018). Larvae, pupae and adults of C. macu-
latus were significantly affected by the infestation of mycotoxi-
genic fungi.

Insect pests have intrinsic ability to develop and reproduce to
change in temperature and time progressively (Burges, 2008).

Temperature is inversely interacting with growth rate of insects.
Results explain that C. maculatus completed its life cycle on all
tested fungus and temperature parameters. The progressive period
of C. maculatus was shorter on all infested and non-infested C. ari-
etinum at 35 °C and 70 % R.H. Shortest life period of Cadra cautella
were demonstrated at 30 °C and 70 % R.H. (Burges and Haskins,
1965). Ahasverus advena also complete their life cycle on different
concentrations of Aflatoxin B, infested grains and the shortest life
cycle was observed at 30 °C (Jacob, 1996; Zhao et al., 2018). Emer-
gence of larvae was high at 27 °C on sterilized C. arietinum as well
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Fig. 5. Response of Callosobruchus maculatus (larval population) on fungal infected and non-infected C. arietinum at different temperatures. Bars on each column represents
standard error (+SE). Duncan test at P = 0.05. (Different fungus species and control are present on X-axis, developmental time at different temperatures is on Y-axis).

200 @27 C @30 C @33 T m3s C %
250 %
.

a .

g 20 %
gl b %
g 100 Z % Z
ol . .

v

. digitatum A. flavus

A. alternata

A. niger Control

DIFFERENT FUNGUS SPECIES AND CONTROL

Fig. 6. Response of Callosobruchus maculatus (pupal population) on fungal infected and non-infected C. arietinum at different temperatures. Bars on each column represents
standard error (+SE). Duncan test at P = 0.05. (Different fungus species and control are present on X-axis, developmental time at different temperatures is on Y-axis).

as on C. arietinum infested with A. niger at 33 °C. Similar results
were observed in development of Trogoderma granarium on broken
wheat grains at 35 °C while maximum fecundity and larvae emer-
gence was evaluated at 30 °C (Riaz et al., 2014). The infestation of
mycotoxigenic fungi was able to influence the development period
of C. maculatus in stored grains under selected temperature ranges.

Longest development period of C. maculatus was analysed
33 days at 30 °C and more than 25 days at 27 °C on inoculated

and non-inoculated C. arietinum. C. maculatus showed an incuba-
tion period of more than 6 days at 30 °C on all tested parameters.
This is higher than other pests including Chilo partellus was showed
shortest incubation period (4 days) at 30 °C but a similar
development period of more than 30 days was observed at 30 °C
at 80 % R.H. (Tamiru et al., 2012). Maximum progress rate of A. fla-
vus was noticed at 35 °C (Mannaa and Kim, 2018). A. alternata
shows maximum growth rate at 25 °C on Glycine max (Oviedo
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Fig. 7. Response of Callosobruchus maculatus (adult emergence) on fungal infected and non-infected C. arietinum at different temperatures. Bars on each column represents
standard error (+SE). Duncan test at P = 0.05. (Different fungus species and control are present on X-axis, developmental time at different temperatures is on Y-axis).

et al, 2011). Meanwhile germination of Penicillium spp. was
observed at 30 °C at 75 % humidity (Pasanen et al., 1991). Fusarium
spp. was not showed any germination at temperature up to 25 °C
on G. max medium (Garcia et al., 2012) that’s why we do not select
this species as the medium for C. maculatus growth on these tem-
perature ranges.

Temperature influenced the fecundity of C. maculatus more than
humidity. Temperature and suitable host preferences are the most
considerable factors related to the development and oviposition of
C. maculatus (Giga and Smith, 1987; Mam and Mohamed, 2015).
The results presented maximum oviposition and larvae rate of C.
maculatus on A. flavus inoculated C. arietinum at 27 °C as well as
on A. niger at 33 °C. High numbers of larvae, pupae and adults were
observed on sterilized C. arietinum. C. maculatus preferred A. flavus
and A. niger infested C. arietinum more than control for oviposition.
This is in contrast to corns infested with A. halophilicus were more
suitable for the oviposition of P. interpunctella while a high devel-
opment rate was observed at autoclaved corn (Abdel-Rahman
and Hodson, 1969). T. stercorea showed minimum oviposition
and maximum numbers of larvae on A. flavus at 30 °C. Average
oviposition rate of C. maculatus on the P. digitatum (33-209) was
highest as compared to T. stercorea was lowest on P. purpurogenum
(42). Minimum larvae emergence was observed in T. stercorea on P.
purpurogenum (Jacob, 1988; Tsai et al., 2007) as the same results
were also observed for C. maculatus on P. digitatum C. arietinum.

C. maculatus preferred to oviposit at 30 °C and 35 °C while max-
imum oviposition was observed at 30 °C on sterilized C. arietinum
(Chandrantha et al., 1987; Lale and Vidal, 2003). Researchers also
found that A. advena and Cryptolestes ferrugineus were not able to
oviposit on the A. flavus and A. niger isolates as observed in case
of C. maculatus (David, 1974; Loschiavo and Sinha, 1966).

5. Conclusion

Management of stored product pests is necessary to prevent
postharvest losses (Batool et al., 2021) and development of myco-
toxigenic fungi. More than 70 % of C. arietinum deteriorates because
of mycotoxigenic fungi and C. maculatus in houses, markets and

stores. All the identified fungi species are well known to produce
mycotoxins and reduction in the nutritional value of C. arietinum.
A reduced amount of fungal growth on non-infested autoclaved
chickpea grains (control) was observed at all selected temperatures
even in presence of weevil. Preventive measures for both pests
should be applied at commercial levels on the tested temperatures
ranges in stores, houses and markets.

1. C. maculatus was able to reproduce in both inoculated and non-
inoculated grains on all selected temperatures.

2. Market stored chickpea grains were found with more than 50 %
frequency of mycotoxigenic fungi while this percentage
increased to 70 % when insects come in contact with the grains
in storages

3. C. maculatus carr. fungus in body and the relationship between
both developed early at 35 °C causing high quality damage of C.
arietinum.
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