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Abstract The Fredholm—Volterra integral equation of the second kind with continuous kernels
with respect to position and time, is solved numerically, using the Collocation and Galerkin meth-
ods. Also the error, in each case, is estimated.
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1. Introduction

Many problems of mathematical physics, engineering and
contact problems in the theory of elasticity lead to integral
equations. The following references Muskhelishvili et al.
(1953), Green (1969), Atkinson et al. (1976) and Delves
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and Mohamed (1985), contain many different methods to
solve the integral equations analytically. At the same time
the numerical methods take an important place in solving
the integral equations numerically. The references Linz
et al. (1985), Kanwal et al. (1996), Atkinson et al. (1997)
and Abdou and Mohamed (2002) contain many different
methods for solving the integral equations numerically. The
discussion of the Fredholm—Volterra integral equations
numerically and analytically can be found in the works of
Abdou and co-workers, see (Schiavane and Constanda,
2002; Abdou et al., 2003; Abdou and Salama, 2004), when
the Fredholm integral term is considered in position and
Volterra integral term in time. In all work of
Abdou in Fredholm—Volterra integral equation when the
kernel of position is continuous have not been solved.
Therefore, in this paper, we consider the Fredholm—Volter-
ra integral equations of the second kind with
continuous kernels with respect to position and time. The
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existence and uniqueness of the solution, under certain conditions,
will be proved in the space Ly[a,b] x C[0,7], 0 << T < 0.

A numerical method is used to represent the Fredholm—
Volterra equation in the form of a linear system of Fredholm
integral equations where the existence and uniqueness of the
system are discussed. Also we used the Collocation and Galer-
kin methods to obtain a linear system of algebraic equations,
which is also solved numerically. Moreover the error estimate,
in each case, is calculating.

2. The existence and uniqueness of the solution

Consider the Fredholm—Volterra integral equation

o) =1 [ k(v )o0 05— 1 [ B, 1), ) = lx, 1)

(2.1)
where k(x, y) and F{(¢, T) are continuous functions which represent
the kernel of Fredholm and Volterra integral terms, respectively.
The known function f{x, ¢) is called the free term of the integral
equation, while ¢(x, 7) is unknown and called the potential func-
tion. Here the Fredholm is considered in position, while Volterra
in time. The constant p defines the kind of integral equation while
the constant A, may be complex, has a physical meaning.

In order to guarantee the existence of a unique solution of
(2.1). We assume the following:
(i) The kernel of position satisfies |k(x,y)| < Ny for all,
a < x,y < b, where N is a constant.
(i) The positive continuous function F(¢,7) € C([0,T] %
[0,7]) for all 0 <#,7< T < oo and satisfies |F(¢,7)| <
N, where N, is a constant.
(iii) The given function and its norm is defined as:
f(x,t) € Lyla,b] x C[0,T],

t b
If(x, 7)|| = max / {£(x, r)}%dxdr =N;

0<i<T
where Nj is a constant.

(iv) The unknown function ¢(x, ) satisfy the Lipschitz con-
dition with respect toposition |¢(xi,1) — P (x2,1)] < A(2)
|x; —x»| and Holder condition with respect to time
|¢(X, t]) — ¢(X, t2)| < B(X) |11 — fz‘x,o < o < 1, and its
norm is defined as

1 b
9.0l = max [ [ (.o asa = vy

0<<T

3. The system of Fredholm integral equations

For representing (2.1) as a system of Fredholm integral equa-
tions we use the following numerical method, see Delves and
Mohamed (1985) and Atkinson et al. (1997).

Divide the interval [0, 7] as

Ozlo<ll<... <[N:T7 i.@.[:[k7
k=0,1,2,...,N.

Then, using the quadrature formula, Te Volterra term in
(2.1) becomes

k
/ P(x,7) Flig, 1)dr = Zu,F e 1) p(x, 1) + O,
J=

(T — 0,5 > 0) (3.1)

where hk = max /’l/', h,‘ = t]ur] — 1
ogjsk 7 :

<t <...

The values of k and the constant p depend on the number of
derivatives of F(t,7), for all © € [0, 7], w.rt. ¢ and

Uy = %ho, U :% hie, ui = hy, (i # 0, k).
Using (3.1) in (2.1) after letting t = t,,k=1,2,..., N, We
have
u¢(xﬁf/\):f(x7tk)+ﬂ k (x,3) by, tk)dy+izu, (tt)p(x,t)  (3.2)
a =0
or,

B (x)

J=0

) k
i) 2 [ KC) )y + 2D e (514 )
Ji(x) = f(x, ), Fr,j = F(t, 1)), (3.3)

= ¢(x7 tk)v k

the formula (3.3) become

() = G+ [ K300, (34)
where p, = p — AuyFy 5 Ay = Au,Fyy,
G, (x) = ful(x) + /‘Li wF ¢, (x), n=0,1,...,N
=
The formula (3.4) represents a linear system of Fredholm
integral equations of the second kind, where Au,F,, # .

Now, we will solve the linear system (3.4) using the Collo-
cation method and Galerkin method.

3.1. Collocation method

Collocation method is based on approximating the solution
¢(x, t) by a partial sum:

X tz) = ch(li)l//k(x) (35)

of N linearly independent functions y/;(x), ¥»(x), ...,
the interval (a,b). Therefore we have

Y y(x) on

b

k(x,y)
i—1

%.f(xv ti) + AZ iji-ij(x) + S(X, Cl(t)7 CZ(I)7 <y CN

J=0

1Si(x) - Si(v)dy

(1) + RO

(3.6)

Of course, if the approximate solution (3.5) is to be substi-
tuted into (3.4) for ¢(x,7), there will be an error
e(x,c1(1), (), ..., en(2)). This error depends on x, ¢ and the
way for which the coefficients ¢;(¢), ¢2(?), . .., en(f) are chosen
in the formula (3.6). Let t=1¢; ,i—0,1,2,...,N. Then using
the quadrature formula, we have

/JZS Xm _)/ k ‘Cmvy) ( )dy

i—1
+2 ) wiFySi(xm), i;m =0,1,2,..., N (3.7)

J=0

%f(xm, l[)

For determining the coefficients ¢,(t;), c2(t;),. .., cn(t;) of
the approximate solution Sy(xy), from (3.5), in terms of the
given N linearly independent functions v (x), ¥»(x),
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Y n(x), perform the integration, then substitute x = xi, x5, ...,
xn for which the error ¢(x, ¢, (7), c2(2), ..., cn(2)) vanishes.
Substituting from (3.5) in (3.6), we get:

Z I//k xm )ch / k xmv} l//l\

Mz

J

W/Elck( )% (xm) (38)

Il
o
=
I

1

3.2. Galerkin method

This method establishes the N conditions necessary for the
determination of the N coefficients in Eq. (3.5):

By making the error &(x,c(2),cx(2),...,en(2)) in (3.6)
orthogonal to N given linearly independent functions
Vi (x), Y, (x),. ..,y y(x) on the interval (a, b), i.e.

/u/

Then from (3.6), we have

e(x,c1(0),ca(t)y ..., en(1))dx =0 (3.9)

b

l// ()i (xm) = fxm, ») = 4 | k(X ) Si(v) ey
f/IZw,F Si(x) — R(E)]dx = 0 (3.10)
Eq. (3.10) can be written in the form:
b b
[ 0e0msien) =2 [ o)1)y
1S WS ) - RO d
/=0
' Y(x) f(X, 1;)dx (i,m = 0,1,...,N), (3.11)

where R(#'') is the error from dividing the time and

h; = max hj,h; = ti, — t;. The values of i and the constant p
<<

depend on the derivatives of F(z, 1), for all t € [0, 7], with re-
spect to . Substituting from (3.5) into (3.11) we get

N
/ lp :uz Lk !///& xm -

(3.12)

4. Examples

Example 4.1. Consider the integral equation:

t b
x.0) = flx.0) + / 2 (x, T)d + i / ey, 1)y
0 a

where the exact solution ¢(x, 1) = r2e”.

4.1. Using collocation method

In Eq. (4.1) we shall take N =2,a=0,b =1
_3 2 x X 5 1 2 x 2
fx, 1) =5t 3¢ r—5rete

Let the approximate solution has the form of Eq. (3.5), the
three independent functions are ¥/, (x) = 1,,(x) = x, Y5 (x) =
x2. Substituting these values in Eq. (3.8), then solving the equa-
tions formulas when x = 0, 0.5, 1.0, in this case R = 0. We
get:

C](lo) Cz([o) = 0
¢ (t) =0. 0005130967957
e3(#1) = 0.000415594769.

Cg(lo) = 0
ex(f) = 0.000432839493,  (4.1)

c1(2) = 0.002104378751,  ¢2(t2) = 0.001731361786,
c3(ty) = 0.001662382707. (4.2)
So, the solution, for r€[0, 0.03], takes the form (sce

Table 1):

S(X, l()) =0

S(x, ;) = 0.0005130967957 + 0.000432839493x
—0.000415594769x> (4.3)

S(x, 1) =0.002104378751 + 0.001731361786x
+0.001662382707x>

4.2. Using Galerkin method

As in collocation method, using (3.9) in (3.12), Choose three
independent functions ,(x) = 1,¥,(x) = x,5(x) = x* and
three points x = 0, 0.5, 1.00, when we assume ¢ € [0, 0.03],
then we have:

Cl(lo) =0, Cz(l()) =0, C3(l0) =0.
(t;) = 0.00051949274, ¢»(#;) = 0.00042025907,
e3(ty) = 0.00041436290. (4.4)
er(t2) = 0.00212991168,  ¢>(1>) = 0.0016810402,
¢3(12) = 0.0016574556.
Table 1 Values of the error EC, E® using collocation and
Galerkin methods.
X o(x, 1) E€ ES
t=20
0 0 0 0
0.5 0 0 0
1.00 0 0 0
t = 0.01500000000
0 0.000225 0.0002880967957  0.00029449274
0.5 0.0003709622860 0.0004624529484 0.0004622507140
1.00  0.0006116134113  0.0007499176467  0.0007425012987
t = 0.030000000
0 0.0009 0.001204378714 0.00122991170

0.5 0.001483849144
1.00  0.002446453645

0.001901806122
0.003051669518

0.001900946656
0.003021953955
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S(x7 tO) = 07
S(x, t;) = 0.00051949274 + 0.00042025907x

+0.00041436290x2, (4.5)
S(x, ) = 0.00212991168 4 0.0016810402x
+0.0016574556x7.

So, the solution is taken from:

Example 4.2. Consider the integral equation:

t b
x,1) = flx, 1) + 4 / rep(x, 7)ds + / o0y, (46)

a

where the exact solution ¢(x, ) = te™.

4.3. Using collocation method

In Eq. (4.6) we shall take N =2,a=0,b =1,
S(x,1) = —0.00432¢ + =1 — 0.333¢ 1%,

Let the approximate solution in the form of Eq. (3.5), then
choose three independent functions ,(x)=1,y,(x) =
X,3(x) = x%. Substituting these values in Eq. (3.8), then solv-
ing the equations formulas, when x = 0, 0.5, 1.00, in this case
R = 0, we get:

Cl(lo) = 07 Cz([()) = 0, C}(lo) =0.

e1(f1) = 0.008541939634,  ¢»(1y) = —.01412633660, a7
e3(11) = 0.004644538564. ¢, (1) = 0.01708389624, '
er(t2) = —0.02825268914,  ¢3(1,) = 0.009289082405

So, the solution, for 7 € [0, 0.03] takes the form:
S(x,1) =0,
S(x, 1) = 0.008541939634 — 0.01412633660x -+ 0.004644538564x7,
S(x, 1) = 0.01708389624 —
(4.8)

4.4. Using Galerkin method

We choose three independent functions v, (x) = 1,,(x) = x,
W5(x) = x* and three points x = 0, 0.5, 1.00, when we assume
t €10, 0.03], we have:

ci(ty) =0, ¢ftg) =0, c3(t0) =0.

ei(t1) = 0.008459192683, ¢»(1,) = —0.01395821152,

es(11) = 0.00463077286. (4.9)
e1(12) = 0.01691840427, ¢ (1) = —0.02791644232,

e3(12) = 0.00926155092.

So, the solution is taken the form (see Table 2):

S(x7 tO) = 07
S(x, 1) = 0.008459192683 — 0.01395821152x
+0.00463077286x7, (4.10)

S(x, 1) =0.01691840427 — 0.02791644232x
+0.00926155092x7.

0.02825268914x + 0.009289082405x7.

Table 2 Values of the error EC, E® using collocation and
Galerkin methods.

X o(x, 1) E€ E°

t=0

0 0 0 0

0.5 0 0 0

1.00 0 0 0

t = 0.01500000000

0 0.015 0.006458060366 0.006540807317
0.5 0.009097959896 0.006458053921 0.006460179758
1.00 0.005518191618 0.006458050020 0.006386437595
t = 0.030000000

0 0.03 0.01291610376 0.01308159573
0.5 0.01819591979 0.01291609752 0.01292034895
1.00 0.01103638324 0.01291609374 0.01277287037
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