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Abstract The purpose of this study is to evaluate the quality of drinking water and qualitative clas-

sification of potable water in Ardabil plain aquifer. To determine the chemical properties 58 water

samples were collected from wells and analyzed. Distribution of each quality parameter was esti-

mated using data driven techniques of kriging and fuzzy logic modeling. According to the obtained

results, the fuzzy model provides better results compared to kriging. Different water quality stan-

dards are used for assessment of drinking water. The quantitative limits specified in these standards

and also water quality data are associated with uncertainty. To reduce the uncertainty a fuzzy based

decision making approach was applied for interpretation of groundwater quality. Final output was

presented in the form of a zoning map with three categories as ‘Desirable’, ‘Acceptable’ and ‘Not

acceptable’. This map indicates that most parts of the aquifer have acceptable and desirable water

quality for drinking; but the groundwater in the Southwest and North of the plain, being in con-

formity with Miocene formations, is undesirable (Not acceptable). This spatial distribution map

can help a lot for groundwater supply and offers a good insight of groundwater qualitative trend

in this study area.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Sustainable management of groundwater resources in under-

developed regions is one of the essential objectives for future,
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especially when the rising demand for clean drinking water
by these fast communities is considered (Mende et al.,
2007). Understanding the hydrochemical properties of

aquifer is very important for groundwater planning and
management.

In Ardabil plain the main source for drinking water is

ground water. Low quality water supply can cause health
problems, therefore determining the quality of water in the
study area is important. Map of water quality can be obtained

from estimation of element concentration of the whole aquifer
based on measurements of some localized samples.

Many researchers have tried to use different data driven
interpolation methods for modeling separate samples of
ing Saud University.
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element concentrations (Molenat and Gascuel-Odoux, 2002;
Flipo et al., 2007; Tutmez and Hatipoglu, 2010; Wang and
Huang, 2012; Wei et al., 2012).

Making use of geostatistics, especially kriging, is one way to
interpolate in geological media. Numerous literatures can be
found about interpolation via kriging in water sciences (Wang

et al., 2001; Desbarats et al., 2002; Sepaskhah et al., 2004; Jang
and Liu, 2004; Shen and Wu, 2013).

Although kriging produces good results, it encounters

problems when the number of measurements is insufficient
for the calculation of acceptable variograms (Deutsch and
Journel, 1998; Bardossy and Fodor, 2004; Tutmez and Hatip-
oglu, 2010).

Another method for interpolation is using fuzzy modeling.
Two major uses of fuzzy logic are decision making and model-
ing. Fuzzy logic is an effective tool for handling the ambiguity

and uncertainty of real world systems. Fuzzy logic can be par-
ticularly suited when relationships between variables in the
environment are either ill defined or very complex (Kavitha

Mayilvaganan and Naidu, 2011). This method was applied
to estimate the values of variables at unsampled sites by many
researchers (Burrough, 1989; Bogardi et al., 2003; Amini et al.,

2005; Tutmez and Hatipoglu, 2010; Kholghi and Hosseini,
2008).

Numerous studies have been made in the field of water
quality assessment. Some of them are mentioned in the follow-

ing. Chang et al. (2001) in a comparative study, compared the
performance of the fuzzy synthetic evaluation approach in
identification of water quality with results obtained from tradi-

tional methods.
Muhammetoglu and Yardimci (2006) utilized the fuzzy lo-

gic approach to assess groundwater pollution levels in the area

by developing Water Pollution Index values. They concluded
that the fuzzy logic approach presents a more understandable
and objective way of water quality classification.

Taheriyoun et al. (2010) developed an Entropy based Fuzzy
Eutrophication Index model for classification of the trophic le-
vel of Satarkhan Reservoir in the North western part of Iran.

Samson et al. (2010) evaluated the application of fuzzy set

theory for decision making in the assessment of groundwater
quality for drinking and they used the kriging method to inter-
polate the physical and chemical water quality parameters.

Tayfur et al. (2003) used fuzzy logic algorithms for estimat-
ing sediment loads from bare soil surface. Dahiya et al. (2007)
reported the application of fuzzy set theory for decision mak-

ing in the assessment of physicochemical quality of groundwa-
ter for drinking purposes and expressed the view that a fuzzy
synthetic evaluation model gives the certainty levels for the
acceptability of water based on the prescribed limits of various

regulatory bodies, quality class, and perception of the experts
from the field of drinking water quality.

In recent years, several works have been performed in qual-

ity classification of surface water by fuzzy logic (Gharibi et al.,
2012; Duque et al., 2013; Scannapieco et al., 2012). Gharibi
et al. (2012) developed a novel water quality index based on

fuzzy logic for routine assessment of surface water quality,
particularly for human drinking purposes. They deduced that
the fuzzy-based index proposed by them produced more strin-

gent outputs compared to the traditional methods. Duque
et al. (2013) also used a fuzzy logic hybrid model to assess river
water quality. They concluded that the main advantage of their
proposed method in comparison with traditional methods is
that it considers flexible boundaries between the linguistic
qualifiers used to define the water status, being the belonging-
ness of water quality to the diverse output fuzzy sets or classes

provided with percentiles and histograms, which allows to clas-
sify better the real water condition.

According to the census 2011, approximately 564,000 peo-

ple live in Ardabil plain inhabiting 2 major cities and 88 vil-
lages (Statistical Center of Iran, 2011). The average use of
drinking water in Ardabil plain is about 26 (million m3/y),

which accounts for 89% of total water demand that is supplied
by groundwater and the remaining 11% is obtained from sur-
face water (Kord et al., 2013). Due to this significance, the
quality mapping of potable groundwater for this plain is indis-

pensable. In this regard, the use of appropriate methods has a
direct influence on the accuracy of obtained results and conse-
quently on proper management of the aquifer. In previous

studies which are mentioned above, the fuzzy logic has been
used just as a data driven or decision making method.

The purpose of this study is to evaluate the quality of drink-

ing water and qualitative classification of potable water in
Ardabil plain aquifer using special abilities of fuzzy logic in
modeling and decision making. Therefore the unknown com-

ponent concentration values of groundwater at a location with
no wells have been estimated through kriging and fuzzy logic
techniques from known element concentrations measured at
sample points in the aquifer. Then, to assess the quality of

drinking water, fuzzy logic has been used as an expert system
suited for decision making.

2. Materials and methods

The Ardabil plain aquifer is located in Northwest Iran in the
Province of Ardabil. This plain is found bounded between

38�000–38�300 N and 48�000–48�400 E, and has an aerial cover-
age of about 990 km2. The region experiences pleasant summer
and relatively long winters with an average annual precipita-

tion of about 300 mm.
The Ardabil plain is surrounded by elevations which are

parts of Alborz Mountains. In West of the plain, conglomerate

with some tuff, volcanic ashes and lahars are outcropped.
These rocks due to the abundant springs originate from the
Sabalan Mountain, affect aquifer recharge.

The rock units consisting of conglomerate with some sand-

stone, marl, fresh water limestone, pumice, tuff and lahar of
Neogene age are located in Southwestern Ardabil plain. These
formations have a very low effect on aquifer recharge. Other

unit rocks including cherty limestone, cherty dolomite, sand-
stone and conglomerate with thin beds of gypsum in Northeast
and megaporphyric trachy andesite, trachy basalt, volcanic

breccias, olivine basalt, tuff and sandy tuff located in the
South, East and North of the plain have a moderate potential
from aquifer recharge point of view.

The Ardabil plain that has been formed out of Quaternary
alluvial deposits originated from alteration of surrounding
mountains. Based on the results of geophysical studies of
pumping test data and drilling logs, the aquifer with a maxi-

mum thickness of about 220 m, is mainly composed of gravel,
sand and a little amount of clay. The transmissivity of the
aquifer varies between 50 and 2200 m2/day and the specific

yield ranges from 0.021 to 0.14. The general direction of
groundwater flow is from other directions to the North–West
of the plain (Kord et al., 2013).



Figure 1 Location of the study area and sampled points.
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In the past, mostly springs, qanats and rivers were used for
water supply, but now it is mostly based on exploitation of

wells.
For investigation of the hydrochemistry status, the sam-

pling sites were selected with convenient spatial distribution

to cover the study area for representative sampling of the
Table 1 Summary statistics of the analytical data and groundwater

Parameter Units Min

EC l mho/cm 300

TDS mg/l 189

pH – 7.63

Ca2+ mg/l 12.83

Mg2+ mg/l 5.83

Na+ mg/l 7.95

K+ mg/l 0.48

Cl� mg/l 8

NO�3 mg/l 0.57

SO2�
4 mg/l 6

HCO�3 mg/l 100.04

F� mg/l 0.29

TH mg/l 55.99

As mg/l 0

Fe mg/l 0

Pb mg/l 1.66E-08

Cu mg/l 0

EC= electrical conductivity, TDS = total dissolved solids and TH= to
groundwater. Fig. 1 shows the location of the study area and
the sampling points.

The samples collected in bottles were immediately trans-
ported to the laboratory under standard conditions for quality
analysis. Prior to collection, the poly ethylene bottles were

washed thoroughly with the sample water. Two types of
samples of the study area.

Max Average Std

7150 1411.42 1302.56

4504.5 889.20 820.61

8.91 8.36 0.32

657.64 121.58 124.38

272.16 42.85 50.83

400.43 104.93 80.25

29.16 5.49 6.38

1199.63 166.75 215.61

21.29 6.48 4.32

1400 236.99 332.92

739.32 300.72 121.56

3.52 0.90 0.50

2759.96 479.65 513.85

0.000037 3.13E-06 6.80E-06

2.82E-06 4.06E-07 4.77E-07

6.99E-07 2.38E-07 1.47E-07

3.02E-08 3.12E-09 6.55E-09

tal hardness.



132 M. Kord, A. Asghari Moghaddam
samples were collected from each well, one for anions and the
other for cations. The samples for cations were filtered and
acidified in the field (Schwartz and Zhang, 2003; APHA, 1998).

A total of 58 wells were sampled from active water wells for
chemical analyses during October 2011. Each sample was ana-
lyzed for parameters such as pH, electric conductivity (EC),

bicarbonate (HCO�3 ), carbonate (CO2�
3 ), chloride (Cl�), fluo-

ride (F�), sulfate (SO2�
4 ), calcium (Ca2+), magnesium

(Mg2+), sodium (Na+), potassium (K+), nitrate (NO�3 ), Total

hardness (TH), Arsenic (As), Iron (Fe), Lead (Pb) and copper
(Cu) in the hydrogeological laboratory of University of Tabriz.
The total concentrations of As, Fe, Pb and Cu were analyzed
by atomic absorption, F�, NO�3 , SO

2�
4 by spectrophotometer,

Na+ and K� by flame photometer and HCO�3 , CO
2�
3 , Cl�,

Ca2+ and Mg2+ via the titration method. It should be noted
that EC and pH were also measured in field and TH was cal-

culated from the samples (APHA, 1998). The accuracy of the
chemical analyses was carefully examined by checking ion bal-
ances (Hounslow, 1995). The ion balance errors for all the

samples were less than 5%. A statistical summary of chemical
parameters from the groundwater samples is presented in
Table 1.

Spatial distributions of each of the above mentioned
parameters were estimated except for As, Fe, Pb and Cu,
which due to being below less than the pollution limits, were
estimated by using kriging and fuzzy modeling. They were

all applied as inputs to fuzzy system for quality
classification.

The proposed methodology for the evaluation of ground-

water quality mapping has been shown in Fig. 2.
Figure 2 Conceptual diagram of the methodology for classifi-

cation of groundwater quality.
3. Estimation by kriging

Kriging is a purely linear stochastic technique used in geosta-
tistics using known values and a semivariogram to determine

unknown values (Webster and Oliver, 2001).
In kriging, the estimated value, z, at any point x0 is given as

follows:

Z�ðX0Þ ¼
Xn
i¼1

kiZðXiÞ ð1Þ

where, ki is the weight for the known value z at location xi. The
kriging weights of ordinary kriging fulfill the unbiasedness

condition

Xn
i¼1

ki ¼ 1 ð2Þ

First an experimental semivariogram has to be calculated
using the following equation.

c�ðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1
½ZðXiÞ � ZðXi þ hÞ�2 ð3Þ

where c*(h) is the estimated value of the semivariance for lag

class h; N(h) is the number of experimental pairs separated
by a vector h of that lag class; z(xi) and z(xi + h) are values
of variable z at xi and xi + h, respectively.

After calculating the experimental semivariogram, suit-

able theoretical models like spherical, exponential and
Gaussian are fitted to them and the best model is selected
based on the least RSS value and used in the kriging

procedure.

4. Estimation by fuzzy modeling

One of the applications of fuzzy theory is modeling. In this
modeling approach, input data are shown as membership func-
tions and are related to output data by definition of fuzzy

rules.
In this kind of modeling, the Sugeno model is used which

includes the following three steps: first, data are classified by

the fuzzy clustering method and their optimized cluster num-
bers are determined. In the next step, data are associated
with outputs by defining fuzzy rules and finally, the model
parameters are obtained using optimization of least squares

errors (Takagi and Sugeno, 1985; Tutmez and Hatipoglu,
2010).

Fuzzy c-means (FCM) is a data clustering technique

that assigns each data sample with a certain degree, which
is specified by a membership grade, to one or more
clusters. FCM aims to minimize the following objective

function

Jm ¼
Xn
j¼1

Xc
i¼1

lm
i;jjjxj � cijj2 ð4Þ

li;j ¼
1

Pc
k¼1

jjxj�ci jj
jjxj�ck jj

� � 2
m�1

ð5Þ

ci ¼
Pn

j¼1l
m
i;j � xjPn

j¼1l
m
i;j

ð6Þ



Figure 3 General form of Sugeno’s model.
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where lij is the matrix of membership values while i is equal to
the number of samples and j is equal to the number of clusters,
m is the degree of fuzziness, ci is the matrix of class centroids,
||xj � ci|| is the distance between ith cluster center and jth data

point, n is the number of sample points and k is the number of
iteration loops.

In this study, FuzME software was used to cluster the qual-

ity parameters for 2–10 classes (Minasny and McBratney,
2002).

So, two cluster validity functions FPI and NCE were min-

imized by using FuzME to obtain the optimum number of
classes (Roubens, 1982; Vitharana et al., 2006). FPI is deter-
mined as follows

FPI ¼ 1� cF� 1

c� 1
ð7Þ

where c is the number of clusters and F is the partition
coefficient:

F ¼ 1

n

Xn
i¼1

Xc
j¼1
ðli;jÞ

2 ð8Þ

And MPE is defined as

MPE ¼ H

log c
ð9Þ

where H is the entropy function specified as follows:

H ¼ 1

n

Xn
i¼1

Xc
j¼1

li;j logðli;jÞ ð10Þ

In the Sugeno model, the outputs are considered linear
functions of the inputs and relation between inputs and out-

puts is described by if-then rules. In this study, the Gaussian
function was chosen as input membership functions (Tutmez
and Hatipoglu, 2010).

For each quality parameter, latitude and longitude have

been taken as inputs and the parameter concentration has been
considered as the output. The fuzzy estimator model is shown
in Fig. 3.

In Fig. 3 X is the matrix of fuzzy sets defined in the input
space, Z is the matrix of outputs, R is the matrix of rules, a,
b and e are undefined parameters belonging to each rule that

should be estimated, A and B are memberships which belong
to input x1 and x2, respectively and K is the number of rules
that is equal to the number of clusters.
Several methods are available in the literature (Hellendoorn
and Thomas, 1993) of which the centroid method was used to

obtain final output. Final output is estimated from the follow-
ing function:

Z� ¼
PK

i¼1WiZiPK
i¼1Wi

ð11Þ

where Wi is the weight of each output. The weight of each out-

put is determined by the intersection of membership functions
of the inputs:

WiðXÞ ¼ min
j¼1:K
ðli;jðxjÞÞ ð12Þ

The last stage of modeling is to obtain the parameters of the
rules. The least squares error optimization is used to obtain the
parameters:

LSE ¼
XK
i¼1
ðZi � Z�i Þ

2 ð13Þ

where zi and z�i are measured and estimated values of the qual-
ity parameters, respectively.
5. Water quality classification by fuzzy

Different water quality standards have been provided by dif-
ferent organizations. Quantitative limits specified in these stan-

dards are associated with uncertainties. On the other hand, the
quality of water data has also some uncertainty during sam-
pling, data processing, etc. Therefore, making a decision about

the quality of water samples under these conditions is difficult.
This problem becomes more serious when a quality parameter
is close to quality standard limits. Then taking a transient

boundary instead of crisp values can reduce the influence of
uncertainty in the assessment of water quality.

In this study, the overall structure of the developed model
for the interpretation of groundwater quality, is a fuzzy based

decision making approach. This approach commonly consists
of fuzzification, aggregation, and defuzzification. To do the
fuzzification, the fuzzy membership functions for the

evaluation of the water quality were defined based on the lim-
its used in the water quality standards. The trapezoidal func-
tions were used as input membership functions (Dahiya et al.,

2007).



134 M. Kord, A. Asghari Moghaddam
In aggregation, the fuzzy sets representing the outputs of
each rule are combined into a single fuzzy set. The intersection
of memberships was used for calculating each rule and the un-

ion of each rule’s output set was used for aggregation. Finally,
to convert the fuzzy results to crisp numbers, the centroid
defuzzification technique, described above, was applied

(Eq. (11)).
Figure 4 Experimental and fitted v
6. Results

In order to interpolate the quality parameters 70% and 30% of
the sampled data have been used for modeling and verification,

respectively.
Before interpolation by kriging, the normality of all

parameters was checked. For parameters without normal
ariogram for different data sets.



Table 2 Characteristics of the most suitable model for evaluation on experimental variogram.

Parameters Model Nugget effect Sill Range Nugget/sill R2 RSS

Ca2+ Spherical 0.0010 0.9510 20720 0.001052 0.931 0.0669

Cl� Spherical 0.001 2.180 17740 0.000459 0.987 0.0535

F� Spherical 0.0001 0.2912 8070 0.000343 0.870 0.0103

Mg2+ Spherical 0.0010 1.280 24900 0.000781 0.980 0.0308

Na+ Spherical 0.0470 0.7720 17240 0.060881 0.948 0.0168

NO�3 Exponential 1.280 12.690 4220 0.100867 0.953 1.80

pH Spherical 0.00 0.121 11810 0 0.978 2.9E -4

SO2�
4 Spherical 0.010 3.973 24420 0.002517 0.963 0.490

TDS Spherical 0.0010 0.7940 22350 0.001259 0.983 0.0143

TH Spherical 0.0010 1.0830 24760 0.000923 0.971 0.0316
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distribution, a lognormal transform was used. The character-
ization of the best theoretical model fitted to each experimental
variogram is shown in Fig. 4 and given in Table 2.
Table 3 Performance measures for both Kriging and fuzzy models

Parameter Data RM

Ca2+ Kriging 47

Fuzzy modeling 42

Cl� Kriging 64

Fuzzy modeling 35

F� Kriging 0

Fuzzy modeling 0

Mg2+ Kriging 14

Fuzzy modeling 12

Na+ Kriging 45

Fuzzy modeling 43

NO�3 Kriging 6

Fuzzy modeling 4

pH Kriging 0

Fuzzy modeling 0

SO2�
4 Kriging 125

Fuzzy modeling 96

TDS Kriging 229

Fuzzy modeling 306

TH Kriging 160

Fuzzy modeling 156

Figure 5 FPI and MPE, versus the number of classes for the Cl�

data set.
In addition to kriging, fuzzy modeling was used for esti-
mation. Fuzzy model inputs are the geographical coordinates
and outputs are measured concentrations. Since the UTM

values are large numbers, they were initially normalized be-
tween zero and one. After that, the quality data were clus-
tered with an optimum number of classes using FCM for

each quality parameter. For instance, Fig. 5 shows the values
of FPI and MPE versus the number of clusters for Cl�.
According to the lowest values of FPI and MPE the optimal

numbers of clusters for Ca2+, Cl�, F�, Mg2+, Na+, NO�3 ,
pH, SO2�

4 , TDS and TH are 3, 2, 2, 2, 4, 6, 4, 3, 12 and 3,
respectively.

In this study, performance of kriging and fuzzy logic mod-

els was compared on the basis of the coefficient of determina-
tion (R2), root mean square error (RMSE) and mean
absolute error (MAE) (Tutmez and Hatipoglu, 2010) given

in Table 3.
7. Discussion

According to the results presented in Table 3, the fuzzy model
provides better results compared to kriging. Therefore, in this
.

SE MAE R2

.1573 0.7176 0.76171816

.2353 0.5541 0.822991826

.9835 0.9219 0.849382157

.4319 0.5701 0.968715802

.2868 0.3334 0.309723564

.2151 0.2840 0.660687166

.5079 0.4693 0.759009822

.2509 0.6244 0.905060303

.3502 0.4846 0.882993387

.1404 0.4662 0.891866326

.1532 0.3659 0.46938328

.6357 0.3451 0.773955551

.2965 0.0298 0.439166828

.2172 0.0206 0.614699905

.135 1.0524 0.841515435

.9842 0.5494 0.912377149

.5268 0.3423 0.828621537

.3463 0.4415 0.83239726

.9282 0.5735 0.792829974

.424 0.4963 0.80847107
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study after structure design and verification of the model, the
fuzzy logic modeling was used to estimate unmeasured quality
parameters throughout the study area.

A large number of spatial points causes the interpolated
map to be smoother but the run time will be longer. So the
Figure 6 Contour maps of water quality
model was applied to a 500 · 500 matrix and the results are
shown in Fig. 6 on a raster.

In the present study, the ISIRI drinking water standard has

been used for groundwater quality assessment by fuzzy logic
which is presented in Table 4.
parameters generated by fuzzy model.



Table 4 The limits prescribed by the Institute of Standard and

Industrial Research of Iran (ISIRI) for the studied parameters

(ISIRI, 1997).

Parameter Unit MCLGa MCLb

TDS mg/l 500 1500

pH – 7–8.5 6.5–9.2

Ca2+ mg/l 75 200

Mg2+ mg/l 50 150

Na+ mg/l 60 200

Cl� mg/l 200 600

NO�3 mg/l 10 45

SO2�
4 mg/l 200 400

F� mg/l 1.7 2

TH mg/l 150 500

a Maximum Contaminant level Goal.
b Maximum Contaminant level.
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The adjusted membership functions of water quality
parameters based on the ISIRI standards are shown in

Fig. 7.
Designing the fuzzy rule database consisting a set of log-

ical rules expressing the relationship between fuzzy variables,

is the most important part of a fuzzy system. Robustness of
the system depends on the number and quality of the rules.
Due to the large number of clusters and standard limits,

the number of all possible states of fuzzy rules is extremely
high. So in order to consider all states, the quality parameters
were divided into four categories based on their significance
Figure 7 Membership functions defined for water quality parameters

‘Acceptable’ and ‘Not acceptable’, respectively.
in the evaluation of drinking water quality. The qualitative
parameters were categorized into three groups i.e. TDS,
pH, Cl� and SO2�

4 in the first group, Na+, TH, Ca2+ and

Mg2+ in the second while nitrate and fluoride were individu-
ally considered as separate groups due to their importance
(Fig. 8). The final result was obtained by evaluating the com-

bined results of these four groups. Out of a total of 297 rules
to classify drinking water qualities, 81 rules were kept for the
final result and 135 and 81 rules were specified for the first

and second groups, respectively. In case of the first group,
second group and final results, 3 sample rules are structured
as follows:

� Rule 1. If TDS is acceptable, pH is desirable, Cl� is desir-
able and SO2�

4 is desirable then: groundwater sample qual-
ity is acceptable for drinking purpose.

� Rule 2. If Na+ is not acceptable, Ca2+ is desirable, Mg2+ is
acceptable and TH is desirable then: groundwater sample
quality is not acceptable for drinking purpose.

� Rule 3. If group 1 is desirable, group 2 is acceptable,
nitrate is not acceptable and fluoride is acceptable then:
groundwater sample quality is not acceptable for drink-

ing purpose.

In the same way, other rules were defined. Although the rule
base definition was briefly described above, a wide description

can be found in Dahiya et al. (2007) and Ross (2004).
Finally the fuzzy logic system generates the qualitative

spatial distribution map of the plain employing the ten in-

puts mentioned above with the fuzzy approach to drinking
used in the study. ‘D’, ‘A’ and ‘N’ are abbreviations of ‘Desirable’,



Figure 9 Potable water zoningmap for Ardabil plain aquifer generated by fuzzy logic.

Figure 8 Block Diagram of fuzzy based decision making for water quality classification.
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water quality standard. This zoning map is presented in
Fig. 9. Beside Fuzzy classification, a simple overlay tech-
nique was applied to classify potable groundwater.
Fig. 10 shows the output of this technique.



Figure 10 Potable water zoningmap for Ardabil plain aquifer generated by simple overlay.
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The effect of the fuzzy function on the results is cleared by

comparing Fig. 9 and Fig. 10 especially in circles that speci-
fied in Fig. 10. In circle (1), not acceptable area has been de-
fined greater by fuzzy classifier due to F� and Cl� amounts

close to MCLG. In this circle, desirable area has also been
marked out greater because of TDS and TH amounts near
to MCL.

The amounts of Na+ in circle (2) are very close to MCL
and therefore by considering a transient boundary instead of
sharp boundary, desirable area has been extended. In circle
(1) desirable areas are located in short distance from not

acceptable area, so with respect to quality parameter amounts
in this part of aquifer, it can be concluded that the fuzzy logic
classifier has a good performance.
8. Conclusion

Sampling in all parts of the study area at closed distances is

not possible. On the other hand, it is clear that the reliability
of spatial distribution maps of elements and pollutants plays
a very important role in water resource management and also

the interpolation methods are powerful tools in estimating
data based on spatial structure. Hence, kriging and fuzzy
modeling were used in this study to investigate the spatial dis-

tribution of water quality parameters. The results showed
that the fuzzy model is more efficient than the kriging
approach.

By using fuzzy logic and FCM modeling the spatial distri-

bution structure of the data can be identified properly and it
enables us to overcome the limitations and difficulties such
as anisotropy of data which is associated with kriging. There-

fore, in the vast areas where outputs of geostatistical methods
are not accurate enough due to limited numbers of monitoring
points and large distances between them, use of this method

may be convenient and efficient to generate zoning maps and
interpolation of data.

After interpolation of the quality parameters the classifica-

tion of the quality status of the groundwater was determined as
a fuzzy decision making problem.

In this study, ten qualitative interpolated parameters were
used to classify potable groundwater. Since each parameter

has a 500 · 500 matrix, it is not easy to compare them simul-
taneously. A fuzzy logic system compared these quality param-
eters with drinking water quality standards in the least possible

time. On the other hand, qualitative sampled data and the pre-
scribed limits in the drinking water quality standard are asso-
ciated with uncertainty. This uncertainty can be mitigated with

a fuzzy approach.
It was shown that most parts of the aquifer have accept-

able and desirable water quality for drinking purposes; but

groundwater in the Southwest and North of the plain is
not acceptable for drinking. These areas are in
conformity with Miocene formations. This spatial distribu-
tion map can help a lot for groundwater supply and offers

a good insight of groundwater qualitative trend in this study
area.
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