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In this paper, we analytically construct certain dispersive solitary wave solutions to the Equal Width (EW)
and Regularized Long Wave (RLW) equations using the Modified Extended Tanh Expansion Method. The
study also analyze the effect of Ux being the major difference between the two equations after restricting
METEM to only tangent function solutions for one-to-one comparison. The Mathematica software is used
for the computations as well as the graphical illustrations, respectively.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nonlinear partial differential equations play important roles in
modeling varieties of physical problems (Wazwaz, 2009). Such
equations including the known evolution equations (Kudryashov
and Demina, 2009; Malfliet, 2004; Novikov and Veselov, 1986)
occur frequently in many nonlinear sciences. Further, the Equal
Width (EW) and Regularized Long Wave (RLW) equations being
important class of evolution equations happen to take parts in
optics, propagation of various waves, transmission of nonlinear
waves with dispersion processes and in many branches of nonlin-
ear sciences, see Hamdi et al. (2003), Evans and Raslan (2005), Lu
et al. (2018), Fan (2012), Korkmaz (2016), Morrison et al. (1984)
and Ramos (2007).

Furthermore, many reliable analytical techniques have been
employed over the last decades to construct different solitary wave
solutions for various evolution equations in the literature such as
the novel and rational G0=G expansion methods (Alam and
Belgacen, 2015; Islam et al.), the Kudryashov method
(Nuruddeen and Nass, 2018), the simplest equation method
(Jafari et al., 2012), the tan expansion method (Shukri and
Al-Khaled, 2010) and others, see Helal and Mehanna (2006), Liu
et al. (2009), Kudryashov (2012) and Fan (2000) among others.

However, in this paper, we are going to study the classical EW
(Lu et al., 2018) equation that reads

Ut þ 2pUUx � qUxxt ¼ 0; ð1Þ
and the RLW (Morrison et al., 1984) equation given by

Ut þ 2pUUx � qUxxt þ Ux ¼ 0; ð2Þ
where p and q are non-zero real constants in both equations,
respectively. Again, in this study, we shall analyze the effect of Ux

being the only difference between the two equations. Explicit solu-
tions will be based on the modified extended tanh expansion
method (METEM) (Fan, 2000) which will be restricted to tangent
solutions. The paper is organized as follows: Section 2 gives the out-
lines of the method to be used. In Section 3, the application of the
method on the two equations is presented. Section 4 discusses
the obtained results and makes comparisons; and Section 5 gives
a comprehensive conclusion.

2. The method of solution

Considering the following differential equation, we present the
modified extended tanh expansion method (METEM) as follows:
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PðU;DtU;DxU;DtDx;DttU;DxxU; . . .Þ ¼ 0: ð3Þ
Substituting the wave transformation in Eq. (4),

Uðx; tÞ ¼ uðnÞ; n ¼ wx� ct; ð4Þ
where w and c are nonzero constants into Eq. (3), we get a reduced
ordinary differential equation of the polynomial form

QðuðnÞ;u0ðnÞ;u00ðnÞ;u000ðnÞ; . . .Þ ¼ 0; ð5Þ
where prime (0) shows the derivative with respect to n. Now,
METEM offers a truncated finite series of the form:

uðnÞ ¼
XN
i¼0

aiU
iðnÞ þ

XN
i¼1

biU
�iðnÞ; ð6Þ

where, a0; ai; bi; i ¼ 1;2; . . . ;Nð2 NÞ are constants to be computed
such that aN – 0; bN – 0. Also, N is determined by the homoge-
neous balancing method. As a particular case of interest, UðnÞ in
Eq. (6) satisfies the Riccati differential equation given by:

U0ðnÞ ¼ z2 þU2ðnÞ;
where, zð> 0Þ is non-zero constant greater than zero which admits
the following solutions:

UðnÞ ¼ z tanðznÞ;
�z cotðznÞ:

�
ð7Þ

Thus, substituting Eq. (6) and its necessary derivatives into (5)
gives a polynomial in UðnÞ. Collecting coefficients of the obtained
polynomials and setting each one to zero, we get a set of algebraic
equations for a0; ai; biði ¼ 1;2; . . . ;NÞ using the Mathematica soft-
ware. Lastly, we solve the obtained algebraic equations and there-
after coupled to the solutions of Riccati equation given in Eq. (7) to
get the solution(s) of Eq. (3). However, it is worth noting here that
we restrict Eq. (7) to only tangent (and cotangent) function solu-
tions in this work.

3. Application

In this section, we present the application of the METEM to the
Equal Width (EW) and Regularized Long Wave (RLW) equations as
follows:

3.1. EW Equation

We consider the EW equation given in Eq. (1) of the form

Ut þ 2pUUx � qUxxt ¼ 0: ð8Þ
Using the wave transformation in Eq. (4); Eq. (8) reduced to an ordi-
nary differential equation given by:

cu� pwu2 � cqw2u00 þ k1 ¼ 0; ð9Þ
where k1 is the constant of integration. Further, the homogeneous
balancing method gives N ¼ 2 (balancing u2 and u00). Thus, the
METEM offers a solution of the form:

uðnÞ ¼ a0 þ a1UðnÞ þ a2U
2ðnÞ þ b1U

�1ðnÞ þ b2U
�2ðnÞ: ð10Þ

Substituting Eq. (10) into Eq. (9), collecting the coefficients of
same degree of UðnÞ and thereafter setting each to zero, we get
the following sets of solutions:

Set-1:

a0 ¼ c�8cqw2z2

2pw ,

a1 ¼ a2 ¼ b1 ¼ 0,

b2 ¼ � 6cqwz4

p ,

k1 ¼ c2ð�1þ16q2w4z4Þ
4pw , which produces
U1ðx; tÞ ¼ c � 8cqw2z2

2pw
� 6cqwz2

p
cot2½ðzðwx� ctÞ�: ð11Þ

Set-2:

a0 ¼ c�8cqw2z2

2pw ,

a1 ¼ b1 ¼ b2 ¼ 0,
a2 ¼ � 6cqw

p ,

k1 ¼ c2ð�1þ16q2w4z4Þ
4pw , which produces

U2ðx; tÞ ¼ c � 8cqw2z2

2pw
� 6cqwz2

p
tan2½ðzðwx� ctÞ�: ð12Þ

Set-3: more general set

a0 ¼ c�8cqw2z2

2pw ,

a1 ¼ b1 ¼ 0,
a2 ¼ � 6cqw

p ,

b2 ¼ � 6cqwz4

p ,

k1 ¼ c2ð�1þ256q2w4z4Þ
4pw , which produces

U3ðx; tÞ ¼ c � 8cqw2z2

2pw
� 6cqwz2

p
tan2½ðzðwx� ctÞ�

� 6cqwz2

p
cot2½ðzðwx� ctÞ�: ð13Þ
3.2. RLW Equation

We consider the RLW equation given in Eq. (2) as follows,

Ut þ 2pUUx � qUxxt þ Ux ¼ 0: ð14Þ
Using the wave transformation of Eq. (4); Eq. (14) reduced to an
ordinary differential equation:

ðc �wÞu� pwu2 � cqw2u00 þ k2 ¼ 0; ð15Þ
where k2 is the constant of integration. Also the homogeneous bal-
ancing method gives N ¼ 2. Therefore we get solution of the form:

uðnÞ ¼ a0 þ a1UðnÞ þ a2U
2ðnÞ þ b1U

�1ðnÞ þ b2U
�2ðnÞ: ð16Þ

Substituting Eq. (16) into Eq. (15), collecting the coefficients of same
degree of UðnÞ and thereafter setting each to zero, we get the fol-
lowing sets of solutions:

Set-1:

a0 ¼ c�w�8cqw2z2

2pw ,

a1 ¼ a2 ¼ b1 ¼ 0,

b2 ¼ � 6cqwz4

p ,

k2 ¼ � c2�2cwþw2�16c2q2w4z4

4pw , which produces

U1ðx; tÞ ¼ c �w� 8cqw2z2

2pw
� 6cqwz2

p
cot2½ðzðwx� ctÞ�: ð17Þ

Set-2:

a0 ¼ c�w�8cqw2z2

2pw ,

a1 ¼ b1 ¼ b2 ¼ 0,
a2 ¼ � 6cqw

p ,

k2 ¼ � c2�2cwþw2�16c2q2w4z4

4pw , which produces

U2ðx; tÞ ¼ c �w� 8cqw2z2

2pw
� 6cqwz2

p
tan2½ðzðwx� ctÞ�: ð18Þ

Set-3: more general set

a0 ¼ c�w�8cqw2z2

2pw ,

a1 ¼ b1 ¼ 0,
a2 ¼ � 6cqw

p ,
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b2 ¼ � 6cqwz4

p ,

k2 ¼ c2�2cwþw2�256c2q2w4z4

4pw , which produces

U3ðx; tÞ ¼ c �w� 8cqw2z2

2pw
� 6cqwz2

p
tan2½ðzðwx� ctÞ�

� 6cqwz2

p
cot2½ðzðwx� ctÞ�: ð19Þ
Fig. 1. Profiles of Eq. (11) settin

Fig. 2. Profiles of Eq. (12) settin

Fig. 3. Profiles of Eq. (13) settin
4. Discussion of results and comparison

The present study effectively examines the EW and RLW equa-
tions by constructing certain periodic solitary wave solutions using
the METEM. We represent the obtained solutions in three-
dimensional and contour plots in Figs. 1–6. Also, it is worth noting
from Figs. 1–6 that indeed the obtained solutions are singular peri-
odic solution.
g all parameters to unity.

g all parameters to unity.

g all parameters to unity.



Fig. 4. Profiles of Eq. (17) setting all parameters to unity.

Fig. 6. Profiles of Eq. (19) setting all parameters to unity.

Fig. 5. Profiles of Eq. (18) setting all parameters to unity.

680 R.I. Nuruddeen et al. / Journal of King Saud University – Science 32 (2020) 677–681
However, as the main objective of the study is to analyze the
effect of Ux being the only difference between the two equa-
tions; we therefore attempt to analyze the EW equation solu-
tions obtained in Eqs. (11)–(13) and the RLW equation
solutions in Eqs. (17)–(19) which yields no clue! Thus, we
resolve in studying the two-dimensional plots of both equations.
We therefore conclude that the effect of Ux is minimal and
sometimes negligible when larger intervals are considered. We
give below Figs. 7a and 7b. Fig. 7a gives the comparison of EW
equation solution Eq. (13) and the corresponding RLW equation
solution in Eq. (19); while in Fig. 7b we zoom out Fig. 7a to
visualize the deeper difference. Note also that we consider Eqs.
(13) and (19) for comparison plots since they both have three
terms.



Fig. 7a. Comparing u3ðx; tÞ of EW and RLW equations setting all parameters to unity
at t ¼ 2.

Fig. 7b. Magnification of Fig. 7a(a) with same parameters.
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5. Conclusion

In conclusion, the present study analytically studies the Equal
Width (EW) and Regularized Long Wave (RLW) equations by con-
structing certain periodic solutions and critically analyze the effect
of Ux being the only difference between the two models. Explicit
dispersive solitary wave solutions are presented using the modi-
fied extended tan expansion method with the help of Mathematica
software. Thus, We finally conclude from the obtained results that
the effect of Ux is minimal and sometimes negligible when larger
intervals are considered after studying various two-dimensional
plots of both the EW and RLW equations’ solutions (see Fig. 7a
and 7b).
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