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In this paper, we study some radii problems for certain classes of analytic functions.
These results generalize some of the previously known radii problems such as the radius of convex-
ity for starlikness and radius of quasi-convexity for close-to-convex functions. Also, it is shown that
some of these radii are best possible.
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1. Introduction

Let A4, be the class of analytic functions f,

A\

Jz) :Z+Zam+lzm+lv n 1, (L.1)

which are analytic in the unit disc £ = {z: |z] < 1}. We shall
need the following known classes (Noor, 2008) in our discus-
sion. Let, for 0 <y, < 1,
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ELSEVIER

p(z) =1+ Zamz’”, z€E, (1.2)

m=n
we have,

P(y,n) = {p : p is analytic in E, given by (1.2), Rep(z) > y}

S*(y,n) = {f:fe A, and %6 P(%n)}
zf"
C(y,n)=<f:f€ 4, and |1 +f—, € P(y,n) ¢.
It is clear that
feCy,n) < zf € S*(y,n). (1.3)
For n =1, these classes have been introduced by Robertson
(1963).
K(B,y) = {fif6 A, and %6 P(p,n) for some g € S*(y,n)}

(/)
g/

C'(p,y) = {f:fe A, and € P(p,n) for somegeC(y,n)}.

We note here that
feC(B,y) <= =f € K(B,y). (1.4)
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These classes have been studied by Noor (1987) for n = 1.
Now, we have the definition of following classes for k > 2,

Pi(y,n) = {p p(z) = Gv%)p] (z) - (g —%)pz(Z),

pis P> € P(y,n)}
Pi(y,n) =A{p:p' € Pi(y,n)} /
Vi(y,n) = {f:fe A, and (1 —0—%) € Pk(y,n)}

Ri(y,n) = {f:fe A, and ZTf_Ie Pk(v,n)}.

We note that P,(y,n) = P(y,n). The class P,(0,1) = P, was
introduced and discussed by Pinchuk (1971), where he defined
it as follows:

I [T 1+4ze ™
Py = {p :p(2) =5 / —— du(r),

2 1 —ze™

x [:du(z) :2,/; ldu(1)| < k}

It is easy to see that
Pi(y,n) = (1 =9)Pi(0,n) +

and P,(0,1) = P is the class of functions with positive real
part. It is clear that

€ Vi(y,n) <= zf € Ri(y,n). (1.5)
The classes Vi (0,1) =V, and Ri(0,1) = Ry are the well-
known classes of functions with bounded boundary rotation
and bounded radius rotation, respectively.

Let fi(z), j= 1,2 in A, be given by

o0
fiz)=z+ Zamﬂl,-z’”“, n>1, zc€E

m=n

Then the Hadamard product or convolution (fi x f3)(z) of
fi and f; is defined by

(fif)(z) =z + Zam+l,lam+l,22m+l7 n=1 zekE (16)

By using the Hadamard product, we define the well-known

Ruscheweyh derivative (see Rucheweyh, 1975) as following.
Denote by D* : A, — A, the operator defined by

N

"f(z) :m*.f(z)a a>—1
Fora =m e Ny ={0,1,2...}, we can write
mg N Z (= )™
D) = ) = T

Also, for Ruscheweyh derivative D*, the following identity is
known (see Fukui and Sakaguchi, 1980).
For a real number o(x > —1), we have

Z(D“f(z))’ = (a+ l)D““f(z) — aD*f(z). (1.7)

Recently, the Ruscheweyh derivative has been studied in Noor
and Hussain (2008).

We now have the following classes which have been intro-
duced and studied in Noor (1991), for the case n = 1,

S,(rn) ={f€ Ay : D’f€ S (y,n), «>—1, z€ E}
Cupm) = {f € 4, : Df € Clyn), 2> —1, z € E}
Ki(ﬁa’y) = {fE Aﬂ leE K(ﬁay)7 o> 717 z€ E}

and

Cy(B,y) ={f€ A, : D*'fe C'(B,y), «> -1, z € E}.

2. Preliminary results

The following lemmas will be used.

Lemma 2.1. Let h € P(0,n) = P, for z € E. Then

| (2) 22" !

(1) h(z) < 17‘2‘2n

3 2n|z|" Reh(z
(i) [24'(z)] < 229

n

(iii) 12 < Reh(z) < |n(z)] < P,

T

For (i) we refer to MacGraw (1963), (ii) will be found in Ber-
nardi (1974) and for (iii) (see Shah, 1972).

The following Lemma can easily be shown by using Lemma
2.1.

Lemma 2.2. Let p € P(y,n) for z =re € E. Then

1L+ (2y—1)m 1—(Q2y—1r
— < < {—
T < Repe) < Iple)| <
and
2n(1 — y)r" Rep(z
129 (2)] < (=7 (2)

(1 =)+ (1 =2y)m]"

3. Main results

Theorem 3.1. Let f, g € A, and let g, € Py, where g € Vi(y,n).
Then f € Vi(y,n) for |z| < ro, where

-y
ro =ry(y,n) = . 3.1
0 =ro(0.) n—y+1)++/n?—2yn+2n 3D
Y y

This result is sharp.
Proof. We can write
f(z) =¢(2)h(z), where g € Vi(y,n), he P,, z€ E.
Logarithmic differentiation yields,

() (E) ) H (2)

= = he P,
@ e e T Mt

—(5+3) 0= +2)
zh (z)
i)

- (§-3) (@ -nmE 5+

where H; € P,, i=1,2.
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This gives us
ST - G e

20}

Now, for i = 1,2, we use Lemma 2.1, with |z| = r, to have

1 zh(z) 1 |z/'(2)

. > . —
Re{H,(z) + e } > ReH,(z) =57
1—r 1 2nr"

2 —
1+m (1—9)(1—=r™)
(L=p)(1=r)° =29
(I=p)(1 =)
(I—p)=2(—y+ D+ 1 —p)r™
(1=p)(1—rm) '

Therefore, for |z| < ry where ry is as stated in (3.1),

1zl (2)
= h) } -0

Re{H,-(z) +

This implies that

1 {(Zf (2)
L=yl /(2)
which leads us to the required result that f€ Vi(y,n) for
|z| < ro, where ry is as given in (3.1).

Sharpness can be seen by taking

—y} € Py(0,n) for |z| < ro,

1=z

Hi(z) = h(z) = T

€ P, (]

Theorem 3.2. Let f, g € A, and g € P5(y,n) = P'(y,n) in E. If
'g € P(y,n), then f € V5(0,n) for |z| < ry where ry is given by

r = ! . (3.2)

2n(1 —9) +/4n2(1 — )" + 1

This result is also sharp.

Proof

/()
g'(z)
Then
/@
f(z)  h(z)
That is

(' () _zH(z)  2'(2)
/() h(z) — p(2)

Now, using Lemma 2.2, we have

Let

= h(z), where h € P(y,n).

+ + 1, where ¢ =p € P(y,n) in E.

@) A=y
ReZpe 2 " a—maem
_ 1 —4n(1 —p)r" —

1 — 2

(3.3)

The right hand side of the above inequality (3.3) is positive for
|z| < ry, where r; is given by (3.2).
The sharpness can seen by considering

el = [ (P )

=2y -1)

1 — 2z

o [ (2

The inclusion results for the classes S} (y,n), C,(y,n), K.(f,7)
and C;(f,7), with n = 1, have been studied by Noor (1991).
We here deal with the converse case in general. [J

Theorem 3.3. Let f€ S,(y,n), « = 0. Then f€ S, (y,n) for
|z| < ro(a,y) is given as

ry = ra(o,7)

1+a
(L= g4m)+ /(1 =+ = (1+a)(1 -2 )

(3.4)
Proof. Since f€ S;(y,n), so we can write it as

(zD*f(2)) _ _ .
D“f(z) 7H(Z) - (1 —'y)/’l(Z)-i-y’

where H € P(y,n) and so h € P(0,n) = P,. Now using (1.7),
we have

D L (EDa )

Dfiz) 1ol DA
= A=) 7+,

Differentiating both sides logarithmically, we have

2D D)) (L= ()
D™ f(z) Dfiz)  (1=h(z) +7+a

1 h(e) 4y 4 A= DHE)
= (=) + 7+ i P

or

A e
_/}7h(z)+(l—y)h(z)+y+oc'

_ y> } - Re{h(z) + U—ﬁ%}

By using Lemma 2.1 for |z] = r < 1, we have

,y>} > Reh(z){l %’”}
(1= o

(-9 (55)+r+e
(T+a)=2(1 —y+n)r"+ (1 =2y —a)r™
(I4+0)=2(1 =)+ (1 =2y —a)r™

! {Z(D““f(Z))’
= U D" Az)

Therefore,

Re{liv (%

= Reh(z){
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The right hand side of above inequality is positive if " < rj
and so is given by (3.4).

As a special case, when o =0, n =1 and y = 0, we obtain
the radius of convexity 2 — /3 for starlike functions. [

Theorem 34. Let for o >0, fe C,y,n) in E. Then
f€ Coupi(y,n) for |z| < ro =ro(a,y), where rq is given by (3.4).

Proof. By using the definition of C,(y,n), we have

f€ Cyly,n) < D*fe C(y,n) in E.
< z(D*f) € S*(y,n) in E.
< D*(zf') € S*(y,n) in E.
= zf €S, (y,n) in |z] <r.
<= D" (zf) € S*(y,n) in |z| < .
= (D' € S*(y,n) in |z| < .
< D*"'f € C(y,n) in |z] <ry.
< fe€ Cuily,n) in |z| <ry,

which is the required result. [

Theorem 3.5. Let for o >0, fe K,(B,y) in E. Then
fe€ K, 1(B,y) for |z| < ry =ro(a,y), where ry is given by (3.4).

Proof. Since '€ K,(f,7), there exists g € S*(y,n) such that

(D))" _

“Dign) (1=PB)h(z)+p, hePO,n). (3.5)
Also, since g € S*(y,n), we can write

% =(1-y)H(z)+y, HePO,n). (3.6)

Using (1.7), we have

DY) DA () _ i (D 2) + 5 D ()
D““g(z) Dac+| (Z) mZ(Dug(Z)) I+1Dacg( )
D]’)(;/( ) +o 07 7/( )
ST
By using (3.5) and (3.6), we have
o+1 ! M _ z
2D S2) + o (1 = B)h( )+ﬁ}. (3.7)

D*g(z) (1 —)H(2) +

From (3.5), we have

7+

2(D*f(z2)) = D*g(2){(1 — B)h(z) + B}
Differentiating both sides, we have

2(2(D'f(2))') = (1 = B)zH (2)(D"¢(2)) + (D*g(2)){(1 — B)h(z) + B}

J€ Coa(Bsy) Jor [z] <ro = ro(o,y

B. Malik
That is,
2(D*(z/2))')
T(Z):(l B)z (2) + {(1 — y)H(z) + 7} (1 — B)h(z) + B}

(3.8)
Using (3.8) in (3.7), we obtain

(5 (o )} = {ro oo s
Now

=5\ Dig(z)
el (e o)} =1 )

We note that right hand side is positive for |z| < ry = ro(o,y)
given by (3.4) and also ge S;(y,n) for |z| <ry. Hence

f-E Km+1(ﬁa"/) fOI' |Z| < rp. |

As a special case, when « =0,=0,y=0 and n=1, we
obtain the radius of quasi-convexity 2 — v/3 for close-to-con-
vex functions.

Using the same method as in Theorem 3.4 with the relation
(1.4), we can easily prove the following result.

Theorem 3.6. Let fe C,(f,y) for >0, z€E. Then
), where rq is given by (3.4).
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