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The quantitative structure–property relationship (QSPR) models of the inhibition efficiency of seventeen
a-amino acids for copper in acidic medium to their calculated reactivity indicators were developed. DFT
calculations and Monte Carlo simulations were employed to find out these indicators. Both multi-linear
regression (MLR) and artificial neural network (ANN) methods were employed. The most relevant global
descriptors were selected using the simulated annealing algorithm. The QSPR studies showed that the
inhibiting performance of the investigated compounds was influenced by their electronegativity,
LUMO energy, fraction of electron transferred and total negative charge. The results show that the
ANN based model exhibits a great predictive performance compared with MLR model according to cor-
relation coefficient and the root-mean-squared error. In addition, this indicates that the corrosion inhibi-
tion of copper by these a-amino acids is mainly a complex phenomenon. Moreover, by analysis of local
reactivity indicators and using the ANN constructed model, ten new designed derivative compounds with
their predicted inhibition efficiency were proposed.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Copper is one of the most used metallic material in many indus-
trial applications, namely: power plants, chemical industries, heat-
ing and cooling systems. The choice of this material is attributed to
its good mechanical and conductive properties, in addition to its
lesser cost. Unless, during cleaning of industrial equipment by acid
pickling, the acid comes into contact with copper metal causing its
dissolution (El Ibrahimi et al., 2017). One of the most used methods
to prevent the corrosion phenomena is the corrosion inhibitor
compounds. This process showed many advantages as its high effi-
ciency, simple feasibility and economically viable (Sastri, 2011).
For this purpose, several classes of organic compounds are used
for metal protection in various aggressive mediums, especially, in
acidic solutions (El Issami et al., 2007). Among these compounds,
the a-amino acids were widely studied and exhibited a great abil-
ity to act as good corrosion inhibitors at many operating conditions
(El Ibrahimi et al., 2017). The a-amino acid molecule (Fig. 1) pos-
sesses at least one carboxyl and one amine group bonded to the
same carbon atom (a-carbon). The other ligands of the a-carbon
are –H or R-group of different size and shape.

Quantitative Structure–Property Relationship (QSPR) is a mod-
eling approach that has been successfully applied in large chem-
istry space coverage. Deriving data based on this modeling tool
constitute as an attractive supplement or even alternative to an
experimental data generation, the latter being both time consum-
ing and costly. Further, QSPR modeling provides an effective way
for establishing and exploiting the relationship between chemical
structure descriptors of molecules and their activities toward the
design of novel corrosion inhibitor candidates (Zhao et al., 2014).

The ability of seventeen a-amino acids to act as corrosion inhi-
bitors for copper in molar nitric acid solution has been investigated
by Barouni et al. (2008, 2010, 2013, 2014a,b). The molecular struc-
tures of these molecules and their inhibition efficiencies (acquired
from potentiodynamic polarization technique at 10�3M) have
shown in Table 1. Depending on the pH value of the medium, these
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Fig. 1. Schematic representation of a-amino acid.
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molecules can exist in different protonation states (Gece et al.,
2010). Due to the high acidity level of used medium and according
to the acidity constants (i.e. pKa) of studied compounds, the full
protonated forms (see Fig. A.1) were taken into consideration in
the computation process, further to neutral forms.

According to the above-mentioned, the objective of the study is
to conduct QSPR analysis on these compounds and use the
obtained model to screen the inhibition efficiency of some novel
designed amino acid derivatives for copper.
2. Computational details

2.1. DFT calculations

Quantum chemical calculation for neutral and full protonated
(see Fig. A.1) amino acids both in gas and aqueous phases were
Table 1
Molecular structures and the inhibition efficiencies (IE) of investigated a-amino acids.

Amino acid IE (%) Amino acid

�20

Valine (Val) Phenylalanine (Phe)
�1

Glycine (Gly) Glutamic acid (Glu)
25

Alanine (Ala) Glutamine (Gln)
28

Aspartic acid (Asp) Asparagine (Asn)
30

Proline (Pro) Arginine (Arg)
34

Leucine (Leu) Threonine (The)
performed with Gaussian-09 software. The calculations were made
using DFT/B3LYP/6-311 + G(d) method. The solvent effect was
treated by IEFPCM model using water. Various global reactivity
indicators were calculated. Firstly, we interested in the frontier
orbital energies, namely: highest occupied molecular orbital
(EHOMO), lowest unoccupied molecular orbital (ELUMO) and its differ-
ence, electronegativity (v), hardness (g), dipole moment (l),
molecular volume, electron-donating ability (DN), total Negative
Charger which were calculated by two manners: from Mulliken
Population analysis (TNCMP) and from Natural Bond Orbital analy-
sis (TNCNBO) as described in El Ibrahimi (2016). Concerning the
local reactivity indicator of these amino acids, we are limited to
analyze it through the partial charge on the atoms, electrostatic
potential map, HOMO and LUMO distributions on the molecules.

2.2. Monte Carlo simulation

In order to get further information about the interaction
between these amino acids and the copper surface, molecular
mechanic via Monte Carlo simulation was performed using Materi-
als Studio 6.0 software. The COMPASS force field was used to opti-
mize the structure of all components of the system of interest.
Electrostatic and van der Waals were set as the Ewald summation
method and atom-based summation method, respectively. The
simulation was carried out with a single amino acid molecule on
the Cu(111) crystal surface in a simulation box (20.45 Å � 20.45
Å � 64.61 Å) with periodic boundary conditions to model a
IE (%) Amino acid IE(%)

36 56

Lysine (Lys)
38 58

Cysteine (Cys)
40 67

Tryptophan (Try)
45 80

Methionine (Met)
46 82

Tyrosine (Tyr)
50
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representative part of the interface devoid of any arbitrary bound-
ary effects. The chosen of Cu(111) was justified by its most stabil-
ity among low Miller index copper surfaces and to its most
abundant as provided by Guo et al. (2014). The copper surface
was modeled with an eight-layer slab model, each layer contains
64 copper atoms. A great vacuum region with 50 Å thickness was
built above Cu(111) (Fig. 2). All copper atoms in the simulation
box were fixed during the simulations.

2.3. QSPR studies

The total datawere separated into training and test datasets. The
first dataset was used to develop the QSPR model, and the second
dataset was used to estimate the performance of the obtained
model. Next, the feature selection using the simulated annealing
algorithm was applied to select the most relevant descriptors, this
feature selection is a wrapper method (Brooks and Morgan, 1995).

Two mathematical methods were used to develop QSPR mod-
els: multi-linear regression (MLR) and artificial neural network
(ANN). The ANN is one of the commonly used methods in the
machine learning field. It is a non-linear mathematical approach,
which can be used to model too complex structure-property rela-
tionship, like corrosion inhibition problems. In this context, one
of frequently used supervised learning ANN in QSPR modeling,
called the three-layered feed forward network using back-
propagation algorithm (Gaxiola and Melin, 2016), was adopted in
this study. In this work, a sigmoid transfer function was used in
the hidden layer and a linear transfer function in the output layer.
For the network training, the Levenberg-Marquardt algorithm was
employed. The simulated annealing feature selection combined
with MLR and the ANNmodeling were performed by using ‘‘R” lan-
guage in R-3.1.3 software.

3. Results and discussion

3.1. Individual descriptor and IE

Before doing any upper level of QSPR analysis, it was important
to begin that by a simple linear regression method to model the
Fig. 2. Schematic of periodic slab used
contribution of each descriptor on the inhibition property of these
molecules. The quantum chemical parameters obtained by DFT cal-
culation at B3LYP/6-311 + G(d) level in gas and aqueous phases of
neutral and protonated amino acids, such as EHOMO, ELUMO, DE and
so on, are collected in Tables A.1 and A.2.

In order to show the effect of protonation process on the inhibi-
tion performance of studied amino acids. We interested to explorer
it via the energy gap (DE) and electron-donating ability (DN)
parameters. Fig. 3(a) presents DE as a function of the amino acid
nature (exclude Val and Gly) with corresponding IE. In whole, the
protonation process has affected the magnitude of this energy,
which it is increased for almost amino acids with medium or less
IE (orange region). On the other hand, this process has reduced
weakly the DE for the amino acids with the high IE, like Tyr, Met
and so on (green region). In the same way, the values of DN are
presented as a function of the inhibition efficiency in Fig. 3(b).
The positive values indicate the possibility of electron transform-
ing from inhibitor molecules to the metal surface and vice versa
if DN was negative (El Ibrahimi et al., 2016). It is apparent from
the figure that the protonation influenced the ability of those com-
pounds to donate or receive electrons. All neutral compounds
exhibited positive values, so after protonation of many amino
acids, the lasts become negatives. However, this effect is weaker
for compounds with higher IE, as noted previously in the case of
DE. Nevertheless, the protonation process showed an effect on
the reactivity of almost investigated amino acids, which required
to consider it in developing of QSPR models.

The calculated quantum parameters of all amino acids were
correlated against IE, and the determination coefficient value for
each parameter is shown in Fig. 4. As can be seen, the R2 values
of DN (in aqueous phase) and l (in gas phase) of neutral amino
acids equal zero, such observation showed the absence of correla-
tion between these parameters and the obtained inhibition effi-
ciency via a simple linear model. This observation involves that
the calculated DN (in aqueous phase) and l (in gas phase) of neu-
tral compounds did not contribute -absolutely- in the inhibition
efficiency of these compounds. Further, it was shown that the cal-
culated parameters in the aqueous phase are correlated more than
those in the gas phase. Especially, a large difference is noted for
in MM-Monte Carlo simulations.



Fig. 4. Linear regression values obtained from the correlation between calculated quantum parameters in gas and aqueous phases for (a) neutral and (b) protonated amino
acids with the IE.

Fig. 3. (a) DE values of investigated amino acids in aqueous phase and (b) their DN values for neutral ( ) and protonated ( ) forms.
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protonated compounds, this can be attributed to the instability of
cationic molecules in the gas phase and consequently troubled the
calculated quantum parameters, the same trend has been reported
by some authors (Zhao et al., 2014). Additionally, this indicated
that the calculated descriptors under solvation conditions
correlated more to the inhibition efficiency of investigated com-
pounds regarding gas phase. On the other hand, as shown from
Fig. 4 the quantum descriptors which involving electronic interac-
tion, namely EHOMO, DE, g, v and DN, are exhibited great R2 values,
suggesting the chemical interaction nature of these compounds
with the copper surface. This observation agrees with the experi-
mental data of Barouni et al. However, the R2 values of all correla-
tion cases remain lower. Otherwise, those parameters could not be
used individually to well describe the performance of studied
amino acids.

In favor to get more detail about the interaction of studied
molecules with the Cu(111) surface, molecular mechanic (MM)
via Monte Carlo simulations in gas and aqueous phases were per-
formed. Fourteen water molecules are used to simulate the solva-
tion conditions. The calculated values of the adsorption energy
(Eads) are reported in Table A.4. As can be noted in the aqueous
phase, the absolute adsorption energy is great against its corre-
sponding in the gas phase, which the highest energy is obtained
for protonated amino acids forms. This increase in energy is attrib-
uted to the stabilization role of the solvent molecules (Kabanda
et al., 2013). It should be stated that the similar energies values
are found by Kaya et al. (2016a,b). On the other hand, all values
of Eads are negative, indicating that the adsorption could occur
spontaneously involving exothermic reactions. Additionally, the
most stable optimized structures of some amino acids (with high-
est IE) at neutral and protonated forms adsorbed on Cu(111) sur-
face are displayed in Fig. 5 (for the rest of compounds see Fig. A.2).
As shown from these figures, neutral molecules were adsorbed into
Cu(111) surface through its functional and aromatic groups, which
was justified by the presence of free lone pair electron and p-
electrons. Regarding restricted geometry conditions, the obtained
configurations showed that these neutral amino acids have the pri-
ority groups to adsorb on the copper surface, the following
sequence is purposed: ACOOH, ASR, aromatic ring and then
ANH2 groups. On the other hand, it was noteworthy that the pro-
tonation process has changed the adsorption configuration of stud-
ied amino acids. The protonated amine group was not adsorbed on
Cu(111) surface and is directed outside of it, this can be attributed
to the deficient in electronic density on the protonated nitrogen
atom. Although, the carboxylic group remains able to adsorb on
the copper surface. The same trend has noted by Zhao et al.
(2014) on Fe(110) surface. A considerable effect is noted in the
case of Phe, which the phenyl ring is turned with 90� and became
perpendicular on Cu(111) surface for protonated form, (Phe–H)+.
In addition to electronic structure (discussed previously through
quantum parameters), a simple view of the geometrical structure
of the four selected amino acids with the highest inhibition perfor-
mance shows that planar and heteroatom containing amino acid
are responsible on its protection ability.



Fig. 5. Optimized systems of some amino acids in neutral and protonated forms on Cu(111) in aqueous phase.
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In order to give a whole vision, the obtained adsorption energy
values (Table A.4) have used to plot the linear correlation curves
with the experimental values of IE (Fig. 6). In different systems,
the regression line has shown a negative slope value indicating
that the inhibition efficiency increases with the absolute adsorp-
tion energy, which it is in accordance with prior studies (Kaya
et al., 2016a,b). The R2 values remain lower to build a robust linear
model between IE and Eads for the investigated compounds. This
can be due to the high complexity of the inhibition process, which
involves many factors.
3.2. QSPR analysis

One of the most important steps in the QSPR analysis is the vari-
able selection. It was found in the previous section that the calcu-
lated parameters in the aqueous phase have shown a great
contribution to the inhibition efficiency regarding the gas phase.
For this purpose, the twenty-two global descriptors coding the
neutral and protonated investigated compounds forms in the aque-
ous phase was used. In the first stage, to identify the interrelation-
ships between different descriptors, a correlation coefficients
calculation was performed. The Pearson correlations matrix
between the calculated descriptors is shown in Table A.5. This
matrix showed a good (R � 0.5) and poor (R < 0.5) co-linearity
between calculated descriptors, like TNCNBO(N) with EAds(N). In order
to reduce the redundancy existing in our data set, one of the
descriptors pairs that are highly correlated (i.e. R � 0.90) were ran-
domly excluded. Table A.6 collected the thirteen screened descrip-
tors and their R. In the second stage, among these descriptors, the
simulated annealing built-in MLR (SA-MLR) analysis was applied to
select the most appropriate ones. Consequently, a group of four rel-
evant descriptors was selected including v(N), ELUMO(P), DN(P) and
TNCNBO(P).

The Eq. (1) represents the best generated QSPR model by using
the MLR method with the four selected descriptors. The intercept
and all regression coefficients of used descriptors were found to
be statistically significant. An overview of those coefficients and
matching descriptor showed, in the first stage, that both neutral
and protonated inhibitors forms have contributed differently to
the inhibition efficiency. In the second stage, the kind of descriptor
and their corresponding correlation coefficients indicate that the
inhibitors have probably interacted with the metallic surface
through electronic interaction, which it is in agreement with the
experimental results

IEMLR ð%Þ ¼ 10:0� 28:6� vðNÞ � 90:1� ELUMOðPÞ þ 171:1

� DNðPÞ � 8:9� TNCNBOðPÞ ð1Þ
ANN method was used to construct the non-linear model based

on the same selected descriptors by the SA-MLR method. In order
to improve neural network (NN) generalization and to early stop
training before over-fitting due to the limited studied dataset, a
validation dataset was employed. In other words, the dataset was
randomly divided into three non-overlapping datasets, namely:
training (�80%), validation (�10%) and test data (�10%). A training
of different neural network architectures demarche was employed.
The latest consists to train several NN architectures with a differ-
ent number of neurons in hidden layer, it was tested from two to
ten neurons with one neuron as incremental steps. In the same
time, each NN architecture was retrained many times with differ-
ent sampling and initial conditions i.e. initial weights and biases
values of hidden and the output layer. Furthermore, the training
was parameterized to be stopped when the validation error



Fig. 6. Linear correlation curve of adsorption energy with IE of studied neutral (a,b) and protonated (c,d) amino acids in gas (d) and aqueous ( ) phases.
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(RMSEvalidation) increased for six iterations. Unlike MLR approach,
the ANN methods are commonly known as the ‘‘black-boxes”
which give little information about the causative relationships
among variable. Instead of equation model with parameters in
MLR method, the ANN offers a network graph with the weights
to describe the relationship between dependent variable and
explanatory variables. The Table A.7 summarized the layer’s
weights and biases constant values of built ANN model, which
had given a higher R and lower RMSE values.

Table 2 reports the computed statistical indicators for all data-
set types employing in MLR and ANN analysis. As can be seen from
the table, firstly for training dataset, a value upper than 0.70 of
Rtrain for obtained models is noted, which implies a good linear
relationship between experimental and predicted IE for training
dataset, especially in the ANN model case (Rtrain = 0.89). Further,
the RMSEtrain of the MLR is great than that of the ANN, indicating
the good predictive performance of the ANN constricted model
against MLR model. Secondly, for test dataset, the comparison
between the correlation coefficient (Rtest) of the MLR and the
ANN based models, has shown a similar linear correlation between
experimental and predicted IE values by employing linear and non-
linear modeling methods. However, it is clear that the value of
Table 2
Evaluation performance of obtained models by applying the MLR and ANN methods.

Methods Training set Validation set

Rtrain RMSEtrain Rvalidation RMSE

MLR 0.79 15 – –
ANN 0.89 12 1.00 9
RMSEtest for ANN model is lower than that for MLR model, indicat-
ing a lower difference between observed and predicted IE by ANN.
In order to get a whole vision on the performance of built models,
the Rall and RMSEall were calculated on the total dataset. The
obtained values showed that the ANN model reproduced better
the experimental data with lower error than that of MLR model.
Graphically, the Fig. 7(a,c) display the plots of experimental IE val-
ues against corresponding predicted values using MLR and ANN
based models, respectively. The associated models residual is pre-
sented in Fig. 7(b,d). These plots show that the predicted IE values
by non-linear model matching more to experimental values than
that of the linear model. This finding confirmed that the inhibition
of corrosion is more a non-linear phenomenon. For this purpose,
the ANN model will be used in the next step to predict the inhibi-
tion efficiency of new designed a-amino acids derivatives for cop-
per corrosion in acidic medium.

3.3. Novel designed derivatives

One of the most used local descriptor to understand the suitable
interaction center(s) on an inhibitor molecule with the metal
surface is the atomic charges (Gece, 2008). There is a common
Test set Full dataset

validation Rtest RMSEtest Rall RMSEall

1.00 12 0.80 15
1.00 8 0.90 11



Fig. 7. (a,c) Plot of predicted versus experimental IE values for training ( ), validation ( ) and test ( ) datasets and (b,d) corresponding residues values calculated by
employing MLR and ANN models.
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agreement that more a site is charged negatively is its capacity to
adsorb into the metal surface, via a donor-acceptor interaction
(Obot et al., 2015). The calculated atomic natural charges of some
investigated compounds in the aqueous phase are collected in
Table A.8. It was found that nitrogen atom bonded to a-carbon
has the highest negative charge in all investigated amino acids,
except N atom of the second amine group and of primary ketamine
function in Lys and Arg, respectively. Also, the oxygen atoms of car-
boxylic function have shown a great negative charge, while its car-
bon atom has a positive charge. Furthermore, it is showed that the
substitution of H atom of thiol function in Cys by methyl group
leads to amplifying the negative charge on the sulfur atom in
Met, due to inductive donor effect. However, for protonated com-
pounds, the negative charge on atom have reduced, in particularly
on nitrogen atom directly connected to a-carbon. This is notewor-
thy noted by comparing the TNCNBO of neutral and protonated
amino acids. On the other hand, this can improve the ability of car-
bonyl group including the side-chain to interact more with metal
surface than protonated amine group, and hence the adsorption
mode. The same trend has noted previously on the adsorption con-
figuration obtained by MM-Monte Carlo simulations.

Recently, the use of electrostatic potential (ESP) map to under-
stand the reactive center of inhibitor molecules has attracted the
attention of several searchers (Kovačević and Kokalj, 2011). In
Fig. 8, ESP maps of some neutral and protonated amino acids are
presented (for other compounds see Fig. A.3). As shown, for all
studied neutral amino acids, the region of negative electrostatic
potential (electron rich region) is located on carboxyl and amine
groups bonded to a-carbon. Further, on the rest of molecule skele-
ton, the electrostatic map was depended to the size, shape and
chemical properties of the side chain. However, as protonated
amino acids charged positively, a positive ESP contour has dis-
tributed on the whole molecule structure. Nevertheless, a region
of small negative potential is located on sp2(O) and sp3(O) atoms
for (Gln–H)+ and (Tyr–H)+ molecules, respectively.

The HOMO and LUMO orbitals are plotted in Fig. 9 of four
selected amino acids at neutral and protonated states in the aque-
ous phase (for the rest of compounds, see Fig. A.4). For molecules
with an aromatic ring, namely: Phe, Try and Tyr, the HOMOs were
spread throughout the whole ring including the amine group, and
theirs LUMOs were located only on the aromatic ring. For the mole-
cules with a sulfur atom (i.e. Cys and Met) its HOMO was focused
on the sulfur-containing group, and its LUMO type orbital on car-
boxyl group and a small part on amine group. The main distribu-
tion of HOMO in Arg and Lys molecules were located in
guanidine and the second amine group, respectively. Whereas
LUMO on carboxyl and amine groups bonding at a-carbon. On
the other hand, passing from Glu to Gln molecule, the effect of
changing of hydroxyl by amine group has reduced the location of
frontiers molecular orbitals. However, for the rest of amino acids,
the HOMOs were concentrated on amine group, which attached
in a-carbon, while for LUMOs on carboxyl group. As seen from
those figures for protonated amino acids, excluding (Ala–H)+,
(Leu–H)+, (The–H)+ and (Lys–2H)2+, the protonated amine group
(connected to a-carbon) has not shown any distribution of HOMO
or LUMO orbitals, and consequently a probable absence of interac-
tion between the later and metal surface. This can explain and con-
firm our previous findings about the adsorption configuration



Fig. 8. ESP of selected amino acids in neutral and protonated forms. Regions of negative (positive) potential are red (green).

Fig. 9. HOMO and LUMO orbitals of selected amino acids.

Fig. 10. Molecular structures of the new designed Tyr derivatives.
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obtained by MM-Monte Carlo simulations. However, carboxyl
group was contributed both in HOMO and LUMO for protonated
compounds, except (Arg–H)+, (Cys–H)+, (Try–H)+, (Met–H)+ and
(Tyr–H)+. More inspection of those molecular orbitals reveals, in
one hand, that the protonation process has changed their shapes.
On the other hand, the presence of electron donating substituent



Table 3
Predicted IE(%) of Tyr and the new designed Tyr derivatives.

Para(X) IEpred (%) Tyr-Meta(X) IEpred (%) Tyr-Bi Meta(X/X) IEpred (%)

Tyr = Para(OH) 70 Tyr-Meta(OH) 83 Tyr-Bi Meta(OH/OH) 79
Para(NH2) 45 Tyr-Meta(NH2) 39 Tyr-Bi Meta(NH2/NH2) 17
Para(SH) 85 Tyr-Meta(SH) 83 Tyr-Bi Meta(SH/SH) 78
Para(SCH3) 83 Tyr-Meta(SCH3) 78
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such sulfur, oxygen and nitrogen-containing groups with aromatic
ring constituted the suitable sites for binding to the metal surface.

Following to above findings and using Tyr as core molecule
skeleton, which exhibited the highest inhibition efficiency (IEexp
= 82%) among investigated biomolecules, a series of ten new com-
pounds were designed (Fig. 10). In this series of molecules, the
hydroxyl, amine and thiol functional groups were used. Firstly,
the hydroxyl group in Tyr was substituted successively by –NH2,
–SH and –SCH3 groups (Para(X) derivatives). Secondly, one hydro-
gen atom in Meta position on aromatic ring was substituted by –
OH, –NH2, –SH, and –SCH3 groups (Tyr-Meta(X) derivatives).
Finally, the hydrogen atoms in the two Meta positions was substi-
tuted by the same group, i.e.: AOH, ANH2 or ASH (Tyr-Bi Meta(X/
X) derivatives). All those molecules were studied by employing the
same computation conditions as used previously. Table A.9 collects
the calculated descriptors of designed derivatives. Table 3 presents
the predicted IE values of the newly designed compounds. As can
be noted, all the new designed amino acids molecules exhibited
the ability to inhibit the corrosion, where the predicted IE varied
from 17% to 85%. Further, the new compounds with thiol groups
in Para, Meta and Bi Meta-position (i.e. Para(SH), Para(SCH3), Tyr-
Meta(SH), Tyr-Meta(SCH3) and Tyr-Bi Meta(SH/SH)) showed a
great inhibition efficiency to its of Tyr (i.e. Para(OH)), like: Para
(SH) compound with 85% as inhibition efficiency. In the same
way, the Tyr-Meta(OH) and Tyr-Bi Meta(OH/OH) derivatives have
shown a good ability to prevent the corrosion. However, a remark-
able reduction in the predicted inhibition efficiency was noted for
the compounds that the amine group is incorporated. For example,
the IEpred of Tyr-Meta(SH) is reduced by half regarding its of Tyr-
Meta(NH2). As discussed in the previous sections, this can be
attributed to the effect of protonation process on the electronic
and structural properties of those compounds, and consequently
their interaction with the metal surface, which reflects on their
inhibition.

4. Conclusions

By employing the simple linear regression method, a prelimi-
nary study on the relationship between calculated global reactivity
indicators and the IE was conducted. It showed that the calculated
indicators in the aqueous phase (for both neutral and protonated
forms) were correlated more to the IE than their corresponding
in vacuum phase. Further, this stage of the study was exhibited
that the protonation process has affected the reactivity of investi-
gated compounds. Despite that, simple linear regression remains
insufficient to describe greatly the observed inhibition behaviors.
For this reason, the accurate mathematical methods, namely:
MLR and ANN, were applied. Following all steps of the QSPR mod-
eling process two models were constructed using four descriptors:
v(N), ELUMO(P), DN(P) and TNCNBO(P). Through calculated statistical
parameters, the comparison between constructed models proves
that the ANN provided better results, which indicates that the cor-
rosion inhibition is mainly a non-linear phenomenon. Thereafter,
by analysis of local reactivity indicators, Para(SH) was suggested
as new efficient inhibitor for copper corrosion in acidic medium.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.jksus.2018.04.004.
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Kovačević, N., Kokalj, A., 2011. Analysis of molecular electronic structure of
imidazole- and benzimidazole-based inhibitors: a simple recipe for
qualitative estimation of chemical hardness. Corros. Sci. 53 (3), 909–921.

Obot, I.B., Macdonald, D.D., Gasem, Z.M., 2015. Density functional theory (DFT) as a
powerful tool for designing new organic corrosion inhibitors. Part 1: an
overview. Corros. Sci. 99, 1–30.

Sastri, V.S., 2011. Green Corrosion Inhibitors: Theory and Practice. John Wiley &
Sons Ltd.

Zhao, H., Zhang, X., Ji, L., Hu, H., Li, Q., 2014. Quantitative structure–activity
relationship model for amino acids as corrosion inhibitors based on the support
vector machine and molecular design. Corros. Sci. 83, 261–271.

https://doi.org/10.1016/j.jksus.2018.04.004
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0005
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0005
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0005
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0010
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0010
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0010
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0015
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0015
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0015
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0020
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0020
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0020
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0025
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0025
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0025
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0030
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0030
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0035
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0035
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0040
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0040
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0040
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0040
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0045
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0045
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0045
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0050
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0050
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0055
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0055
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0060
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0060
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0060
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0060
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0065
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0065
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0065
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0070
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0070
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0070
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0075
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0075
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0075
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0080
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0080
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0080
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0080
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0085
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0085
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0085
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0090
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0090
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0090
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0095
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0095
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0095
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0100
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0100
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0105
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0105
http://refhub.elsevier.com/S1018-3647(18)30457-9/h0105

	Theoretical evaluation of some α-amino acids for corrosion inhibition of copper in acidic medium: DFT calculations, Monte Carlo simulations and QSPR studies
	1 Introduction
	2 Computational details
	2.1 DFT calculations
	2.2 Monte Carlo simulation
	2.3 QSPR studies

	3 Results and discussion
	3.1 Individual descriptor and IE
	3.2 QSPR analysis
	3.3 Novel designed derivatives

	4 Conclusions
	Appendix A Supplementary data
	References


