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In this paper, a single-server queue with Modified Bernoulli Vacation(MBV) has been considered. The server
provides two kinds of services, Compulsory Service (CR) and Non-Compulsory Re-service (NCR). Any new
customer who arrives and finds the server engaged, on breakdown, or on vacation will be placed on an orbit;
or else if he finds the server free, he enters the service immediately. The server takes a vacation as soon as the

orbit is empty at the usual service completion moment. The dissatisfied customer may re-enter the orbit after
usual service is complete to receive another service. We have used SVM (Supplementary Variable Method) to
derive PGF (Probability Generating Function) for the system. In order to demonstrate the influence that the
system parameters have, numerical examples are discussed.

1. Introduction

Retrial queuing is a queueing paradigm in which a randomly ar-
riving customer observes that the server is busy and starts to make
repetitive client requests called as orbit. An impatient customer is one
who enters the queue in a reneging or balking state, becomes impatient
rapidly, and may depart the system before the service is completed.
In this work, we have derived the steady state equations for the case
of impatient customers in retrial queuing model and derived some
significant performance metrics of the model.

The review of the literature on retry queue can be found in Falin and
Templeton (1997). In Gomez-Corral (1999) a Non-Markovian queueing
system with generic retrial times has been analyzed. A two phase
service pattern with retrial queuing has been presented in Artalejo
and Choudhury (2004). Phases 1 and 2 of the service are taken into
consideration, and significant performance metrics are derived. Under
the Bernoulli schedule, a single-server queue with phasel and phase2
service and a MBV is discussed in Jain and Agarwal (2010). A hybrid
queueing model with weighted fair queueing and differential packet
dropping is used in congestion control in networks (Nandhini, 2013). In
a recent study in Ke et al. (2010), a wide range of vacation rules were
examined. Doshi (1986) has discussed significant concepts on single-
server queues with vacations. An M /G/1 retrial queue in which the
customer chooses for second phase multi-optional service (SMOS) has
been discussed in Wang and Li (2009). In Madheswari et al. (2019), the
authors have investigated a single server retrial queue of two phases
of service that operates under the Bernoulli vacation in which they
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consider the second phase as optional. Retrial queue with two phases of
service, balking, vacations (Bernoulli and Modified Bernoulli), feedback
has been investigated in Arivudainambi and Godhandaraman (2012),
Choudhury and Madan (2005), Choudhury and Deka (2008).

The retrying client has a significant impact on the dynamics of
coupled switching in ATM centers, which is an extremely important
factor to consider. The intervals between subsequent retrials, however,
rely less on the quantity of customers who have attempted it in a
certain service settings. In these circumstances, it is assumed that only
the customer who is at the head of the orbit is permitted for retrial
service, as in Dimitriou (2018), or alternatively, after a service has been
provided, the server may seek customers from the orbit. The authors of
a recent study in Legros (2021, 2022) examined the admission control
problem with state-dependent arrivals and proposed a system sizing
algorithm and has shown that the wait time can be reduced by taking
use of the latest recent event. There have also been other single-server
queueing models proposed in Boxma and Vlasiou (2007), Kerner (2008)
where the arrival or service rates depend on the customer’s wait time
while getting service or standing in the queue.

Analysis has been carried out on an SSMQS (single server Markovian
queueing system) (Bouchentouf et al., 2021), which included balking,
Bernoulli feedback and its server states dependent on reneging, as well
as retention of reneged consumers under a variation multiple policies
(vacation). In Boussaha et al. (2022), study has been performed on a
single server feedback retrial queueing system (SSFRQM) using orbital
search customers. Balking consumers, UDRQ (Uncertain Discrete-time
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Retrial Queue) with PPP (Probabilistic Preemptive Priority)and RRT
(Replacements of Repair Times) were recently examined in Lan and
Tang (2020).

Retrial models appear naturally in HMS (Healthcare Management
System), WSN (Wireless Sensor Network), CTN (Communication and
Transportation Networks), IOT (Internet of Things), TS (Task Schedul-
ing), TE (Traffic Engineering), TCC (Telecommunication and Call Cen-
tre) and ICS (Inventory Control System).

Retrial queueing model with Bernoulli vacation is our primary
focus of interest. Past literatures were dealing with a Single-Server
Retrial Queue Model (SSRQM), with two stages of service and Bernoulli
vacation. This paper presents an advanced SSRQM which comprises of
two phases of services (CR and NCR) under Modified Bernoulli Vacation
(MBV) added with balking state also. The uniqueness of our approach
also includes the consideration of repair and breakdown under MBV.
Prominent performance measures has been derived for our model and
numerical analysis and graphical representation of the model has also
been presented.

The structure of this paper is structured as follows. In Section 2,
we present the mathematical description of the system under consid-
eration. In Section 3 steady state equations and PGF of system size,
orbit size are presented. Several system performance measures are
discussed in Section 4. The special cases of the proposed model is
covered in Section 5. Numerical Illustrations are discussed in Section 6
and Section 7 conclusion and future work is presented.

2. Mathematical description

The service discipline for new arriving customers is FIFO. We as-
sume a single Poisson arrival with A as the mean rate. The retrial-
service is generally distributed with its distribution function w(#,),
df(density function) «(%,), and LST (Laplace-Stieltjes transform) @™ (%;).
The service time distribution function U, (j,) for compulsory service and
U,(,) for non-gompuls_ory (re-service), LST U l*(h,), U;‘(h,), its first two

moments are Sil and S,2 respectively i = 1,2. After completion of each
service, the server takes MBV, with its distribution function B(,) and
LST B*(h) its first two moments 0, 72,

An entering customer is served by a single server on a FIFO basis.
When the service is finished, some of the approaching customers may
opt to NCR with probability r; or depart with probability /; =1 —r,.
Balking may occur whenever a customer enters the service area with a
probability 1 — b and the customer exits with probability 5. The server
waits with probability 1 — ¢ and goes on vacation with probability c¢ if
no customers are present at the end of each service.

Both the services, vacation, delay time and repair time follows
general distribution.

Let
server is inactive
server is engaged
server is on non-compulsory re-service
10.) server is delaying repair on compulsory service
=
q

server is delaying repair on non-compulsory re-service
server is repair on compulsory service

server is repair on non-compulsory re-service

e

N O LR W= O

server is on vacation

We assume that breakdown of the server for both the services are
according to Poisson stream with mean breakdown rates y; and y,. The
delay time distribution function W,(;,) and LST W;*(%,,), respectively
and its moments are g}, glz’ i = 1,2, and the repair time of distribution
fl_mct_ion are E;(j,) and LST E}(n,,), respectively and its moments are

7
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Let us assume w(0) = 0, w(c0) = 1, U;(0) = 0, U;(c0) = 1, U,(0) =
0, Uy(e0) = 1, B(0) = 0, B(e0) = 1 are continuous at #; = 0 and
W;(0) =0, W() =1, E;(0) =0, E;(0) =1 are continuous at #,, = 0.

Hazard rates of the conditions(retrial, services,vacation, repairs) are

dw(hy)
K(h)dh; = T—wt) (repeated attempts)
mh)dn, = iUllj—% (compulsory service)
ny(hy)dh; = ld—Ulzf—(Z(l[h),) (non-compulsory re-service)
v(h)dh; = % (vacation)
pi(h,)dhn,, = % i = 1,2 (delaying repair on both services)
w;(h,)dh,, = % i = 1,2 (repair on both services)

3. Steady state formulation and solution

In this section, we have presented the steady-state through Egs. (1)
to (16), and the boundary conditions are given in Egs. (17) through
(25). Applying PGF we arrive Egs. (27) to (42). Finally, we have
presented the probability generating function of orbit size while the
server is idle, busy on CR or NCR, on MBV, under postponing repair on
CR or NCR, and repair on CR or NCR accordingly.

Notations used

To(,) — The prob(probability) that the system is idle at j,.

T,p (7y,J,) — The prob that at, there are precisely 1, customers in the
orbit with elapsed time (retrial) 7;,0f customers going-through retrial .

(P(l,,p)(hh Jo) — The prob that at j, there are precisely ¢, customers in
orbit with elapsed time (CR) of the customer #; going-through service

P, (Mg = The prob that at , there are precisely i, customers
in the orbit with elapsed time (re-service) on NCR of the customer 7,
going-through service .

Q(l’,p)(h,,hm,_/q) — The prob that at j, there are precisely 1, cus-
tomers in orbit with the elapsed time (CR) of test customer #; going-
through service and the elapsed (delaying repair) of server is #,,.

Q(2’,p)(h,,hm, Jg) — The prob that at ;, there are precisely ¢, cus-
tomers in the orbit with elapsed time NCR of the customers going-
through service is 7, and the elapsed (delaying repair) of server is
Ry

D(I,,P)(hI,hm, Jg) — The prob that at j, there are precisely 1, cus-
tomers in orbit with elapsed time (CR) time of the customers going-
through service is 7, and the elapsed (repair) time of server is #,,.

Doy (ps Pisgg) — The prob that at j, there are precisely :, cus-
tomers in the orbit with the elapsed time (NCR) of the test customer
going-through service is 7, and the elapsed (repair) time of server is
h,.

S,p(h,, Jg) — The prob that at j, there are precisely :, customers in
orbit with elapsed (vacation) time #;.

The probabilities are described as:

To4,) = T{IG,) = 0,X(,) = 0}
T, (g )dhy = PUIG) = 0,X(,) =1, by S @°G,) <y +dhy),

lpzl

P14, (o1 )dy = PUIG,) = 1L,X(,) =1, by <UYQ) < by +dhy}
fOI'jq, hy, 1,20
P, (Pps1)dy = PUIG,) = 2,X(,) = 1,,h; <UD < By +dhy)
01,0, (Bys s j )y, = PUIG,) = 3,X(,) = 1)y < WL(,) < By,
+dh,, /UG, =}
forjq,h,,zp >0
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Qo (i Bt )iy = PAIG,) = 4.XG,) = 1,1, < WG, <,
+dh, /UG, = R}

D1y (ys s 1)y, = PLIG,) = 5,)?(,q) =1,.h, < E%G,) <h,
+dh, /UG, = h}
fOrjq,hl,lp >0

D (s By g )Ry = PLIG) = 6, f((,q) =1, < ES) < Iy,
+dh,, /UY()) = hy}

S, (hygdhy = PUIG) =T, f((]q) =1,.h; < B°(,) < b, +dhy}
The set of governing equations (behavior of dynamic system) are

given by

)

_ ©
ATy =(1-c) [r‘l / @0/ ()N (hy)d Ry +/ @00/ (M) (Ry)d Ry
0 0

© m
+ /0 So(hpv(hy)dh,
d, ()
dr + G KT, () =0 @
doo(hy) = b
d—h, +[bA+ 7y, +m(B)le o(hy) = /0 B1(n,)Q, o(y, hy)d Ry, 3)
dgy, (h) .
—an +[bA+y + 7/1(f11)]¢1,,P(h1) = bﬁ(ﬂ1,,p_1(h1)
! . 4
+/ ﬂl(hm)Qlylp(hI,hm)dhm, L >1
0
dprghy) - S
% +[bA+ 72+ m(B)1@ag(h) = /0 Bo(h)Qs (R, By)d,,  (5)
1
dgy, (h) .
—an +[bA+y, + Wz(hl)]fﬂz,,P(hl) = bﬁ(ﬂz,,p_](h[)
I . (6)
+/ ﬂz(hm)Qz‘lp(h,, h,)dhn,, L >1
0
A0, o(hhy) -
o (b By (y))Q1 o(y.sg) = 0 @
dQI,zp(hI’hm) = =
T + (bA+ (hm))Ql’,p(hl,hm) = b/IQl’,P_l(hl,hm),lp >1 (8)
dQyo(hhy) -
o (B Ba () Qo gy ) = O ©
dQZ,tp(hl’ h’m) = =
T + (bA+ ﬁz(hm))Q2,zp(hl’ h,) = b/le’lp_] (hy, hy,), iy >1 (10)
dD, o(hy ) -
— i + @A+ @)Dy o(hy, ) =0 an
Dy, (hy.h,) i
T + (bA +w1(hm))Dl’lp(hl,hm) = b/lDl,,P_l(hl, n,), 1 >1
a2
dDzyo(h,, h,,) =
o+ (BA+ () Dy (B hy) = 0 13)
Dy, (hyhy) -
T +(bA+ wz(hm))Dz,lp(h/s n,) = b}‘Dz,zp—l(hl’ hy), p21
(14)
dSy(h =
dSothy) | (BA+ v(h)Sy(hy) =0 15)
dh,
ds, (h) .
et BA+ VRS, () = BAS, _ ()1, 2 1 (16)
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The following boundary conditions (#; = 0,%,, = 0) are used to solve

the set of Egs. (1) to (16).

[

T,p(O) =(-o9) ["_1 /0 (P(1,,p)(h[)711 (h)dny +/0 (P(z,tp)(hl)'lz(h[)dhl

+/O°° S,P(h,)v(h,)dh,

a7)
(pl’lp(()) = /0°° T, (h)x(h))dh; + ZﬂTO (18)
<P1,zp(h170) = /0°° Tlp_,_l(fll)l((fl,)dhl + 4 /0°° sz(hl)dhl (19)
02,000 =11 [ " v, (o (ha, 20)
01, (.0 = 1101, (h) 1)
02, (11, 0) = 1292, (h) 22)
Dl’,p(h,,O) = Am Ql,zpﬁl(hm)dhm (23)
Dz’,p(fl,,O) = /0°° Qz’lpﬁz(hm)dhm 24)

)

o]
s, 0) = cry / 1., (R (h)dhy + c/ @2, (R (hp)dhy, 1,2 1 (25)
0 0
The normalizing condition is given by

o 00 o 0 o
T, + 2/0 Ty, (hpdhy + ) [/0 ¢1,,p(h,)dh,+/0 @, (hdy

=1 1,=0

o =5} S}
+/ S, (hl)dhl+/ / 0y, (b, h,)dhdh,
o 7 o Jo ’
(s (8]
+/ / 0y, (. hy)dydh,,
0 0

o0 (o] o0 [se]
+/ / Dl,lp(h,,hm)dh,dh”/ / Dz,,p(h,,hm)dh,dhm]ﬂ
0 0 0 0

(26)
The probability generating functions would be defined as follows:

T(h.h) = Y, T, (hh,'s for by > 0,T(0,h,) = Y T, (Oh,"

1,=0 1,=0

o0 [se]
ot = Y, 0, (DR, @0 h) = ) @1, (Oh, "

1,=0 1,=0

[se] (S
Qi by = 3 0y (B by, Qi(hy 0.1,) = Y Quty(hy. O)h,'»

1,=0 1,=0

Dy ) = 3 Dy (7, Dy, 0,1,) = 3 Dyt (g, O),

1,=0 1,=0
o0
S, (Aph'r for iy > 0,80, h,) = 3 S, (O)h,"
1,=0

Now multiply Eq. (2) to (25) by 7, and adding up all the values of
I (summing), we obtain

dT(hy. h,)
S M) | Gt k()T (1) = 0 @7
an,
do (b)) -
LT 4 15401~ )+ 1+ m ey, )
1
- / By (hy)Qy (hys o )y 28)
0
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doy(h,hy) -
%2—,{ LA =)+ + 1y (h) @y (hy, )
1
= / By (1,05 (R, Ry, B,)d Ry, (29)
0
d h > hm’ hn 7
% + (A1 = ) + By (O, (y, s ) = 0 30)
dQ,(hy. b)) -
% + (AL = ) + oy Qs (y i ) = 0 1)
dD(h, h,, h,) =
— A1 = h,) + @ (R,)0, (R, By, 1) =0 (32)
W +(BA(L = hy) + @y (hy) Qs (hy, iy ) =0 (33)
dS(h.h,) -
an, (BA(L = h,) + v()S(hy h,) = 0 (34)

(s [se]
T0,n,) =1 —C)[fl/ wl(fll,hn)m(h;)dhz+/ @y (g, by )y (Ry)d 1y
0 0
© =
+/ S(hy, R)V(h)dh, — bAT,
0

(35)

=]

o -
?,(0,h,) = hi/() T(h,,h,,)x(h,)dhl+/l/0 T(h. h,)dh, +biT,  (36)
n

0201, = 1 /O " 1y By @37)
0,(h1,0.h,) = 111 (hy, ) 38)
03(hy,0,h,) = 1205y, ) (39)
D,(n;,0,h,) = /)w Q,(hy, h,,, )P (h,)dn, (40)
Dy(n;,0,h,) = A‘” Q,(hy, by, h,)p(h,,)dN, (41)

S(0,n,) =cry / @ (hy, hn (hy)dhy + c/ @y (hy, b, (hy)dhy 42)
0 0

Solving Eq. (27) to (34), we get

T(h;, h,) = T(O, B[l — w(h)le M (43)
@1(hy hy) = 10, AL = Uy (hy)le™ AP (44)
@2(hy, 1) = o0, 1,)[1 — Uz(h,)]e"’ib(h"”" (45)
0, (hy, hy, ) = Q1 (1y, 0, B[ = Wy (R, )]e 1)l (46)
Q5 (hy, hy, 1) = Qo (g, 0, 1)1 = Wo(hy,)]e 11 ) (47)
D (hy, iy b)) = Dy (1,0, 1,)[1 — Eq(h,,)]e” 1B (48)
Dy(Ry, . hy) = Dy(Ry, 0,11 — Ey(hy,) e 1 Pn)n (49)
S(hy, k) = S0, h,)[1 — B(hy)]e 1t (50)

where A,(h,) = hyy(h,) +y,[1 - W (hy (R D)CET (hyy (R)], Ay(h,) =
hy(hy) + 1o[1 = W) (hy (R DNE; (hy (B, )] and hyy(R,) = ba(1 - hy,)
Integrating Eq. (43)-(50) from 0 to co with respect to #,, we get
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n,bTo(1 — @ (DU (A, ()IF, + r,U; (A, ()]
[(1 =)+ cB*hy, ()] — 1)
h, = [@*(A) + h,(1 = @* (DU} (A (B + r U (A, h,))]
[(A=c)+cB*hy ()]
(51)

T(n,) =T,

@ (Dhyy (U (A, (R,) = 1]
h, = [@*(A) + h,(1 = &* (AU (A (A + U5 (A)(R,)]
[(1 = ¢)+ B (h )(h,))(A,(h,)
(52)

o1(h,) =T,

r@* (Dhy, (W)U (A (M ))IUS (A (R,)) 1]
By, = [@*(A) + 1, (1 = @ (ADIUF (A (B + 1 U5 (A)(R,)]
[(1 =) + ¢ B*hy (h)I(Ay(h,)
(53)

@y(h,) =T,

na@ (DI = U A ()W (hy (h,) = 1]
hy = [@* (D) + h,(1 = @ (DU (A (B + U (A,)(R,)]
[(1 = ¢) + cB*hy, (h,))(A,(h,))
(54)

0,(,)=T,

N (DU AR = U A,V (hyy (R,) = 1]
By, = [@*(A) + R, (1 = @ QDIU; (A ()G + U3 (A,)(R,)])
[(1 = ¢) + ¢B* hyy (h,)I(A,(h,))
(55)

O,(h,) =T,

N (WW;(hy ()1 = U (A (B )ILET By () = 1]
By, = [@*(2) + h,(1 = @* QDU (A (B + U (A)(R,))]
[(1 = ) + ¢ B hy (B)N(A,(h,)
(56)

D(h,) =T,

@ (DU (A (B)W; (hy ()T = Us (A,(h,)]
(Ej(hy)(hy,) = 1)
hy = [@*(A) + h, (1w QU (A, (W )IF + U (A)(,))]
[(1 =€) + ¢ B hyy (h,)(A,(h,)
(57)

Dy(h,) = Ty

c(B*(h)(h,)) = 1)w*(/1)U1*(/§a(h,,))[r‘1 + "1U2*(/ib(h,,))]
h, —[@"(A) + h,(1 - w*(l))]U;‘(/Ta(h”))[(ﬂ + rle*(Xb(hn))]
[(1 = ¢)+ cB*hy (h)]
(58)

S(n,) =T,
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T, — probability of server inactive. Using the normalizing condition,
we obtain
To+T1) + @ (1) + @)+ 01 (1) + Or,(1)+ Dy (1) + Dy(1)+ S(1) =1

*(A)—Ma(s (1 +r1(f1 +g1)1+rls [1+h(g2+f2)]+c'(”>

T, =
' @D -Gb-D1-w (/1))/11)[(5 [1 + " (gl + fl )]
+rlS [1 +y2(g2 + f2 )+ i)
K;d(h,,) — number of customers in the system, where
K?d(h,,) =Ty +T\(h,) +Sh,)
+ hp{e(hy) + @2(hy,) + O1(Ry) + Q2 (Ry) + Dy (Ry,) + Dy(Ry)}

substitute Eq. (51)-(58) we get,

[h,(1 = b) + 1, (b — Dw*(A)] + (b — (1 — w*(4))
Ui (A () + 1 U (A (R, ) = ¢) + cB*hyy (h,)]
+(h, = D@ (DU A, (h,)F, +r,U; (A, (R,))
h, = [@*(2) + h,(1 = @ QDI (A, ()G + U5 (A,)(R,)]
[(1 = )+ ¢B hy (h)I(Ay(h,)

KTtl(hn) = TO 3

(59
ﬁd(hn) — number of customers in the orbit, where
Hy(h,) = Ty + Ty(hy) + 91(,) + 92(h,) + 0, (h,) + Oa(h,)
+ Di(n,) + Dy(n,) + S(,)
substitute Eq. (51)-(58) we get,

{[7,(1 = B) + w* ()(bh, — DI + (1 — w* ()b — DU (A, ()P

+rUF Ay )I(L = ¢) + cB*hyy ()]}
Hd(hn) =T

B, = [@* () + 1, (1 = @ (DI} (A, () + U3 (A,)(R,)]
[(1 = ) + ¢ B hyy (h)1(A,(h,)
(60)
4. Performance measures
Some important measures of effectiveness are derived below.

(i) Let T(1) represents steady-state prob that the server will be
inactive during the period.

Ty(1 - *u))ba< 111+ 7,(F + g1+ 7SI+ 7,(s) +f2)1+c5“>>

T(1) =
[w ()= (b= 1(1 = " (! I +yl<gl +f >1}

+r1S [1 +y2(g2 +f2 NETLA)

(i) Let ¢,(1) represents the steady-state prob that the server is
active.

Tom*(ﬁ)zigl
@ (1) =

w'(H-b-D1-w (ﬂ))/lb[(S [1 +71(g1 +fl l
+r]S [1+ yz(gz + f2 )+ )]

(iii) Let ¢,(1) represents the steady-state prob that the server is on
NCR.

Tyw*(A)r,bAS)

o) = - —2 S—
@* (1) = (b= (1 — " (D)ABI(SI L +71(g) + D]

+r1.S31 + (g + £3)] + cBD)]
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(iv) Let O, (1) represents steady-state prob that the server is delaying
repair on CR.

Tyw*(Dbir, S'g!

o,() =
@ N-Gb-D1-w (/1))/117[(5 [1+9’1(g1 +f1 i

+r15 [1+ yz(g2 + f2 )+ o))

(v) Let O, (1) represents steady-state prob that the server is delaying
repair on NCR.

Tow*(/l)rlyzljﬁgl 1
0,(1) =

@N-Gb-D1-w (ﬂ))lb[(S [1+J/1(g1 +f1 )l

+r1S [1+ y2(g2 + f2 )+ o))

(vi) Let D|(1) represents steady-state prob that the server is repair
on CR.

Tyw*(A)by, §' f !
Dl(l) =

@' (D)= (-1 -w (ﬂ))ib[(S [1 +71(g1 +fl )

+rlS [1+ yz(gz + f2 )+ )]

(vii)Let D,(1) represents steady-state prob that the server is delaying
repair on NCR.

Tow*u)rlyzz:a,151 £l
D,(1) = 2

(D) -Gb-)(1-w (l))ib[(S [1 + }'1(g1 + f, )]
+r1S 1+ 72(32 + f2 )+ b))
(viii)Let S(1)be the steady-state probability that the server is on
MBV.

Tyew*(Dry yzbml)

S() =
@)= (b- (1 -w (i))ﬂb[(S [1 + 71(g1 +f1 )]

+rlS [1+ yz(gz + f2 )+ 6]
L, ~ average number of customers in the system, is obtained by
differentiating Eq. (59) with respect to 7, and evaluating at 7, = 1

we get,

Ly =K,(1)and L, = H(1)

- Dr'Nr;’ - Dr”Nr;
Ly=Ty 2Dr)?

NP =[( —b)+(b— ho (/1)]+(b— (1 = @* ()1 + w*(A)
+ Ab(s 1+ (g1 +fl )]
+rlS [ +y2(g2 +f2)J +ei']

N = (b - 1)1 - w*(4)
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(2B [(c5 + S2[1 +71 (g1 + f1 hi?
+y]<[gl + f1 + 2g1 fl ])S1 + rl((sz[l + 72(82 + f2 NI

+y2[g§ + f§ + 2g2‘f2‘J))S21 +2 < u?(sllu +7 (g} + f})J
X +r15 [ +y2(g2 +f2)] +cu"’)> (

DR (]S} + mg? SALIESACENE

+cu(1)Sl[1 +y1(fl +g >]+cr1v<”S1[1 +rz<g2 +fz>]}

+M*(A)Ab(sl[1 +71 (gl + f1 o+ rlsl[l + 72(g2 + f2 NI

L:q1 — average number of customers in the orbit, is obtained by

differentiating Eq. (60) with respect to 7, and evaluating at 7, =
we get,

q1 —

- Dr'Nr -
0 2(Dr')?

Dr”Nr;):l
= (1 =b)+bw' () + (b= Dl - (A1 + B +7i(et + )

1 +y2(g2 +f2)] +ci)]

=(b- (1 - w*(A)
(2B [(c5 + 52[1 FnE + f1 2+ m[g1 + fl +28 /1S

+ry (S2[1 + }’2(g2 + f2 P+ 12l + 2 +2g F1DSH]

o« 12 < S+ @GO + A0+ ST+ 7@ + 750

+ei) + (gb)z{rlS S [+ (gl + f I+ yz(gZ + f2 !

+eB DS+ 7,8 + FD + e, 8VSI T+ el + 7O )

DY =@ () = BI(S L+ 1 (g! + F1+ 7 SM1+ 7a(e) + FD1+ 6D

(4b)? <c5<2> + S+ (8! + fOP +1lg + 7+ 28! /] 1S',1>

{Sz[l + 72(g2 + f2 DI? + }’2[82 + f2 + 2g2f2]S }

" o_
Dr = +2{(1 - M*(A))[(Ab)S [1 + yl(gl +fl )] +r1/1bS1[1 +y2(g2
+f N+ sV + rlzb S s (147G + f1 L +7a(g! + £

+CU(1)(ﬂb)2([1 + yl(g] +f N+l +y2(g2 +f2)])}

Applying Little’s formula we get

5. Special cases

Here we consider all the three special cases without balking.
Case(i): No NCR, and r; =0

I(?d(hn) =Ty {

Where

U7 (Ag(hy)(hy=1)
h,,—[m*(/1)+h,,(1—m*(A))JU]*(/fa(h,,))[(l—c)+c3*h] 1)1

oW - ASI + (el + 1) + i)
0= @*(2)
Case(ii): Letc =1, y; =y, =0 and w*(1) — 1

: U (hy1 (hy)(hy = DI+ U5 (hyy ()]
— 1 2
Kd(h")_TO{ By =UF (hy ()7 +r1 U} (hy (B ) B (hyy ()] }

Journal of King Saud University - Science 36 (2024) 103007

0.87 T T T T T T

0.86

0.85 | .- 1

0.83¢ /

—o—v=12

0.82 | yd 1

0.81

0.48

0.46

—e— =03
—o—b=0.6
—&— b=0.9

e 042 b

04r // 1

0.38¢/ 1

0.36

Fig. 2. T, versus x and b.

Where
_ 1, ool =D
To=1-AS; +S,+0)

Case(iii): No vacation, no NCR, and y; =y, =0
The below obtained expression concedes with Gomez-Corral (1999)

: Uy (i () (hy=1)
— 1
Kd(h")_TO{ hy=UF (hy () @* (D+h, (1—@* ()] }
Where
@*(4) - AS]
Th= —~ 1
0 @*(4)

6. Numerical interpretations

The goal of this section is to analyze the influence of several vari-
ables on various system performance measures. The arbitrary values
that are considered for the parameters are selected in such a way that
they may meet the criterion that the system is stable. This condition
is fulfilled when the parameters have consistent values. The retrial,
service, MBV, and repair time are all considered as exponential dis-
tribution, f(#;) = ©e=®",n; > 0. This confirms that these times are
realistic and consistent.

Fig. 1 and Fig. 2 shows that as retry rate () escalates, the T; also
escalate. In Fig. 3 if retry and vacation escalates, L_[Ll decreases. In Fig. 4
also if retry and service (compulsory) escalates, L_ql decreases.
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Fig. 3. L=q] versus x and v.

Fig. 4. L=q1 versus « and 7,.

7. Conclusion

In this work, we have presented a single server retrial queueing
system with balking under MBV (Modified Bernoulli vacation policy),
where the busy server is prone to both failure and repair. Using
the supplementary variable method (SVM), the probability generat-
ing functions for the number of users in the system when it is idle,
occupied, MBV, and repair are presented. Various significant system
performance metrics such as expected number of customers in an
orbit and the system and server utilization have also been analyzed.
Numerical illustrations are presented to demonstrate the analytical
findings of the model. Future research of this paper could focus on
expanding this queueing model to include modified working vacation

Journal of King Saud University - Science 36 (2024) 103007

policies, randomized policies, setup time and cost estimation. CCM
(Cloud Computing Model), PSN (Packet Switched Network) for the
transfer of packets in a network, and WSN (Wireless Sensor Network)
for choosing and maintaining routes are some of the practical and
real-world applications of this model.
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