
This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, transform, 
and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

© 2025 Journal of King Saud University – Science - Published by Scientific Scholar

FulL Length Article

Approximation by Stancu variant of 𝜆𝜆𝜆𝜆-Bernstein shifted knots operators
associated by Bézier basis function
Ahmed Alamer, Md. Nasiruzzaman ∗

Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 7149, Saudi Arabia

A R T I C L E I N F O

MSC:
41A25
41A36
33C45

Keywords:
Bernstein basis polynomial
Bézier basis function
𝜆𝜆𝜆𝜆-Bernstein-polynomial
Shifted knots
Stancu operators
Ditzian–Totik uniform modulus of smoothness
Lipschitz maximal functions
Peetre’s K -functional

A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏̃𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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A B S T R A C T

This study estimated the genetic parameters of calving ease (CE) in Korean Holstein using linear animal-maternal 
(AMAT) and linear sire-maternal grandsire (SMGS) models. Calves born from the first three parities of cows 
(P1, P2, P3) between 2000 and 2024 were analyzed in two parity-level data subsets. The first subset comprised 
133,998 (P1), 185,988 (P2), and 122,297 (P3) records. The second subset had at least seven records per herd-year 
subclass, with 104,469, 104,095, and 46,280 records for P1, P2, and P3, respectively. CE was defined as a calf 
trait, and the scores ranged between 1 and 4. Higher scores indicated greater difficulty at birth. Parity-level (co) 
variances were obtained for each dataset using the BLUPF90+ software package. Heritability (h2) values for direct 
effects ranged between 0.002 and 0.008. Maternal h2 values from the AMAT and SMGS models were between 
0.002 and 0.353 and between 0.004 and 0.008, respectively. Genetic correlations between direct and maternal 
effects varied widely in the AMAT model but were relatively narrow in the SMGS model. The correlation of 
estimated breeding value (EBV) of sire between datasets and sire EBV reliabilities was more stable for SMGS than 
AMAT. We conclude that the AMAT model would be suitable for routine evaluations due to extensive population 
coverage, whereas SMGS would be better for robust genetic parameter estimations. To leverage the strengths of 
both models, we suggest using the genetic (co)variance components estimated from the SMGS model within the 
framework of the AMAT model for the national evaluation of CE in Korean Holstein cattle.

1. Introduction

The calving ease (CE) trait of Korean Holstein cattle has gained 
interest in recent years due to its adverse effects on farm profits. 
Numerous reports on dairy cattle point to the adverse effects of CE  
(Dematawewa & Berger, 1997; Carnier et al., 2000; Mee, 2004), ranging 
from high production costs to the loss of animals and many other long-
term animal health and fertility problem concerns. Aside from the stress 
experienced by the calf and dam during a difficult birth, the dam’s 
subsequent fertility and production performance can be substantially 
impacted (Buckley et al., 2003). The CE trait is generally considered 
a combined interaction between direct and maternal genetic effects 
(Philipsson, 1976; Meijering, 1984). The direct  component is expressed 
as the genetic ability of a calf to be born easily and is primarily influenced 
by its body size. The maternal component indicates how easily a female 
calf can give birth when she becomes a dam and is mainly influenced 
by the pelvic size of the mature cow. Due to the biological aspects of 
these two  components and their antagonistic relationships (Thompson 
et al., 1981; Meijering, 1986), each of the genetic effects demands 
consideration in CE improvement programs. Earlier reports on their 
relationships suggest that even though female calves are likely to be 
born easily due to their small size, they are also likely to encounter 
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undesired CE as dams because of their reduced pelvic sizes, which is a 
negative impact of the small body size at birth.

Despite the appeal of improving CE and evidence of genetic 
variances (Varona et al., 1999; Carnier et al., 2000), genetic evaluations 
become challenging due to the choice of statistical evaluation models 
for this categorical trait. Earlier reports on CE applied different 
approaches to choosing evaluation models. Many earlier studies 
applied linear models (Eriksson et al., 2004; Jamrozik et al., 2005) 
and threshold models (Varona et al., 1999; Ramirez-Valverde et al., 
2001). Threshold models are often considered more suitable for CE due 
to their categorical nature (Gianola, 1982). In contrast, linear models 
are easy to implement, although they violate some critical statistical 
assumptions for a quantitative trait. Some linear model-based studies 
performed logistic transformations of their observations through Snell 
scoring (Snell, 1964; Tong et al., 1977; Mujibi & Crews, 2009) before 
analysis to improve the underlying distribution of the data. However, 
arguments supporting the linear model fit have some practical 
scenarios, such as, in a population with relatively small contemporary  
or sire group sizes, where such a model could perform better (Phocas & 
Laloe, 2003). Our initial observation of the Korean Holstein population 
also suggests that the data fit the latter scenario more closely. However, 
developing a statistical model of CE, especially with a target for 
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national-level implementation, may require more effort and will differ 
from that of other cattle populations. Eaglen et al. (2012) emphasized 
that a statistical model for a maternally affected trait such as CE should 
reflect a meticulous balance between the model's predictive ability and 
computational feasibility. On the other hand, CE in dairy cattle is often 
evaluated as a calf trait rather than a dam trait, offering significant 
advantages for genetic evaluation. This approach allows both male 
and female calves from the current generation to contribute through 
traits such as birth weight and  body size. Additionally, it facilitates 
direct estimation of the service sire's genetic influence on CE, which is 
crucial for selecting dairy bulls. In contrast, assessing CE as a dam trait 
restricts evaluations to female animals, focusing primarily on maternal 
characteristics like pelvic size.

CE is one of the least investigated traits in the Korean Holstein 
population, and only a few reports have been published on its genetic 
merit (Lee, 2002; Alam et al., 2017). Also, a comparative analysis of 
linear animal-maternal (AMAT) and linear sire-maternal grandsire 
(SMGS) models for CE evaluation has not been performed on Korean 
Holsteins. Therefore, this study aimed to investigate CE genetic 
parameters through multiple genetic evaluation models and assess their 
performance in the Korean Holstein population.

2. Materials and methods

2.1 Animals, calving ease phenotype, and pedigree data

This study was performed on field-based CE records from parity 1 to 
parity 3 calf birth events of Korean Holstein heifers and cows between 
December 2000 and February 2024. CE was treated as a progeny (calf) 
trait. CE scores ranged between 1 and 4 according to the increased 
level of assistance rendered to a dam during the  birth event. A CE of 
1 indicated a non-assisted calving event, a CE of 2 indicated a slightly 
assisted calving event (by one person); a CE of 3 indicated a moderately 
assisted calving event (by two or more persons), and a CE of 4 indicated 
a difficult calving event requiring veterinary assistance.

Before data screening, all calves with missing identification numbers 
but valid parental information were assigned pseudo-identification 
numbers for inclusion in the analysis. Then, we applied several data 
filters to the raw datasets to obtain the final datasets. This screening 
process removed calves without valid parental information. Information 
on multiple births (twins and triplets) was also discarded. Farms that 
provided only normal CE scores were removed from the dataset to avoid 

recording bias. The gestational length related to a calf was restrained 
to between 260 and 310 days. We also excluded calves' records from 
parity 2 and parity 3 progeny datasets if their dam's calving interval in 
that parity was longer than 1100 days. Dam's age at calving was also 
constrained to within 20–42 months, 30–54 months, and 42–66 months 
for the parity 1, 2, and 3 datasets, respectively. After editing, our first 
calf dataset in each parity category was obtained and called the whole 
dataset (DATAT). A total of 133,998 (parity 1, P1), 185,988 (parity 2, 
P2), and 122,297 (parity 3, P3) calf records remained in all parity-
level DATAT subsets for final analysis. For model validation, a second 
dataset was extracted from each DATAT by applying a minimum of 
seven calf record restrictions per birth herd-year subclass, also referred 
to as DATA7 in the following sections. The number of records remaining 
across the three DATA7 datasets were 104,469 (P1), 104,095 (P2), 
and 46,280 (P3). Each dataset for analysis consisted of information 
on the sex of the calf (SEX), birth herd, birth year, birth season, and 
its dam's calving age information. Four birth seasons (i.e., summer, 
June to August; autumn, September to November; winter, December 
to February; and spring, March to May) were considered. Detailed 
information on the final datasets is shown in Table 1.

For genetic analysis, unique and appropriate pedigrees were 
constructed for each of the six datasets and utilized in the evaluation 
model accordingly.They represented calves from three parities, 
with two datasets per parity (Table 1). All pedigree datasets related 
to animals with phenotypes in DATAT and DATA7 were prepared 
by tracing ancestors as far as 25 generations back. The Dairy Cattle 
Improvement Center (DCIC), Republic of Korea, provided the raw 
phenotype dataset and oversees dairy cattle record management. 
The Korea Animal Improvement Association (KAIA) supplied the raw 
animal pedigree dataset and holds a major responsibility for livestock 
pedigree management in Korea.

2.2 Statistical analysis

2.2.1 Analysis using the linear animal-maternal model

We estimated the (co)variance components and genetic parameters 
for the CE trait using a linear univariate animal-maternal (AMAT) 
model and the DATAT and DATA7 data subsets from specific parity-born 
calves. The random calf (or direct) and dam (or maternal) components 
were assumed to be correlated. A maternal permanent environment 
effect was ignored as each calf  can have only one CE at birth. The 
effect of SEX was treated as a fixed variable in the model. The effect 

Table 1.  
Structure of calving ease datasets on calves in the first, second and third parity of Korean Holstein and their related pedigree.

Factor/term Level Parity 1 Parity 2 Parity 3

DATAT DATA7 DATAT DATA7 DATAT DATA7

Phenotype data
Total observation  - 133,998 104,469 185,988 104,095 122,297 46,280
Calf sex Male 66,335 51,406 98,131 54,773 65,073 24,706
  Female 67,663 53,063 87,857 49,322 57,224 21,574
Birth herd (H) - 1584 1244 2688 1745 2353 1186
Birth year (Y) - 2000-2024 2002-2023 2001-2024 2001-2023 2000-2023 2001-2023
Birth season (S) Spring 33,905 26,595 41,309 23,186 26,041 9782
  Summer 32,091 25,365 43,523 24,312 25,572 9660
  Autumn 32,922 26,070 52,566 29,922 36,694 14,465
  Winter 35,080 26,439 48,590 26,675 33,990 12,373
Number of sires - 1887 1710 2089 1926 2004 1714
Number of dams - 133,998 104,469 185,998 104,095 122,297 46,280
Number of birth herd-year (HY) - 18,295 8339 35,772 10,329 30,646 5026
Number of birth year-season (YS) - 93 75 94 92 95 92
Calving ease score 1 109,929 85,684 164,169 94,434 107,712 42,408
  2 23,520 18,382 20,745 9150 13,712 3652
  3 507 368 986 459 786 198
  4 42 35 88 52 87 22
Pedigree data
PEDAP - 352,799 287,951 467,210 297,406 325,542 151,715
PEDSP - 2745 2559 3082 2836 3023 2653

DATAT: Dataset with 1 or more calves per birth herd-year subclass; DATA7: Dataset with 7 or more calves per birth herd-year subclass; PEDAP: Animal pedigree used for a linear 
animal-maternal model analysis; PEDSP: Sire pedigree used for a linear sire-maternal grandsire model analysis. 
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of the dam's age at calving (DAGE; in days) was considered a fixed 
covariate effect. The DAGE term was used to control  the effect of 
different ages of dams on CE.  Effects of birth herd-year (HY) and 
birth year-season (YS) were also fitted as fixed effects. The BLUPF90+ 
software package (Misztal et al., 2014) was used to estimate variance 
components through the average-information REML algorithm, genetic 
parameters, and standard errors (SEs). The linear AMAT model in the 
matrix notation was as follows:

y Z Zd m� � � �Xb d m e

where y is the vector related to CE; b is the fixed effects vector, 
i.e., SEX, DAGE, HY, and YS for individual parity-born calves; d is the 
random direct (calf) effect vector indicating the additive genetic effect; 
m is the random maternal (dam) effect vector; and e is the random 
residual effect vector. X, Zd, and Zm were design matrices relating 
effects to the CE phenotype. A covariance structure for random effects 
was assumed as follows:

var
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where σa
2 is the direct genetic variance, σm

2  is the maternal genetic 
variance, � �σe

2  is the residual variance, and σam  is the covariance 
between the direct and maternal genetic effects. Therefore, the genetic 
covariance matrix (G0) between d and m was:

G0
2

2
�
�

�

�
�

�

�

�
�

� �

� �
d dm

md m

�

The total phenotypic variance (σ p
2) (Willham, 1972; Eaglen & Bijma, 
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and direct-maternal genetic correlations (rdm) were calculated using 
the above (co)variance components as follows:
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Approximated SE of the genetic parameters from the AMAT model 
were obtained from the (co)variance components using BLUPF90+ 
software, with a Monte Carlo method implemented for SE computation 
following Houle & Meyer (2015).

2.2.2 Analysis using the linear sire-maternal grandsire model

We also estimated (co)variances for the CE trait using a univariate 
SMGS model and the DATAT and DATA7 datasets for each of the three 
individual parity-born calves. The SMGS model included fixed effects 
similar to the AMAT model. The sire and maternal grandsire (MGS) of 
the calf were used as random genetic effects in the SMGS model. The 
BLUPF90+ software package was used to estimate the sire and MGS 
(co)variance components of CE using the following linear mixed model:

y Z Zs mgs� � � �Xb s mgs e

where y is the vector related to CE; b is the fixed effects vector, i.e., SEX, 
DAGE, HY, and YS for individual parity-born calves; s is the random sire 
effect vector; mgs is the random maternal grandsire effect vector; and e 

is the random residual effect vector. X, Zs, and Zmgs are design matrices 
relating effects to the CE phenotype.

Sire (σ s
2) and MGS (σmgs

2 ) variances and their covariance (σ s mgs, ) 

were converted to direct (σd
2) and maternal (σm

2 ) genetic variances and 

covariance (σdm ) estimates using the following relationship:
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After calculating the phenotypic variance as 
� � � � �p s s mgs mgs e
2 2 2 2� � � �,  using the SMGS model variance 

component estimates, all heritability, genetic correlation, and their SE 
estimates were obtained using the similar formula and steps described 
earlier for the AMAT model. The SEs of these parameters were also 
obtained using an approach similar to the AMAT model.

2.3 Model comparison

We evaluated the stability of the AMAT and SMGS models by 
determining the correlation of the EBV for common sires between 
DATAT and DATA7. We also compared the expected reliability (R2) 
of sire EBV to evaluate the predictive ability of the models. R2 was 
calculated from the prediction error variance (PEV) of EBV as R2 = 1 
–PEVσa

2, where PEV estimate was derived from the inverse of the mixed 
model equation (MME) coefficient matrix using the BLUPF90+ software 
package. The direct and maternal (co)variance components obtained 
through SMGS model analysis were further used to predict sire EBV 
using animal relationships from complete pedigree data applied to the 
AMAT model. This additional analysis was referred to as AMAT* for all 
three parity analyses. The R2 of sire EBVs from AMAT* (with DATAT 
and DATA7) for each parity was then compared with R2 values from the 
other two models.

3. Results

Table 2 presents the (co)variances and genetic parameter estimates 
for variances in the direct and maternal CE components for each 
parity analysis of the two datasets using the AMAT model. The direct 
heritability (hd

2) estimates were relatively low (< 1%) within and 
between the parity data sets (0.002 ± 0.002 to 0.006 ± 0.002). However, 
the maternal heritability (hm

2 ) estimates varied broadly across the 
parity levels, where hm

2  from P2 and P3 were relatively higher (0.197 ± 
0.015 to 0.354 ± 0.024). Within each parity, dataset differences showed 
some variability in hm

2 , especially for calves from higher parities. Also, 
compared to direct heritability, maternal heritability appeared larger 
in P2 and P3 calves. Genetic correlation estimates between direct and 
maternal effects ( rdm ) in the AMAT model were highly variable and 
demonstrated noticeable inconsistencies. For P1 calves, the correlation 
estimates varied from a moderately negative (DATA7: -0.39 ± 0.57) 
to a positive correlation range (DATAT: 0.20 ± 1.79). For P3 calves, 
rdm  estimates varied largely in the two dataset analyses (DATAT: -0.85 
± 0.85, DATA7: -0.03 ± 0.65). However, P2 calf associations were 
moderately negative and similar, ranging between -0.34 and -0.46.

Table 3 presents the genetic parameter estimates of the SMGS 
model using the two different datasets. Like the AMAT model, direct 

heritability (hd
2)  estimates from the SMGS model were generally low 

for all datasets across the parity levels (0.004 to 0.008). Maternal 
heritability (hm

2 ) estimates using this model also appeared very similar 

to the hd
2  values, which were different from those in the AMAT model. 

The hm
2  values estimated by the SMGS model from DATAT and DATA7 

were as small as the direct heritability estimates, and their differences 
were negligible across animals from all parity levels. The rdm  estimates 
were moderately antagonistic, ranging between -0.36 ± 0.00 and -0.60 
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Table 2.  
Estimates of variance components, genetic parameters (with SE) using the linear animal-maternal model.

Dataset  Parity σ
d
2 σdm σm

2 σe
2 σp

2 h
d
2  (SE) hm

2  (SE) rdm  (SE)

DATAT  1 0.0003 0.0000 0.0001 0.0694 0.0699 0.004 (0.002) 0.002 (0.002) 0.20 (1.79)
 2 0.0004 -0.0011 0.0146 0.0561 0.0700 0.006 (0.002) 0.209 (0.012) -0.46 (0.30)
 3 0.0002 -0.0016 0.0220 0.0544 0.0750 0.002 (0.002) 0.293 (0.016) -0.85 (0.85)

DATA7  1 0.0004 -0.0001 0.0003 0.0661 0.0667 0.006 (0.003) 0.004 (0.002) -0.39 (0.57)
 2 0.0002 -0.0006 0.0124 0.0510 0.0631 0.004 (0.002) 0.197 (0.015) -0.34 (0.42)
 3 0.0002 -0.0001 0.0216 0.0391 0.0608 0.004 (0.004) 0.354 (0.024) -0.03 (0.65)

DATAT: Dataset with 1 or more number of calves per herd-year class; DATA7: Dataset with 7 or more calves per birth herd-year subclass; σd
2 : Direct genetic variance; 

σm
2 : Maternal genetic variance; σe

2: Residual variance; σ p
2 : Phenotypic variance; σdm : Variance between direct and maternal genetic variance; h

d
2 : Direct heritability;  

hm
2 : Maternal heritability; rdm : Genetic correlation between direct and maternal effects; SE: Standard error. Estimates of 0.0000 indicates values ≤0.00001.

Table 3.  
Estimates of variance components, genetic parameters (with SE), using the linear sire-maternal grandsire model.

Dataset  Parity σ
d
2 σdm σm

2 σe
2 σp

2 h
d
2  (SE) hm

2  (SE) rdm  (SE)

DATAT Parity 1 0.0005 -0.0002 0.0004 0.06924 0.0699 0.006 (0.000) 0.006 (0.000) -0.36 (0.00)
Parity 2 0.0005 -0.0002 0.0004 0.06648 0.0671 0.008 (0.000) 0.005 (0.000) -0.50 (0.00)
Parity 3 0.0003 -0.0002 0.0003 0.07041 0.0708 0.004 (0.000) 0.004 (0.000) -0.60 (0.00)

DATA7 Parity 1 0.0005 -0.0003 0.0005 0.06596 0.0667 0.008 (0.000) 0.007 (0.000) -0.52 (0.00)
Parity 2 0.0004 -0.0002 0.0004 0.05988 0.0605 0.007 (0.000) 0.007 (0.000) -0.53 (0.00)
Parity 3 0.0004 -0.0002 0.0005 0.05562 0.0563 0.006 (0.000) 0.008 (0.000) -0.40 (0.00)

DATAT: Dataset with 1 or more number of calves per herd-year class; DATA7: Dataset with 7 or more calves per birth herd-year subclass; σd
2 : Direct genetic variance; σm

2 : Maternal 

genetic variance; σe
2 : Residual variance; σ p

2 : Phenotypic variance; σdm : Variance between direct and maternal genetic variance; h
d
2 : Direct heritability; hm

2 : Maternal 

heritability; rdm : Genetic correlation between direct and maternal effects; SE: Standard error.

± 0.00 across the parities and datasets. These correlation estimates were 
relatively more consistent across datasets than those from AMAT model 
evaluations.

Table 4 provides Pearson's and Spearman rank correlations for 
common sires' EBVs between DATAT and DATA7 from AMAT and SMGS 
analyses. The correlation of sires' direct EBV varied widely between 0.13 
and 0.91 in the three parity records, whereas their range was medium 
to high (0.59 to 0.86) for the maternal EBV. Overall, the strength of 
the correlation between sire EBVs and the sire ranking in the datasets 
decreased gradually in higher-parity animals. The consistency of the 
direct and maternal EBVs calculated from DATAT and DATA7 was also 
higher in the SMGS model than in the AMAT model. The sire direct EBV 
and sire rank were noticeably different using two datasets, as reflected 
by their low-rank correlation (15%).

Table 5 gives the sire reliability of EBV (R2) for direct and maternal 
effects based on DATAT and DATA7 using AMAT, SMGS, and AMAT*. 
The AMAT* model integrates direct and maternal variance components 
from the SMGS model. It uses the parameters estimated by the SMGS 
model as the final variance approximations for EBV estimation in the 
AMAT model. The sire reliabilities for the three parity animals varied 
considerably in the AMAT model analyses using DATAT (direct: 0.29–
0.60, maternal: 0.17–0.86) and DATA7 (direct: 0.14–0.28; maternal: 
0.21–0.88). These estimates were more consistent for both DATAT 

(direct: 0.11–0.30, maternal: 0.14–0.30) and DATA7 (direct: 0.21–0.33, 
maternal: 0.23–0.24) in the SMGS model. The R2 estimate from AMAT* 
demonstrated similarities to R2 values from the SMGS model. In P3, 
sire's direct reliability in AMAT analysis also varied noticeably over 
different data sizes (0.14 to 0.60) compared to SMGS (0.15 to 0.21) 
and AMAT* (0.14 to 0.19) analyses. Overall, AMAT model-based sire 
reliabilities showed higher variability between the two datasets than 
SMGS model-based estimates.

4. Discussion

The knowledge of various sources of genetic effects, such as direct 
and maternal effects and their relationship, is the key to improving 
CE in any dairy cattle. This study demonstrated that heritability (h2) 
estimates ranged from very small to low across parities. A previous 
study using a SMGS model in Korean Holstein and first parity animals 
(Alam et al., 2017) revealed direct h2 (0.11) and maternal h2 (0.05) 

Table 4.  
Pearson's correlation (with rank correlation) of common sires' genetic effects 
(direct and maternal EBV) between DATAT and DATA7 according to AMAT 
and SMGS model from parity 1 to 3.

Model Effect Parity 1 Parity 2 Parity 3 

AMAT Direct EBV 0.87 (0.83) 0.85 (0.82) 0.13 (0.15)
Maternal EBV 0.76 (0.74) 0.75 (0.71) 0.59 (0.51)

SMGS Direct EBV 0.91 (0.87) 0.82 (0.81) 0.66 (0.64)
Maternal EBV 0.88 (0.83) 0.80 (0.75) 0.68 (0.65)

DATAT: Dataset with no restriction on number of calves per herd-year class, DATA7: 
Dataset with at least 7 calves per herd-year class, AMAT: The linear animal-maternal 
model analysis, SMGS: The linear sire-maternal grandsire model analysis; EBV: 
Estimated breeding value.

Table 5.  
Reliability estimates sires with 100 or more daughters for direct and maternal 
effects using DATAT and DATA7 from different models.

Dataset Parity R2-AMAT R2-SMGS R2-AMAT*

Direct EBV Maternal 
EBV

Direct 
EBV

Maternal 
EBV

Direct 
EBV

Maternal 
EBV

DATAT P1 0.29 0.17 0.30 0.27 0.28 0.27
P2 0.35 0.86 0.30 0.27 0.30 0.25
P3 0.60 0.85 0.15 0.11 0.14 0.16

DATA7 P1 0.28 0.21 0.33 0.24 0.30 0.29
P2 0.30 0.27 0.29 0.23 0.26 0.27
P3 0.14 0.88 0.21 0.23 0.19 0.25

DATAT: Dataset with 1 or more number of calves per herd-year class, DATA7: Dataset 
with 7 or more calves per birth herd-year subclass, R2-AMAT: EBV reliability using 
variance components from the animal-maternal model, R2-SMGS: EBV reliability 
using variance components from the sire-maternal grandsire model, R2-AMAT*: EBV 
reliability using direct and maternal variance components from sire-maternal grandsire 
model in an AMAT model. AMAT: The linear animal-maternal model, SMGS: The 
linear sire-maternal grandsire model, EBV: Estimated breeding value.
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estimates that were larger than any model estimates in this study. Such 
a difference could be attributed to the different models and datasets 
between the previous report and the present study. A study by Salimi 
et al. (2017) in Iranian Holstein cattle reported small direct h2 (0.02) 
and maternal h2 (0.002) estimates, which also provides support for the 
low h2 values in this study. Another animal model study on Iranian 
Holsteins (Ghiasi et al., 2014) also suggested similar lower h2 estimates 
(direct: 0.041, maternal: 0.012). Similar low heritability estimates for 
direct (0.03) and maternal CE (0.02), like in our estimation range, were 
reported by Eaglen et al. (2012). The estimates reported by Eaglen 
and Bijma (2009) in Dutch Holstein-Friesian partially agree with 
ours (direct h2: ∼0.08 and maternal h2: ∼0.04). Our estimates were 
also slightly lower than reports on beef breeds using the linear model 
(Phocas & Laloe, 2003; Mujibi & Crews, 2009). Differences among 
reports are mainly due to differences in fitted factors, model types, 
trait definitions, and breeds. Some studies (Luo et al., 1999; Jamrozik 
et al., 2005) showed that linear models yielded lower estimates than 
threshold models. Salimi et al. (2017) argued that an underestimation 
of their population’s direct and maternal components could be caused 
by the large phenotypic variances (or residual variances) compared 
to genetic variances due to recording methods and herd management 
practices. The previous study in Korean Holstein using the SMGS model 
by Alam et al. (2017) fitted HYS as a random effect compared to the 
fixed effect of HY and YS in this study.

The genetic correlation estimates between direct and maternal 
effects varied across parities and models. Although these correlation 
estimates were mainly negative, the AMAT model estimate for P1 
appeared positive with a high standard error, indicating the possibility 
of estimation error. In P3 calves, the inconsistency in correlation 
estimates regarding dataset differences was apparent. However, the 
SMGS model exhibited greater consistency across datasets and parities. 
Overall, moderately antagonistic  relationships (-0.36 to -0.60) between 
genetic effects were identified using the SMGS model. Previous reports 
provided good overall support for our observed negative correlation 
estimates. Like this study, Alam et al. (2017) also studied first parity 
Korean Holstein calves and reported an rdm  estimate of -0.68 for 
service-sire CE, further supporting the findings in the present study. 
Comparable estimates (-0.41 to -0.43) were also reported by Salimi 
et al. (2017) and Ghiasi et al. (2014) in Iranian Holstein. Similarly, 
the animal model correlation estimates (-0.04 to -0.44) by Eaglen and 
Bijma (2009) coincided with the data in our study. More dairy cattle 
reports using SMGS models (Luo et al., 1999; Wiggans et al., 2003; 
Hickey et al., 2007) on rdm  also suggested a range of -0.08 to -0.47, 
consistent with the present report. While a study in Charolais cattle 
(Mujibi & Crews, 2009) extended support by a correlation estimate of 
-0.27, some disagreements in Holstein cattle reported a near absence of 
correlation (i.e., weakly negative to weakly positive) (Steinbock et al., 
2003; Hansen et al., 2004). The variations across reports could be due 
to differences in breeds or populations, such as beef cattle, in which 
correlation estimates are often strongly negative (Robinson, 1996). A 
possible estimation bias is also likely for the genetic covariance between 
direct and maternal effects (Koch, 1972; Willham, 1980; Meyer, 1992). 
The present report found noticeable differences between AMAT and 
SMGS models for genetic parameter estimates. The inconsistency in 
AMAT model estimates could indicate problems in the present data 
structure, where dams and their daughters are somewhat confounded 
to herds. This is because dams and their female progenies rarely change 
herds in the Korean dairy production system. Using an SMGS model 
with such datasets could help to efficiently separate herd effects from 
genetic components and, therefore, reduce estimation bias originating 
from the confounding data structure.

The stability of sire EBV using AMAT and SMGS models was 
assessed by correlations between EBV obtained from parity-level DATAT 
and DATA7 datasets. We found an overall higher stability of sire EBV 
using the SMGS model than the AMAT model. The AMAT model also 
performed poorly with P3 animals. Our results disagreed with the CE 
study findings of Ramirez-Valverde et al. (2001) in beef cattle, which 
showed higher stability with a linear animal model than a linear SMGS 
model. Sun et al. (2009) also compared animal models with various 
sire models in Danish Holstein and reported a relative superiority of 
their animal models over sire models for fertility traits.  However, such 

differences in genetic models could be related to differences in traits 
for evaluation, data structure, and breeds of interest across studies. Our 
study showed that the present animal model analyses suffered from 
variance component estimations and varied across data subsets and 
parities.

We also compared the expected reliability of sire EBV between 
direct and maternal effects. Our comparison of EBV reliability for sires 
suggested that the SMGS model could provide direct EBV as reliably as 
the AMAT model. Even though the reliability of maternal EBV using the 
SMGS model was relatively smaller than that of the AMAT model for 
the full dataset (DATAT), there was greater consistency across parity-
level datasets in the SMGS model. More support for SMGS-based EBV 
reliability was found from a similar AMAT* model. In contrast, Sun et 
al. (2009) showed that their animal model provided higher reliability 
for fertility traits than sire models.

Generally, an animal model is expected to provide higher EBV 
accuracy (or reliability) as it allows all relatives to contribute to evaluating 
an animal. In contrast, sire models use less information on relatives. 
The confounded data structure in this study could limit an accurate 
estimation of animal EBV in the Korean Holstein population using an 
AMAT model. However, due to the advantages of animal models, AMAT 
could be a model choice for national routine evaluations as it would 
allow for the inclusion of contributions from all relatives related to the 
animal. An SMGS model, based on the stability of predictions in this 
study, could be appealing for genetic parameter estimations in Korean 
Holstein. Although, in theory, a simple sire model is considered inferior 
to an animal model due to its lack of consideration for all relatives 
and its estimation bias for EBV (Schaeffer, 1983; Sun et al., 2009) this 
model can significantly reduce computational demands. An SMGS 
model, which adequately incorporates genetic relationships among 
males and females, could reduce the bias associated with a simple sire 
model (Everett et al., 1979; Schaeffer, 1983). This study showed that 
AMAT model-based parameter estimates were less stable, which could 
be associated with the existing dataset limitations described earlier. 
However, the SMGS model could minimize some bias related to data 
structures, as suggested by the greater stability of its estimates.

The present study identified multiple challenges regarding 
estimating variance components and genetic parameters of CE by 
AMAT and SMGS models. While the SMGS model had superior overall 
performance, its limited scope regarding animal inclusion (i.e., dam 
and progeny) for genetic evaluation poses a significant challenge for 
large-scale national evaluations. Conversely, despite its slightly inferior 
genetic parameter estimates, the AMAT model offers a comprehensive 
inclusion of animals, which is crucial for a robust national evaluation. 
To leverage the strengths of both models in CE evaluation, we suggest 
using the genetic (co)variance components estimated from the SMGS 
model within the framework of the AMAT model. This approach would 
allow us to derive animal EBVs that benefit from the SMGS model's 
robust genetic parameter estimates while maintaining the population 
coverage of the AMAT model. This combined approach could offer a 
more accurate and comprehensive tool for the Korean national breeding 
program, effectively balancing the accuracy of EBV and practical 
applicability.

On the other hand, the SMGS model evaluation can still be valuable 
for the improvement of CE in Korean Holsteins. EBVs based on the 
SMGS model can assist in selecting service sires to improve calving ease 
in heifers, particularly in commercial herds. The SMGS model EBVs 
can assist breeding programs by focusing on superior maternal lines by 
identifying sires that can produce easy-calving calves and contribute to 
a future generation of dams with the desired CE. SMGS-EBVs can also 
be helpful for the cross-validation of AMAT-EBVs to improve the overall 
accuracy of EBVs by detecting any discrepancies between animal EBVs 
from both models. A greater alignment of AMAT-EBVs with those 
from the SMGS model can suggest the robustness of predictions of 
the national evaluation. Also, an effective comparison of AMAT and 
SMGS EBVs can allow breeders to identify the over-representation of 
sires' genetics in the population (i.e., similar sires appear at the top of 
ranking from both models) and help decide to reduce the overuse of a 
small sire group through selection of a wider range of sires with better 
performances.
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5. Conclusion

In this study, we compared the genetic parameters of the direct 
and maternal genetic components of CE in P1–P3 Holstein calves 
using AMAT and SMGS models. Two datasets were used to compare 
the genetic parameter estimates: one included all calves, and the other 
included only herd-years with a minimum of seven calves within each 
parity. Variance components and genetic parameters showed notable 
influences of model and dataset differences. The direct heritability 
estimates were mainly very low across parities and datasets. The 
maternal heritability values varied from low to moderate across parity 
levels and datasets in the AMAT model, whereas low and consistent 
values were found in SMGS analyses. The genetic correlation between 
direct and maternal genetic effects varied largely (-0.85 to 0.20) 
across parities in the AMAT model using the complete dataset. Genetic 
correlation estimates were primarily moderate and negative using the 
SMGS model. The EBV of sires and their ranking were more stable in 
the SMGS model than in the AMAT model. P3 sire EBVs were the least 
stable in this study.  The expected reliability of sires (with more than 
100 calves) was more inconsistent in the AMAT model than in the 
SMGS model. Overall, SMGS model estimates were more consistent in 
terms of genetic parameters, reliability of sire EBV, and ranking of sires. 
We suggest that due to the relative advantage of AMAT, this model 
can be implemented for national routine evaluations of CE in Korea. In 
contrast, the SMGS model could be suitable for evaluating CE genetic 
parameters. This comparative study of linear AMAT and SMGS models 
was a first in the Korean Holstein population. Our findings are expected 
to assist future CE evaluation of Korean Holsteins.
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