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Genome-wide Association Studies (GWAS) are conducted to identify single nucleotide polymorphisms
(variants) associated with a phenotype within a specific population. These variants associated with dis-
eases have a complex molecular aetiology with which they cause the disease phenotype. The genotyping
data generated from subjects of study is of high dimensionality, which is a challenge. The problem is that
the dataset has a large number of features and a relatively smaller sample size. However, statistical test-
ing is the standard approach being applied to identify these variants that influence the phenotype of
interest. The wide applications and abilities of Machine Learning (ML) algorithms promise to understand
the effects of these variants better. The aim of this work is to discuss the applications and future trends of
ML algorithms in GWAS towards understanding the effects of population genetic variant. It was discov-
ered that algorithms such as classification, regression, ensemble, and neural networks have been applied
to GWAS for which this work has further discussed comprehensively including their application areas.
The ML algorithms have been applied to the identification of significant single nucleotide polymorphisms
(SNP), disease risk assessment & prediction, detection of epistatic non-linear interaction, and integrated
with other omics sets. This comprehensive review has highlighted these areas of application and sheds
light on the promise of innovating machine learning algorithms into the computational and statistical
pipeline of genome-wide association studies. This will be beneficial for better understanding of how vari-
ants are affected by disease biology and how the same variants can influence risk by developing a partic-
ular phenotype for favourable natural selection.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Conversion of some GWAS to ML terminology.

Machine Learning GWAS

(Condition) attribute/feature Genotype
(Condition) attribute/feature Covariate
Decision attribute Phenotype
Instance Individual from the population

described by its condition and
decision attributes

Training Set (including test/validation) Population sample
1. Introduction

Machine learning (ML) has been known to have to be useful for
the analysis of whole genome data sets (including whole exome
sequencing datasets), sequence annotation, epigenetic, proteomic
and metabolomic data. As previously stated, they may also be
referred to as statistical learning methods. As in genome-wide
association studies (GWAS), we attempt to predict a phenotype
from a genotype, such as the same in prediction problems of statis-
tical learning. The primary purpose of machine learning algorithms
is to define a function f ðxÞwhich predicts an unknown phenotype y
based on a genotype observation x based on sample data (Mieth
et al., 2016). A major reason for the adoption of machine learning
algorithms is that they are well suited for developing predictive
models when the number of features is larger than the number
of samples. This is an important consideration when the GWAS
SNP array datasets are generated for regular statistical testing in
GWAS which detects only a few variants that can pass the stringent
genome-wide significant level (e.g. p <10�8). In contrast, ML algo-
rithms are focused on maximizing the prediction accuracy at the
level of individual subjects (Okser et al., 2013). ML approaches
are a worthy alternative in that they can perform significant attri-
bute selection. They can also identify complex interactions
between attributes, such as random forests, gradient boosting,
and neural networks. A standard characteristic of GWAS results
is that the number of attributes (p) greatly outnumber the number
of sample points (n). This is usually described as the curse of
dimensionality or the large p and small n problem. Ideally, it is a
problem for classical multivariate regression. Another significant
distinction between conventional factual strategies and ML tech-
niques is that ML techniques don’t expect assumptions to be made
about the hereditary components of an attribute being referred to.
Attributes, for example, additivity of effects, the number and size
of interactions and scope of interactions (Grinberg et al., 2020).
Compared to univariate analysis of GWAS, ML models have pro-
vided a better means of learning multi-locus genetic variants as
well as their interactions that predict complex traits (Okser et al.,
2014). Furthermore, even though common regression methods
have been used to characterize gene-gene interaction, they are
very useful in searching for SNP combinations in high dimensional
GWAS datasets (Szymczak et al., 2009). Machine Learning methods
have been able to detect nearly all the previously identified vari-
ants by GWAS. This includes the best predictors and additional pre-
dictors with lower effects (Romagnoni et al., 2019). ML approaches
that can obtain predictive models via training from prior genetic
data have been recently applied to find significant SNPs for GWAS
2

(Behravan et al., 2018; Mieth et al., 2016; Okser et al., 2014;
Szymczak et al., 2009). In GWAS, genotypes of up to 1,000,000 SNPs
are resolved in a few thousand subjects, prompting the little n,
huge p issue (a lot more factors (SNPs) than tests). Secondly, when
an enormous number of SNPs are genotyped on a genome-wide
scale, linkage disequilibrium between SNPs should be considered.
Therefore, standard multi-variable measurable methodologies like
multiple linear regression or logistic regression are not appropriate
for genome-wide data (Szymczak et al., 2009). Machine learning
models have been shown to be able to capture the multi-locus
SNPs interaction better than the regular univariate association
studies. This has caused an increase in interest in this direction.
Standard statistical genetics approaches have begun to be supple-
mented with, or even supplanted by, ML algorithms since they reg-
ularly make negligible suppositions about the fundamental disease
mechanism, which is commonly obscure (Wang et al., 2013). ML
algorithms apply multivariate, non-parametric approaches which
identify patterns from data that is not normally distributed that
are also strongly correlated (Ho et al., 2019). Okser et al. (2014)
contended clinical utilizations of ML models in genetic disease risk
prediction rely greatly on two elements, effective model regular-
ization and thorough model validation. Maciukiewicz et al.
(2018) studied major depressive disorder. Wherein they evaluated
the possibility of using GWAS data for prediction of duloxetine out-
comes with ML models. SVM and Classification trees models were
used to predict response and remission while statistical learning
approach, LASSO regression was used for feature selection in this
experiment. It is imperative to review the machine learning
approaches that have been applied in GWAS. The intended contri-
bution of this work is to systematically map the specific applica-
tion areas where machine learning algorithms have been applied
in genome-wide association studies. This work further investigates
the challenges and future trends of ML in GWAS in studing popu-
lation variants and development of characteristics for natural
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selection. This is to enable the researcher to have a stronghold on
the current literature and define the proper directions to develop
novel computational and statistical approaches.

In order to treat GWAS as a machine learning problem as in
Table 1, it is necessary to view the terms of GWAS as their machine
learning counterparts. A genotype in GWAS terminology can be
denoted as a feature in ML problems. In classification problems,
there is usually a decision attribute (class) in which a dataset
object belongs. This can be defined as a phenotype in Case-
Control GWAS. A single instance of the ML dataset can also be an
individual in the GWAS population. The training set, test, and val-
idation sets can be denoted as population samples of the geno-
typed subjects.
2. Systematic approach to the study

2.1. Information sources and search strategy

We carried out a search for relevant studies from 2015 to 2021
using online databases such as ScienceDirect and PubMed. This
was done to extract relevant research articles that apply machine
learning algorithms to genome-wide association studies. The key-
words used for the search was done with the query strings ‘‘
(Machine learning) AND (genome-wide association studies)” both
on the PubMed and Science Direct databases. Pubmed retrieved
n = 453 articles while Science Direct retrieved n = 378, giving a
total number of 827 articles. Duplicate records numbering 20 arti-
cles were removed manually while the rest n = 807 were further
screened to 122 records after excluding 685 records that did not
3

meet the required criteria as depicted in the model shown in
Fig. 1. Finally 22 records were included and reported in the study.
2.2. Eligibility criteria

The inclusion criteria entails selection for articles that are
research articles and not review articles. This is because the focus
of the review is for machine learning research articles in genome-
wide association studies. Therefore, articles that applied machine
learning algorithms in the methodology of the work were included.
Additionally, articles that are based on human research were
included. The exclusion criteria include the removal of articles that
did not relate to the specific research subject in question (Falola
et al., 2017). Furthermore, review articles and articles that do not
specifically apply ML to their GWASbased work were excluded.
The methodology in each of these articles was analysed to identify
the specific applications of machine learning to the genome-wide
association analysis. From this set of articles, we rigorously
reviewed the contributions to the subject of our study with 22
included articles.
3. Algorithms’ classification in GWAS and Post-GWAS

3.1. Supervised machine learning approaches

The supervised machine learning target in this scenario is
developing a genotype-phenotype model. This is done by building
the patterns from a labelled set of training datasets. The aim is that
the model will accurately predict the phenotype in new cases with
related genetic backgrounds (Kruppa et al., 2012; Okser et al.,
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2014). The approaches which have been reviewed include regres-
sion, classification, ensemble learning, and neural networks.

3.1.1. Regression
Logistic regression is a popular choice for regression problems.

It is sometimes joined with lasso regularization, and this is done
after SNP preselection under mild constraints (Romagnoni et al.,
2019). This was compared in a study by altering the penalty in
the regularization portion of the cost function & preselection con-
straints. The penalized logistic regression method was applied in
classifying Crohn Disease patients with the use of genome-wide
genotyping data. Furthermore, the two most commonly applied
penalized regression algorithms are LASSO (L1 penalty) and ridge
regression (L2 penalty). The algorithms model the phenotype as a
linear weighted sum of the genetic variants. This is achieved by
the application of a regularization penalty to limit the magnitude
of the regression coefficients (Behravan et al., 2018). An et al.
(2020) developed a novel algorithm by binning the neighbouring
markers (SNPs) according to their Linkage disequilibrium. They
then used the LASSO regression method to associate the SNPs with
the phenotype. Their method that yielded less type one errors, was
faster and more powerful than the other two methods that they
were compared against. The two methods are the regular Linear
Mixed Model and the SNPs analysed with LASSO alone.
Maciukiewicz et al. (2018) performed the standard statistical
learning genome-wide logistic regression to find significant vari-
ants associated with duloxetine response. They further extracted
the best predictors with the help of LASSO regression. In another
scenario viz prediction of late genitourinary toxicity after radio-
therapy, a preconditioned random forest regression was used.
The preconditioning step consists creating a continuous surrogate
outcome from original binary outcomes (by logistic regression).
This is then accompanied by random forest regression that uses
the surrogate outcome as a target for prediction. Five-fold cross
validation was also done to test the stability of the model against
other baseline models (Lee et al., 2018). A limitation of these
regression approaches is that they cannot capture complex epi-
static interactions among loci. These are higher level non-linear
SNP interactions with disease susceptibility. The method by
Zhang et al. (2012) translated the prior knowledge of proteomics
and biological pathways to groups of SNPs. Consequently, they
applied linear regression that is regularized by group sparse con-
straint to identify the most predictive SNP groups. Finally, they
applied group-LASSO as solution for the regularized linear regres-
sion. This approach by Zhang et al. (2012) was applied because
of the limitations of the regular Linear Mixed Models that are
applied to GWAS data namely- the stringency of the low p-
values after Bonferroni correction and abandonment of LD that
occurs between neighbouring markers.

3.2. Classification

Mieth et al. (2016) developed an SVM algorithm to predict an
unknown phenotype of an unseen genotype x. Consequently, the
SNPs that correspond to the greatest values of the SVM weighting
are selected and the rest are discarded. A chi-squared test was then
performed on the selected SNPs where SNPs with a p-value lesser
than the significance threshold were selected. The COMBI method
which they developed outperformed Raw P-value thresholding
(RPVT). The comparison figure stood at a gain in true positive rate
up to 80%. Additionally, their method identified 12 more SNPs.
Among these SNPs, 10 have already been replicated in later GWAS
and/or meta-analyses. The principle of SVMs is to separate labelled
data points into two groups, with a large difference between them
(Mittag et al., 2012; Roshan et al., 2011). Mittag et al. (2012) also
4

used the SVM in genetic risk prediction. They developed the
method to conduct genome-wide risk profiling for Parkinson’s Dis-
ease and Type 1 Diabetes. The algorithm was applied to train mod-
els based on GWAS SNP data, which could perform binary
classification on a test dataset. Compared to Parkinson’s disease,
their method reached satisfactory performance on application to
type 1 diabetes datasets. They approached AUC scores in the range
of 0.81 to 0.88. For validation they performed within study cross
validation and between study validation. Hajiloo et al. (2013) used
a simple K-Nearest Neighbours (KNN) learning algorithm to clas-
sify breast cancer patients according to their SNPs as having breast
cancer or not. They used two strategies for evaluating the classifi-
cation algorithm viz, Leave-One-Out Cross Validation (LOOCV)
strategy and external hold-out (validation). Their LOOCV strategy
estimated the accuracy, precision, sensitivity and specificity of
the model to be 59.55%, 50.40%, 61.92% & 57.32% respectively.

3.3. Ensemble learning algorithms

The Random Forest is an example of the ensemble machine
learning (ML) algorithm. It comprises an ensemble (collection) of
decision trees. Each is developed with a bootstrapped subsample
of the entire training dataset. Hence, it is anticipated that the
ensemble algorithms are well fit for modelling the non-linear bio-
logical dependencies apparent in genetic data such as the GWAS
SNP data (Lee et al., 2020). This is because the multi-variate and
non-linear characteristics of tree-based ensemble learning algo-
rithms have been shown to be a robust analytic tool in detection
of genes’ interaction in GWAS (Dorani et al., 2018). Furthermore,
ML algorithms have been utilized successfully in GWAS to identify
genetic variants which have relatively large consequences in com-
plex disease states. Random forest is one of them (Nguyen et al.,
2015). Dorani et al. (2018) utilized random forests and gradient
boosting machine to find 44 possibly susceptible SNPs that were
ranked most significantly. For the random forests, AUC of 0.84
was achieved when number of predicted variables of 100 and num-
ber of trees of 2000 were applied. This means that the algorithm
performed best when the number of trees were set to maximum
and the number of predictor variables were set to the minimum.
Nguyen et al. (2015) focused on a method for choosing informative
SNPs with the use of the Random Forest method. They used a new
approach in learning Random Forest’s model (ts-RF) with a two-
stage quality-based method for subspace selection of SNPs. This
method is precisely fit for the high dimensional nature of GWAS
data. The fivefold cross-validation was also applied in evaluating
the predictive performance of the model on GWAS datasets. Gradi-
ent boosting of decision trees was also applied to GWAS datasets.
Behravan et al. (2018) developed a SNP selection process with an
XGBoost model. Next, there was a repetitive SNP search to get
the optimal SNP groups interacting and having a high breast cancer
risk potential. This model was developed as a surrogate to the poly-
genic risk scoring model and included the SVM classifier in its
backend for classification of SNPs.

Oh et al. (2017) developed a model called preconditioned ran-
dom forest regression (PRFR). They converted a binary variable
viz toxicity and non-toxicity into a continuous variable. This was
achieved with principal component analysis and logistic regres-
sion. López et al. (2018) used the Random Forest algorithm to find
the most important SNPs related to diabetes. They assigned the
weights as values that range between 0 and 1, to each attribute.
Lee et al. (2020) applied the preconditioned random forest regres-
sion method to predict the risk of contralateral breast cancer. Using
a 5-fold cross validation, the PRFR model on 712 SNPs achieved an
average AUC of 0.57 (95% confidence interval: 0.57–0.58) on the
validation data.
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3.4. Neural networks

Liu et al. (2019) proposed an independent deep Convoluted
Neural Network (CNN) model to predict phenotypes information
from data on SNPs. They were also the first to apply a saliency
map deep learning visualization method to select significant
biomarkers (SNPs) from their trained model. They were compared
against other statistical methods viz Best Linear Unbiased Predic-
tion (BLUP), Bayesian ridge regression (BRR), Bayesian A, and Baye-
sian Lasso. The design was to associate quantitative traits of
soybean with the SNP dataset. Neural networks were applied in a
comparative work with other machine learning algorithms. Specif-
ically, Dense neural networks with one fully connected layer, with
different numbers of fully connected hidden layer and with varying
odd numbers of fully connected hidden layer. They achieved mean
AUC scores in the range of 0.80 with the model (Romagnoni et al.,
2019). In the neural networks, work done by Romagnoni et al.
(2019) noted that an increase in the number of hidden neurons
did not significantly increase the performance of the model in
terms of classification of cases and controls. The deep mixed model
(composed of Convoluted neural network and Long Term Short
Term Memory model) was compared against such methods as
standard univariate testing & standard linear mixed model (with
Benjamini Hochberg procedure) (Wang et al., 2019). However,
the results of this method when verified in literature search. seem
not verifiable in the GWAS catalogue. The SNP reported by this
method are linked to the disease in question-Alzheimer’s disease.
In predicting the risk for Age-related Macular Degeneration, Neural
Networks were also used although it did not show a great advan-
tage over the other methods applied (AUC = 0.82 � 0.83) (Yan
et al., 2019).
4. Current trends and application area

4.1. Identification of significant SNPs

A problem with the current methods of GWAS analysis is the
dependence on testing each SNP individually. Consequently, this
leads to the disregard for any biological correlation structures
between the SNPs understudied. These structures are introduced
by both population genetics (linkage disequilibrium) and other
biological effects (Mieth et al., 2016). The approach by Nguyen
et al. (2015) with Random Forest has shown to have effectivity in
selecting SNPs that are possibly associated with diseases. Where
they succeed, the authors posit that traditional statistical
approaches might fail. The machine learning approaches thrive in
the high dimensionality problemwhere the number of sample sub-
jects is notably less than that of the SNPs. Mieth et al. (2016) was
also able to combine the Support vector machine classifier with the
standard statistical testing, RPVT (Raw P-value thresholding), to
identify significant SNPs associated with the WTCCC data. They
called their method COMBI. Behravan et al. (2018) developed a gra-
dient tree boosting method to capture the complex non-linear
SNP-SNP interactions. Eventually, the method obtains a group of
significant SNPs which have high Breast Cancer predictive poten-
tial. They also developed a support vector machine classifier
formed by the identified SNPs to classify Breast Cancer cases and
controls. They achieved approximate precision (mAP) scores of
73, 67, and 69 in classifying Breast Cancer cases and controls on
three datasets (individual and merged datasets). Dorani et al.
(2018) had used the plink software for prior quality control on
the total GWAS data set. They then focused the next stage of their
work on the application of two ensemble learning algorithms, ran-
dom forests, and gradient boosting machine, in identifying the
interacting and significant SNPs correlated with colorectal cancer.
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4.2. Disease risk assessment and prediction

SNPs from GWAS have been shown to be valuable in estimating
the risk of developing the disease phenotype (Kooperberg et al.
2010; Wang et al., 2016). The computational methods are useful
to analyse the impact of the identified variants on the disease risk
(Vihinen, 2013). In a study on prediction of the risk of an individual
sensitivity to radiotherapy, Oh et al. (2017) developed an innova-
tive multi-SNP predictive model based on ML algorithms namely
preconditioned random forest regression (PRFR). They concluded
that GWAS SNPs can yield useful risk stratification models and
identify important biological processes in radiation damage and
tissue repair processes. Mittag et al. (2012) applied a SVM model
to Parkinson’s disease and type 1 diabetes. This was to reveal that
apart from effect sizes of risk variants, disease heritability is also
important in disease risk prediction. This points to the effects that
each disease variant has a role to play in disease risk assessment
and prediction. Gaudillo et al. (2019) also built a novel machine
learning model to quantify an individual’s risk of developing
asthma based on SNP data. Maciukiewicz et al. (2018) studied
the potential of ML models using GWAS data to predict duloxetine
outcomes in major depressive disorders. SVM and classification &
regression trees’ based models were the models developed and
they had a promising sensitivity scores. Oh et al. (2017) have been
able to predict the risk of individual radio sensitivity with novel
multi-SNP predictive framework dependent on ML algorithms.
Their approach outperformed other methods in predicting the risk
of erectile dysfunction and late rectal bleeding after prostate can-
cer radiotherapy. Similarly in the area of radio genomics, Lee
et al. (2018) also applied a preconditioned random forest regres-
sion method to genome-wide data. This was done to combine the
effects of multiple SNPs to predict patients with high late geni-
tourinary toxicity risk. Lee et al. (2020) also predicted the risk of
developing radiation associated contralateral breast cancer (RCBC).
Wei et al. (2019) used a six SNPs as classifier (LASSO-Cox Regres-
sion) and predictor where the latter may assist the current staging
system for predicting localised renal cell carcinoma recurrence
after surgery. This helps clinicians make better informed decisions
about treatment in adjuvant therapy. Yan et al. (2019) also used
four Neural networks, lasso regression, support vector machine,
and random forest on GWAS data to predict the risk of developing
Age-related macular degeneration. It is a neurodegenerative dis-
ease with no known cure but can be adequately managed with
diagnosis and risk prediction. Fukaya et al. (2018) applied a gradi-
ent boosting machine (GBM) model for the agnostic discovery of
novel risk factors in varicose vein development.

4.3. Epistasis (non-linear SNPs) detection

The concept of epistasis is simply the interactions among
genetic loci. It has been constantly restated as a major factor con-
tributing to the missing heritability in complex diseases (Okser
et al., 2013). Seldomly considered is the non-linear interactions
between many genetic factors that play an important role in iden-
tifying the genetic variations (Dorani and Hu, 2018). Residual feed
intake in dairy were studied by Yao et al. (2013) and epistasis was
detected and analysis of tree structures was produced with Ran-
dom Forest. Finally, the 25 most occurring pairwise SNP interac-
tions were reported as potential epistatic interactions. Wu et al.
(2010) developed a method called screen and clean to identify lia-
bility loci, including SNPs interactions, with the use of LASSO
which is a model selection tool for regression in high dimensional
data. Recently, a neural network technique was suggested that
could theoretically model arbitrary interactions in GWAS between
SNPs as an addendum to the mixed models to correct confounder’s
effect (Wang et al., 2019). The goal was the investigation of mar-



Table 2
Summary of methods involving Machine learning in Genome-wide association studies.

Author(s) Method Result/Inference

Maciukiewicz et al. (2018) SVM, LASSO, and SNPs data to predict major depressive
disorder and adverse drug response (duloxetine)

The models developed had a promising sensitivity however the
specificity remain modest in the best case. The best accuracy was
0.66 and sensitivity was 0.70

Behravan et al. (2018) XGOOST was used to select SNPs in a breast cancer risk
prediction task. SVM was then used to distinguish breast
cancer cases between cases and healthy controls.

This approach yielded mean average precision of 72.66, 67.24 and
69.25 in classifying breast cancer cases and controls. This was in
KBCP, OBCS and merged datasets respectively.

Dorani et al. (2018) Random forest and gradient boosting machine were applied to
search for risk susceptibility SNPs associated with colorectal
cancer (CRC).

TuRF feature selection method was applied on all 186,251 SNPs
and filtered the top 2798 SNPs. They identified 44 of the most
important SNPs with the ML algorithms.

Mieth et al. (2016) An SVM and SNP selection step (COMBI) was applied on the
datasets in order to find the candidate SNPs that are most
predictive of the phenotype.

78 SNPs were found to be significant with standard univariate
GWAS analysis. 46 with the COMBI method The method also
outperformed the RPVT approach for different type 1 error levels.

Romagnoni et al. (2019) Penalized logistic regression (LR), gradient boosted trees (GBT)
and artificial neural networks (ANN) were applied
comparatively on a case control dataset.

The maximum AUC values obtained by LR, GBT or NN are in the
range of 0.80.
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ginal epistasis, for which a deep learning-based method was devel-
oped to model arbitrary high-level interactions among genetic
variants. The deep mixedmodel was applied to Alzheimer’s disease
in order to understand the genetic architecture of the disease. The
method reported the top 20 SNPs associated with the disease. A
deep learning framework for analysis of epistasis and heterogene-
ity (Li et al., 2018) called DPEH was developed. The 3-stage frame-
work involves detection of epistasis in the first stage, clustering in
the second stage, and prediction in the final stage. Prediction deals
with developing a diagnosis model for complex diseases.

In the step of epistasis detection, DPEH searches. Candidate epi-
static combinations based on multi-objective optimization and chi-
square tests are used to filter false-negative epistatic interaction
through filtering based on significance levels. Furthermore,
Fergus et al. (2020) combined the GWAS quality control and logis-
tic regression with deep learning stacked autoencoders to develop
an approach to extract epistatic interactions among SNPs. The
complete framework models the effects of epistasis on minor and
major SNP interactions. To essentially capture the epistatic interac-
tions a softmax classifier model pre-initialized with the stacked
autoencoder was applied. This approach was eventually applied
for the classification of preterm birth risk in mothers within the
population of African ancestry. Their model achieved a Sensitivity
of 0.96, Specificity of 0.88, and AUC score of 0.97.

A summary of existing machine learning methods and their
inferences as applicable to Genome-wide association studies are
listed in Table 2.

5. Research issues and open problems

5.1. Challenges in GWAS

Traditional statistical methods that apply linear mixed models
and logistic regression in case control datasets are not well suited
for detecting interactive and non-linear effects. This is especially
when there is a large number of predictors. Additionally, when
higher level and non-linear interactions are present. The linear
modelling method used in GWAS frequently considers only one
SNP, thereby ignoring the environmental and genetic context
(Moore et al., 2010). It is well known that one of the most signifi-
cant difficulties to be solved in the detection of GWAS-associated
SNPs is in the modelling of complex interactions like higher-level
non-linear interactions between SNPs and a given biological phe-
notype (Behravan et al., 2018). Population stratification causes
false positive outcomes in genetic association studies, especially
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in case-control studies (Menting et al., 2014). Until this moment,
genomic data has been explored on the premise of single-locus sta-
tistical analyses. The approach is able to identify variant with large
effects within a population. However, it is unable to capture vari-
ants with smaller effects which may have larger effect sizes when
in joint interaction with other SNPS. Detection of SNP interactions
remains a significant problem because of the high-dimensionality
of genomic data, including the GWAS datasets. This is due to such
characteristics as biomolecular complexity, lack of marginal
effects, missing heritability, and the limits of computational capac-
ities (Gusareva et al., 2014; Padyukov, 2013; Uppu and Krishna,
2018).

5.2. African genetic diversity

There is relative low number of genetic studies that involve
people of African ancestry (Benafif et al., 2018; Gurdasani et al.,
2015; Mulder et al., 2018; Radouani et al., 2020). For instance neu-
rogenetic studies of people of African ancestry only account for
11.1 percent in the GWAS catalogue (Quansah and McGregor,
2018). Popejoy and Fullerton (2016) further deliberated on the
gross underrepresentation of people of non-European ancestry in
Genome-wide Association studies. H3Africa projects have continu-
ously played a role in advancing research bioinformatic capacity
and output from African nations (Mulder et al., 2017). African
and admixed populations have a more complex haplotype block
structure and, as such, will benefit from a broader reference data-
set containing more genetic diversity (Schurz et al., 2019). African
populations are also characterized by extensive population struc-
ture and lower LD among loci relative to non-African population
(Campbell and Tishkoff, 2008). Consequently, a larger number of
SNPs is required in order to capture the genetic variation within
the African genome. It is known that the African population is
the most genetically diverse in the world (Bentley et al., 2020).
Gurdasani et al. (2015) further reiterated that this haplotype diver-
sity would affect the design of genomics studies. The diversity of
the African genome (Choudhury et al., 2018; Ramsay et al., 2011)
gives more reason to develop methodologies that can capture
non-linear interaction of SNPs, such as the machine learning algo-
rithms described in Section 3.

5.3. Challenges with the adoption of Machine learning in GWAS

Romagnoni et al. (2019) also stated that after training the
model, the performance of the model should be estimated on a
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completely different dataset. This is done in a bid toward evalua-
tion of the ability proposed algorithm to be generalizable. This is
similar to the case of having a validation dataset. This is tedious
because of the large amount of data that would be generated and
the complexity of the entire work. The major weakness of the
machine learning model in GWAS is the difficulty in application
of the algorithm and difficulty in interpretation of the underlying
genetic effects from the results (Ho et al., 2019). The nature of
the GWAS dataset is also challenging to pre-process before the
eventual model is built. Grinberg et al. (2020) suggested that there
is room for the development of new machine learning approaches
that make better use of prior knowledge of population structure.
They further proposed better collaboration between the machine
learning and statistical genetics communities. This is because
machine learning suffers from a source of technically interesting
and societally important problems which could be gained from
the latter.
6. Future trends

Many quantitative traits have a polygenic nature and this
makes such a multiple marker association study a better choice
than the single marker scanning approach. Even though the single
marker scanning approach is still used currently (An et al., 2020).
Furthermore, there will be development of more machine learning
approaches to handle the high dimensional data generated in
GWAS. It is unavoidable because these approaches are better able
to capture the missing heritability of these data- including non-
linear SNP interactions and epistasis detection. These methods will
be able to better prioritize SNPs and perform risk prediction from
genome-wide association data. These approaches could also be
applied in quantitative traits of plants and animals. Thus, leading
to genetically superior species with improved crop yield, milk
quality, nutrient quality etc. In the area of precision medicine. In
this case, a patient’s SNP data could be applied in prediction of
an individual’s disease risk which could inform decisions such as
dosing and treatment regimen. These SNPs could be better fit for
post-GWAS analysis and eventually integration of other omics data
sources. These will ultimately lead to better insight into disease
biology.
7. Conclusion

Machine Learning is a technique widely applied in many appli-
cation areas, and Biology, Healthcare & Medicine happens to be one
of them. A PubMed search saw a progressive increase in the total
number of research articles with the keywords ‘‘machine learning”
and ‘‘genome-wide association studies” The high dimensionality
characteristic of GWAS data makes it amenable to machine learn-
ing algorithms. These algorithms application in GWAS tends to
support the understanding of the effects of population genetic vari-
ant while highlighting attendant challenges and open problems. It
is true that this work has also shown that classification, regression,
ensemble, and neural networks have been applied to GWAS as
comprehensively discussed giving understanding to African
genetic diversity. Machine learning has been shown to have appli-
cation areas to many areas of genome-wide association studies,
including, computational pipeline development and integration
with other omics datasets. The studies have shown that ML
approaches and regular statistical approaches can help in identifi-
cation of significant SNPs, detection of epistasis and disease risk
prediction. This will be highly beneficial in the design and execu-
tion of genetic studies. Finally, it is expected that machine learning
algorithms will become a mainstay in the computational pipeline
of genome-wide association studies.
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