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Abstract The variational iteration method has been one of the most often used analytical meth-

ods in the past ten years. However, the success of the method mainly depends upon accurate iden-

tifications of the Lagrange multipliers. This study suggests a universal way to identify the

multiplier which is a simple but effective approach by implementing Laplace transform. The Ado-

mian series and the Pade technique are also employed to accelerate the convergence of the var-

iational iteration algorithm. An example is given to elucidate the solution process and reliability

of the solution.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

From the Lagrange multiplier method (Inokuti et al., 1978),

the variational iteration method (VIM), which was first pro-
posed by (He, 1998, 1999) and systematically elucidated in
(He and Wu, 2007), has been worked out over a number of

years by numerous authors. Since there is no need to handle
nonlinear terms in an equation and it results in approximate
solutions with high accuracies, the analytical method caught

much attention in the past ten years, and it has matured into
oo.com.cn.

y. Production and hosting by

Saud University.
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a relatively fledged theory thanks to the efforts of many
researchers, notably (Abbasbandy, 2007; Noor and Mohyud-

Din, 2008; Xu, 2009; Geng, 2010; Jafari and Khalique, 2012)
to mention only a few. For a relatively comprehensive survey
on the concepts, theory and applications of the method, read-

ers are referred to review articles (He and Wu, 2007; He, 2012).
Recently, Laplace transform is adopted in some famous ana-

lytical methods (e.g., the Laplace Adomian decomposition meth-
od (LAPM) (Tsai and Chen, 2010; Zeng and Qin, 2012) and the

homotopy perturbation method (Javidi and Raji, 2012)) to sim-
plify the solution process and improve solution’s accuracy. How-
ever, their applications mainly limit to the applications in

differential equations with constant coefficients. Though the
VIM can deal with such problems, the identification of the La-
grange multiplier is complex if not impossible. To solve the prob-

lem, the VIM is reconstructed and Laplace transform is adopted
in simple and accurate identification of the multipliers.

2. A novel modification of the variational iteration method

We use the following general nonlinear equation to illustrate
its basic idea of the VIM:
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dmu

dtm
þ R½uðtÞ� þN½uðtÞ� ¼ gðtÞ; uðkÞð0Þ ¼ dkuð0Þ

dtk
;

k ¼ 0; . . . ;m� 1; ð1Þ

where R is a linear operator, N is a nonlinear operator, g(t) is

a given continuous function and dmu/dtm is the term of the
highest-order derivative.

The basic character of the method is to construct the fol-

lowing correction functional for Eq. (1)

unþ1 ¼ un þ
Z t

0

kðt; sÞ dmun
dsm
þ R½un� þN½un� � gðsÞ

� �
ds; ð2Þ

where kðt; sÞis a general Lagrange multiplier which can be

identified optimally via the variational theory and un is the
nth order approximate solution.

The Lagrange multiplier can be identified as (He and Wu,

2007)

kðt; sÞ ¼ ð�1Þ
mðs� tÞm�1

ðm� 1Þ! : ð3Þ

Inspired by Tsai and Chen’s method (Tsai and Chen, 2010), if
we take Laplace transform on both sides of (1), the linear part
with constant coefficients is then transferred into an algebraic

one so that we can identify the Lagrange multiplier in a more
straightforward way.

Now considering the system (1) with variable coefficients
and assuming the linear term as

R½uðtÞ� ¼
Xm�1
i¼0
ðaiuðiÞ þ biðtÞuðiÞÞ; ð4Þ

where u(i) = u(i) (t), ai is a constant and bi(t) is a variable
coefficient, a novel modified VIM is given as follows:

I. Take the Laplace transform on (1), then the iteration
formula becomes

Unþ1ðsÞ ¼ UnðsÞ þ k smUnðsÞ �
Xm�1
i¼0

uðiÞð0Þsm�i�1 þ L
Xm�1
i¼0

aiu
ðiÞ
n

 !"

þL
Xm�1
i¼0

biðtÞuðiÞn

 !
þ LðN½un� � gðtÞÞ

#
ð5Þ

where U(s) is Laplace transform of u(t) and s is a complex
variable.

II. Consider the terms L
Pm�1

i¼0 biðtÞuðiÞ
� �

and L(N[un]) as

restricted variations. Make Eq. (5) stationary with

respect to Un

dUnþ1ðsÞ ¼ dUnðsÞ þ k smdUnðsÞ þ
Xm�1
i¼0

ais
idUnðsÞ

" #
: ð6Þ

From Eq. (6), we can determine the Lagrange multiplier as
follows

kðsÞ ¼ � 1Xm
i¼0

aisi
; am ¼ 1:

III. The variational iteration formula is obtained through
the inverse Laplace transform L�1:
unþ1ðtÞ ¼ unðtÞ þL�1 kðsÞ smUnðsÞ �
Xm�1
k¼0

uðkÞð0Þsm�k�1
""

þL
Xm�1
i¼0

aiu
ðiÞ
n

 !
þL

Xm�1
i¼0

biðtÞuðiÞn

 !
þL N½un� � gðtÞð Þ

##

¼ u0 þL�1 kðsÞLð
Xm�1
i¼0

biðtÞuðiÞn þN½un�Þ
" #

;

where the initial iteration value can be determined as

u0 ¼ L�1 kðsÞ �
Xm�1
k¼0

uðkÞð0Þsm�k�1 �
Xm�1
i¼0

ai
Xi�1
k¼0

uðkÞð0Þsi�1�k
 !""

�L gðtÞ½ �
##

IV. Let un ¼
Pn

j¼0vj and apply the Adomian decomposition
method (ADM) (Adomian, 1994) to expand the term
N[u] as

P1
j¼0Aj: Then the iteration formula reads

vjþ1 ¼ L�1 kðsÞLð
Xm�1
i¼0

biðtÞvðiÞj þ AjÞ
" #

;

v0 ¼ u0;

8><
>:
where Aj is the famous Adomian decomposition series. A de-

tailed review of the ADM can be found (See Duan et al., 2012).
V. Employ the Pade-technique (Baker and Graves-Morris,

1996) to accelerate the convergence of un.

Remarks:
If ai is a constant, the presented algorithm reduces to Tsay

and Chen’s LAPM. On the other hand, since the VIM allows

the terms with variable coefficients as restricted variations, as a
result, the modified VIM here is more flexible and general here.

This idea can also be extended to the fractional calculus of

variations (Baleanu and Trujillo, 2008,2010). For the VIM in
the fractional differential equations, the Lagrange multipliers
can be determined readily from Laplace transform. Readers

who feel interested in the method are referred to the recent
development (Wu, 2012a, b, c).

Consider the following differential equations with a vari-
able coefficient as an example

d2u

dt2
¼ 1þ ð1þ 2tÞuþ u3; uð0Þ ¼ 0; u0ð0Þ ¼ 1 ð7Þ

Take Laplace transform on both sides of (7)

s2UðsÞ � u0ð0Þ � uð0Þs ¼ 1

s
þUðsÞ þ L½2tu� þ L½u3� ð8Þ

Construct the variational iteration formula for (8) as

Unþ1ðsÞ ¼ UnðsÞ þ k½s2UnðsÞ � u0ð0Þ � uð0Þs� 1

s
�UnðsÞ

� L½2tun� � L½u3n�� ð9Þ

Considering the terms L[2tu] and L[u3] are restricted varia-
tions, take the classical variation operator on both sides of (9)

dUnþ1ðsÞ ¼ dUnðsÞ þ kðs2 � 1ÞdUnðsÞ

As a result, a Lagrange multiplier can be determined as

k ¼ � 1

s2 � 1
ð10Þ



Figure 2 Curve of the residual value f10.

Challenge in the variational iteration method – A new approach to identification of the Lagrange multipliers 177
Substituting (10) into (9), one can obtain

Unþ1ðsÞ ¼ UnðsÞ þ k s2UnðsÞ � u0ð0Þ � uð0Þs� 1

s
�UnðsÞ

�

�L½2tun� � L½u3n�
�
¼ 1

s2 � 1
u0ð0Þ þ uð0Þsþ 1

s

� �

þ 1

s2 � 1
ðL½2tun� þ L½u3n�Þ ð11Þ

and use the inverse Laplace transform L�1,

unþ1ðtÞ ¼ u0 þ L�1
1

s2 � 1
L½2tun þ u3n�

� �

where the initial iteration value is

u0 ¼ L�1
1

s2 � 1
u0ð0Þ þ uð0Þsþ 1

s

� �� �
¼ et � 1 ð12Þ

Furthermore, linearizing the term u2 implemented by the Ado-
mian series, let un ¼

Pn
i¼0vi and the nonlinear term u3 can be

approximately expanded as the Adomian polynomials. As a re-
sult, we can derive the following iteration formula

viþ1 ¼ L�1 1
s2�1 ðL½2tvi� þ L½Ai�Þ
	 �

;

v0 ¼ u0

(

where the Adomian series of the term v3 reads

A0 ¼ v30;

A1 ¼ 3v20v1;

A2 ¼ 3v0v
2
1 þ 3v20v2;

..

.

8>>>><
>>>>:

With symbolic computation, we can derive the following
approximate solutions

u0 ¼ et � 1;

u1 ¼ et � 11
12
e�t � 1

3
e2t � 2t� et

4
ð2t2 � 1� 6tÞ;

..

.
ð13Þ
Figure 1 Curve of the residual value f8.
Now apply the Pade technique to u8 and u10 and denote
the results by u8

10
10

	 �
and u10

16
16

	 �
: Define the residual value

function as

fn ¼
d2ðun½�Þ
dt2

� 1� ð1þ 2tÞðun½�Þ � ðun½�Þ3










 ð14Þ

where un½� is the n-th order approximate solution un after using
the Pade technique. Now substituting u8

10
10

	 �
and u10

16
16

	 �
into

(14), the residual value function fn in the interval [0,1] is illus-

trated in Figs. 1 and 2, respectively.
On the other hand, we also can have the following varia-

tional iteration formula for (7)

unþ1ðtÞ ¼ u0 þ L�1½kðsÞL½ð1þ 2tÞun þ u3n��;
kðsÞ ¼ �1=s2;
u0 ¼ tþ t2=2

8><
>:
if only the term d2u

dt2
is included in the calculus of variations.

4. Conclusions

The VIM has been extensively used for solving various dif-
ferential equations. The critical step of the method is to iden-
tify the Lagrange multipliers through calculus of variations.

In this study, the VIM is improved with Laplace transform
and the Adomian series. Compared with the classical VIM,
the modified version method has following merits: (a) the La-
grange multipliers can be readily obtained in a more straight-

forward way; (b) the initial iteration value can be determined
universally; (c) The method is also powerful to solving differ-
ential equations with variable coefficients. The error analysis

and higher order approximate solutions of the nonlinear
oscillator illustrate the method’s efficiencies and high
accuracies.
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