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The main goal of the present work is to show the procedure, application and main features of the
hybrid numerical-analytical approach known as GITT (Generalized Integral Transform Technique) by
solving an unsteady, one-dimensional magnetohydrodynamic (MHD) oscillatory flow of a micropolar
and incompressible fluid with heat and mass transfer through a permeable vertical plate embedded in
a porous medium in the presence of chemical reaction. The mathematical formulation of the studied
model was obtained from the equation of motion and the mass and energy balances by considering
laminar and incompressible flow subjected to a constant transverse magnetic field with constant
physical properties. Convergence analysis was performed and presented to illustrate the consistency
of the integral transform technique. Linear and angular velocities distribution, temperature and con-
centration profiles were generated and numerically verified with an approximate solution found in
the literature and with the results of the method of lines (MOL) with good agreement. The effects
of some governing parameters, namely, dimensionless time, magnetic field parameter, Schmidt and
Prandtl numbers, permeability and chemical reaction parameters, on these fields were presented.
The effects of these parameters on the local skin friction coefficient, the couple stress coefficient,
the local Nusselt number and the local Sherwood number were also critically evaluated. Therefore,
results show that the linear velocity decreases with increasing magnetic field parameter, while the
angular velocity increases with increasing the same and the linear and angular velocities and the con-
centration field decrease as the Schmidt number increases while the temperature field decreases with
increasing Prandtl number.
� 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Introductory section

Magnetohydrodynamic (MHD) is the study of the interaction
between the electromagnetic and velocity fields of conductive flu-
ids. Its mathematical modeling is characterized by a coupling
between the fluid mechanics equations and Maxwell’s equations
of electromagnetism. The interest in magnetohydrodynamics
began to emerge in the early twentieth century and, from the
1960s until now, these studies have received considerable atten-
tion due mainly to energy and environmental issues. Magnetohy-
drodynamic flow can be found in channels with heat transfer
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Nomenclature

Aij Integral transform coefficient defined by Eq. (19)
B0 Constant magnetic field applied externally
C(y⁄,t⁄) Fluid concentration
Cf Local skin friction factor
cp Specific heat at constant pressure
C’w Local couple stress coefficient
Cw Wall concentration
C1 Free stream concentration
D Molecular diffusivity
GrT Thermal Grashof number
GrC Mass Grashof number
j Dimensionless micro-inertia per unit mass
j⁄ Micro-inertia per unit mass
k Thermal conductivity
K Permeability parameter
K1 Dimensionless permeability parameter defined by Eq.

(3s)
L Sufficiently large value of y where the velocity profile u

approaches U0

M Magnetic field parameter defined by Eq. (3n)
Mw Wall couple stress
n Frequency parameter defined by Eq. (3j)
n1 Parameter related to micro-rotation vector and shear

stress
Ni Normalization integral of the eigenfunction defined by

Eq. (12e)
Nu Local Nusselt number
NuRex

�1 Heat transfer rate at the surface defined by Eq. (26)
N Truncation order for the eigenfunction expansion
NPT Number of points for the mesh MOL
Pr Prandtl number
Rex Local Reynolds number
Sc Schmidt number
Sh Local Sherwood number
ShRex

�1 Mass transfer rate at the surface defined by Eq. (27)
T(y⁄,t⁄) Fluid temperature
Tw Wall temperature
T1 Free stream temperature
t⁄ Time
t Dimensionless time
u(y,t) Dimensionless linear velocity
�uh;iðtÞ Transformed potential for the linear velocity field
up

⁄ Fluid uniform velocity in its own plane
Up Dimensionless plate velocity

U0 Free stream velocity
V0 Scale of suction velocity at the plate
x,y Dimensionless spatial coordinates
x⁄,y⁄ Spatial coordinates

Greek Letters
a Thermal diffusivity
b Dimensionless viscosity ratio
bC Coefficient of fluid mass expansion
bT Coefficient of fluid thermal expansion
c Spin gradient viscosity
c1⁄ Reaction rate constant
c1 Dimensionless chemical reaction parameter defined by

Eq. (3t)
Dy Step size
e Small positive quantity
g Similarity variable defined by Eq. (3h)
h(y,t) Dimensionless temperature
�hh;iðtÞ Transformed potential for the temperature field
K Coefficient of vortex viscosity
m Dynamic viscosity of the fluid
mi Eigenvalue defined by Eq. (12b)
m Fluid kinematics viscosity
mr Kinematic rotational viscosity
q Fluid density
r Fluid electrical conductivity
sw⁄ Wall shear stress
/ (y,t) Dimensionless concentration
�/h;iðtÞ Transformed potential for the concentration field
wi Eigenfunction defined by Eq. (12a)
~wi Normalized eigenfunction defined by Eq. (15)
x(y,t) Dimensionless angular velocity
�xh;iðtÞ Transformed potential for the angular velocity field

Subscripts and Superscripts
⁄ Dimensional variables
i,j,k Eigenvalues order
i Number of points in the discrete domain of the MOL ap-

proach
h Filtered problem
p Particular problem

F.A. Pontes et al. / Journal of King Saud University – Science 31 (2019) 114–126 115
including pumps and MHD generators, cooling systems of nuclear
reactors and electrolytic reduction cells in aluminum plants
(Shercliff, 1965; Davidson, 2001; Sutton and Sherman, 2006). To
extract the maximum benefit from magnetohydrodynamic flow,
a better understanding of the phenomenon is important. The
importance of the study of magnetohydrodynamic flow is high-
lighted by the recent introduction of numerical kernels solvers
for Maxwell’s equations in the beta versions of major CFD commer-
cial packages that automatically couple to the CFD solvers (Ansys/
CFX, 2009).

Eringen (1966) originally developed the theory of micropolar
fluids, which has recently become a popular field of research since
the Navier-Stokes equations do not describe the properties of polar
fluid, colloidal solutions, suspensions, liquid crystals, fluids con-
taining small additives, etc. The concept of micropolar fluid
describes the effects of micro-rotation in microstructures and
addresses a class of fluids that exhibits certain microscopic effects
arising from the micro-motions of the fluid elements.
At the same time, there is a growing need for the development
and application of mathematical methods that are as analytical in
nature as possible to solve models in various science fields. Among
the methodologies that satisfy this condition is the so-called Gen-
eralized Integral Transform Technique (GITT), which is able to treat
a large number of nonlinear problems and which is an alternative
tool for solving this class of problems. This technique is based on
the use of orthogonal eigenfunctions expansions to express the
unknown dependent variables (Cotta, 1993; Cotta and Mikhailov,
1997; Santos et al., 2001; Sphaier et al., 2011).

Thus, considering the hybrid numerical-analytical nature of the
GITT approach and its guarantee of local and global error control,
the objective of this work is to show the main characteristics of
applying this methodology for solving the one-dimensional mag-
netohydrodynamic (MHD) oscillating flow of a micropolar incom-
pressible fluid with heat and mass transfer through a permeable
vertical plate embedded in a porous medium in the presence of
chemical reaction. The method of lines (MOL) will be used also
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to allow a numerical verification between these two methodolo-
gies. The mathematical models are obtained from the equations
of motion along with the mass and energy balances assuming con-
stant physical properties. The flow in the problem is subjected to a
constant transverse magnetic field. The convergence behavior of
the integral transform was performed to evaluate the influence
of the truncation orders in the eigenfunction series expansions. A
detailed analysis of effects of the parametric variation of the main
dimensionless parameters for some typical situations on the veloc-
ities, temperature and concentration profiles, as well as on the
local skin friction coefficient, couple stress coefficient, local Nusselt
number and local Sherwood number was performed. Verification
of the integral transform results has been performed by comparing
them with those of Modather et al. (2009) and the MOL approach.

1.2. Literature review

Micropolar fluids contain dilute suspension of rigid macro-
molecules with individual motions that support stress and body
moments that are influenced by spin inertia. These fluids contain
micro-constituents that can undergo rotation, which can affect
the hydrodynamics of the flow such that it can be distinctly non-
Newtonian. Thus, micropolar fluids consist of randomly oriented
particles that are suspended in a viscous fluid and which can
undergo a rotation (Eringen, 1966). The fundamentals of micropo-
lar fluids have been investigated substantially over the years (Babu
et al., 2013; Gupta et al., 2014; Sheikh et al., 2017).

Babu et al. (2013) analyzed the effects of mass transfer on the
unsteady MHD convective flow of a micropolar fluid past a vertical
moving porous plate through a porous medium with viscous dissi-
pation. They noted that the velocity distribution greater for a New-
tonian fluid with given parameters, as compared with micropolar
fluids until its peak value reaches. They also observed that the
effect of increasing values of magnetic field parameter results in
a decreasing velocity distribution across the boundary layer.
Gupta et al. (2014) examined unsteady mixed convection flow of
a micropolar fluid over a porous shrinking sheet using a variational
finite element method. For limiting cases, the numerical results
obtained for the flow velocity compared very well with the exact
solution available in the literature and the numerical simulations
clearly demonstrated that the drag can be reduced effectively by
the prudent selection of the studied parameters. Sheikh et al.
(2017) analyzed the MHD flow of micropolar fluid past an oscillat-
ing infinite vertical plate embedded in a porous media. The authors
applied the Laplace transform technique to obtain the exact solu-
tions for velocity, temperature, and concentration fields, as well
the corresponding skin friction and wall couple stress. They
observed that an increase in magnetic field reduces the fluid veloc-
ity and magnitude of microrotation, while velocity and magnitude
of microrotation are directly related to permeability parameter
that causes fall in drag forces. They also commented that velocity
and magnitude of microrotation decrease as Prandtl number is
increased and the skin friction increases with increase in magnetic
field.

The effects of a chemical reaction depend greatly on whether
the reaction is heterogeneous or homogeneous and the reaction
order. A destructive reaction occurs when the chemical reaction
parameter (c1) is positive, while in a generative reaction, this
parameter is negative. Since in many industrial processes the dif-
fusing species may be generated or absorbed due to chemical reac-
tion, the reaction can highly affect the flow and therefore the
properties of the final product. Several studies have assessed the
influence of the chemical reaction parameter (Al-Odat and Al-
Azab, 2007; Pal and Talukdar, 2010a; Bég et al., 2016).

The effects of chemical reaction on transient MHD free convec-
tion over a moving vertical plate were investigated by Al-Odat and
Al-Azab (2007) and they observed that the velocity as well as the
concentration decrease with increasing chemical reaction parame-
ter. Unsteady magnetohydrodynamic convective heat and mass
transfer in a boundary layer slip flow past a vertical permeable
plate with thermal radiation and chemical reaction were studied
by Pal and Talukdar (2010a) and they solved the non-linear cou-
pled partial differential equations employing perturbation analysis.
They recorded that the velocity as well as the concentration
decrease with increasing chemical reaction parameter. Bég et al.
(2016) evaluated the transient MHD heat and mass transfer in
chemically-reacting fluid flow from an impulsively-started vertical
perforated sheet. The authors solved the model with a finite differ-
ence method and verified their solutions with computational codes
from a variational finite element method and also from a network
simulation method.

The basic problem of flow through and past porous media has
been studied extensively over the past few years, both theoreti-
cally and experimentally (Pal and Talukdar, 2010b; Acharya
et al., 2014). The buoyancy and chemical reaction effects on MHD
mixed convection heat and mass transfer in a porous medium with
thermal radiation and Ohmic heating was investigated by Pal and
Talukdar (2010b) and they found that the presence of a porous
medium increases the skin friction coefficient, whereas increasing
the porous permeability decreases the local Nusselt number. Free
convective fluctuating MHD flow through porous media past a ver-
tical porous plate with variable temperature and a heat source was
evaluated by Acharya et al. (2014) and they concluded that the
presence of the porous media has no significant contribution to
the flow characteristics, whereas viscous dissipation compensates
for the heating and cooling of the plate due to the convective
current.

Free convection flow with a magnetic field has been evalu-
ated by many authors (Prasad et al., 2013; Vija et al., 2014).
Prasad et al. (2013) investigated the effects of internal heat
generation/absorption, thermal radiation, magnetic field, vari-
able fluid property and viscous dissipation on the heat transfer
characteristics of a Maxwell fluid over a stretching sheet, and
they have noted that the horizontal velocity decreases with
increasing magnetic field, and this is because the transverse
magnetic field has a tendency to create a drag-like force, known
as the Lorentz force, to resist the flow. The influence of induced
magnetic field and viscous dissipation on MHD mixed convec-
tive flow past a vertical plate in the presence of thermal radia-
tion was analyzed by Vija et al. (2014) and they recorded that
the values of the induced magnetic field remained negative, i.e.,
induced magnetic flux reversal arises for all distances in the
boundary layer.

The Generalized Integral Transform Technique (GITT) considers
that any potential can be constructed as an expansion of eigen-
functions. It eliminates the need to find an exact integral transfor-
mation that results in an uncoupled ordinary differential system,
as traditional analytical approaches usually do, thereby emerging
as an alternative to purely numerical methods for the solution of
complex engineering problems usually treated only by numerical
approaches. This technique has been employed through the years
to study various phenomena (Lima et al., 2007; Lima and Rêgo,
2013).

The GITT approach was also employed by Lima et al. (2007) to
solve the transient, fully developed, MHD flow and heat transfer
of Newtonian fluids inside channels between parallel porous plates
where the flow was sustained by a constant pressure gradient.
Integral transform results were satisfactorily verified with the lit-
erature and the authors found that both the velocity and tempera-
ture potentials showed fast convergence, since, for the cases
considered, the solution of the original problem is practically
obtained by the filter solution.
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Lima and Rêgo (2013) also applied GITT to study the dynamics
of the steady state, incompressible laminar flow and heat transfer
of a Newtonian, electrically conductive fluid at the entrance region
of a parallel-plate channel subjected to a uniform external mag-
netic field. Two types of the velocity field in the entry channel (uni-
form and parabolic inlet) and one boundary condition for the
temperature profile (uniform inlet) were analyzed. Their results
were compared with previously reported numerical solutions for
different values of the governing parameters and of the entry
boundary conditions, obtaining excellent agreement with litera-
ture results that applied the finite difference method.

Given the importance of the MHD flow of micropolar fluids, and
in view of the potential application of GITT approach to solve non-
linear and coupled models, this work presents an important and
innovative solution of the problem of MHD flowwith simultaneous
mass and energy transfer of a micropolar fluid past a permeable
vertical plate embedded in a porous medium in the presence of
chemical reaction using the GITT methodology.

2. Mathematical formulation

The problem addressed in this paper is defined by considering
the one-dimensional magnetohydrodynamic oscillatory transient
laminar flow of a micropolar fluid past a permeable vertical plate
embedded in a porous medium in the presence of chemical reac-
tion with heat and mass transfer. The flow arises along the x-axis
on a plate which moves continuously at uniform speed, up⁄, and
a constant magnetic field, B0, is applied in the y direction, neglect-
ing any induced magnetic field. It is assumed that a uniform sur-
face temperature, Tw, is maintained, while the ambient
temperature, T1, is constant such that Tw > T1. A uniform concen-
tration of the species at the surface, Cw, is maintained and the con-
centration in the ambient fluid is C1. The chemical reaction is
considered first order and irreversible. The Joule heating and the
term due to power dissipation are neglected. Fig. 1 shows the main
characteristics of the flow and the geometry of the studied
problem.

In the present study, the original problem of a semi-infinite
medium has been turned into a finite medium problem. Therefore,
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Fig. 1. Geometric representation of the studied problem.
the boundary conditions for y?1 is replaced by identical ones at
L, which is a sufficiently large value of y that the velocity u
approaches the relevant free stream velocity (i.e., L = 8).

From the simplifications adopted and using the equations of
motion and the energy and mass balances, the governing equations
of the flow with heat and mass transfer can be written in dimen-
sionless form as in Modather et al. (2009):

@u
@t

� @u
@y

¼ ð1þ bÞ @
2u

@y2
þ 2b

@x
@y

þ GrThþ GrC/� M þ 1þ b
K1

� �
u

0 < y < L; t P 0 ð1aÞ

@x
@t

� @x
@y

¼ 1
g
@2x
@y2
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� @h
@y

¼ 1
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@2h
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0 < y < L; t P 0 ð1cÞ

@/
@t

� @/
@y

¼ 1
Sc

@2/
@y2

þ c1/ 0 < y < L; t P 0 ð1dÞ

These equations are subjected to the following initial and
boundary conditions:

uðy;0Þ ¼ f 1ðy;0Þ
xðy;0Þ ¼ f 2ðy;0Þ
hðy;0Þ ¼ f 3ðy;0Þ
/ðy;0Þ ¼ f 4ðy;0Þ

8>>>>><
>>>>>:

;

uð0; tÞ ¼ Up

xð0; tÞ ¼ �n1
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���
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8>>>>>><
>>>>>>:

;

uðL; tÞ ¼ 0

xðL; tÞ ¼ 0
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/ðL; tÞ ¼ 0

8>>>>><
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ð2a-lÞ
In the formulation given by Eqs. (1) and (2), the following

dimensionless groups were employed:
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U0
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V0
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p
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U0V0
;
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The initial conditions were obtained from the work of Modather
et al. (2009) by applying t = 0 in their approximate solutions. Such
approximate solutions are as shown in the following equations:

f 1 y; tð Þ ¼ a1e�h2y þ a2e�Pry þ a4e�h5y þ a3e�gy

þ e b1e�h1y þ b2e�h3y þ b3e�h4y þ b4e�h6y
� �

ent ð4aÞ

f 2ðy; tÞ ¼ c1e�gy þ eðc2e�h1yÞent; f 3ðy; tÞ ¼ e�Pry þ e e�h4y
� �

ent;

f 4 y; tð Þ ¼ e�h5y þ e e�h6y
� �

ent ð4b-dÞ
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2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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g

s" #
;
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2ð1þ bÞ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 M þ 1þ b
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118 F.A. Pontes et al. / Journal of King Saud University – Science 31 (2019) 114–126
h3 ¼ 1
2 1þ bð Þ 1þ
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3. Solution methodology

3.1. Splitting of potentials

In order to improve the GITT performance and accelerate the
convergence of the method, a splitting-up procedure is employed
to remove the non-homogeneity in the boundary condition at
y = 0. To do this, each original potential, uðy; tÞ, xðy; tÞ, hðy; tÞ and
/ðy; tÞ, is split-up as follows:

uðy; tÞ ¼ uhðy; tÞ þ upðyÞ; xðy; tÞ ¼ xhðy; tÞ þxpðy; tÞ ð5a;bÞ

hðy; tÞ ¼ hhðy; tÞ þ hpðy; tÞ; /ðy; tÞ ¼ /hðy; tÞ þ /pðy; tÞ ð5c;dÞ
here, upðyÞ, xpðy; tÞ, hpðy; tÞ and /pðy; tÞ are potentials whose bound-
ary conditions carry the original non-homogeneities at the wall, and
uhðy; tÞ, xhðy; tÞ, hhðy; tÞ and /pðy; tÞ are potentials with homoge-
neous boundary conditions. By applying these definitions to Eqs.
(1) subjected to the initial and boundary conditions given by Eqs.
(2), the following filtered problems are obtained:
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With the following initial and boundary conditions:

uhðy;0Þ ¼ F1ðyÞ ¼ f 1ðy;0Þ � upðyÞ
xhðy;0Þ ¼ F2ðyÞ ¼ f 2ðy;0Þ �xpðy;0Þ
hhðy;0Þ ¼ F3ðyÞ ¼ f 3ðy;0Þ � hpðy;0Þ
/hðy;0Þ ¼ F4ðyÞ ¼ f 4ðy;0Þ � /pðy;0Þ
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The particular problems have been defined as the permanent
version of the original equations of each potential, disregarding,
in the case of linear velocity, the portions relating to other
potentials:

d2up

dy2
þ 1

1þ b

� �
dup

dy
� 1þ K1M þ b

K1ð1þ bÞ
� 

up ¼ 0 ð8aÞ

d2xp

dy2
þ g

dxp

dy
¼ 0 ð8bÞ

d2hp

dy2
þ Pr

dhp
dy

¼ 0 ð8cÞ

d2/p

dy2
þ Sc

d/p

dy
þ ðScc1Þ/p ¼ 0 ð8dÞ

With the following boundary conditions:

upð0Þ ¼ UP

xpð0; tÞ ¼ �n1
@up
@y þ @uh

@y

� 	���
y¼0

hpð0; tÞ ¼ 1þ eent

/pð0; tÞ ¼ 1þ eent

8>>>>><
>>>>>:

;

upðLÞ ¼ 0
xpðL; tÞ ¼ 0
hpðL; tÞ ¼ 0
/pðL; tÞ ¼ 0

8>>><
>>>:

ð9a-hÞ

The solution of the permanent version of the original equations
were analytically obtained by numerical-symbolic computing plat-
form Mathematica 9.0 (Wolfram, 2005), to yield:

upðyÞ ¼

e�
y� yffiffiffiffi

K1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þbÞ2þK1 1þ4Mð1þbÞ½ �

p
2ð1þbÞ e

ðL�yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þbÞ2þK1 ½1þ4Mð1þbÞ�

p ffiffiffiffi
K1

p
ð1þbÞ � 1

0
B@

1
CA

e

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þbÞ2þK1 ½1þ4Mð1þbÞ�

p ffiffiffiffi
K1

p
ð1þbÞ � 1

Up

ð10aÞ

xpðy; tÞ ¼ eðL�yÞg � 1
eLg � 1

�n1
dup

dy

����
y¼0

þ @uh

@y

����
y¼0

 !" #
ð10bÞ

hpðy; tÞ ¼ ePrðL�yÞ � 1
ePrL � 1

1þ eent
� � ð10cÞ

/pðy; tÞ ¼
e�

y
2

ffiffiffi
Sc

p
ð
ffiffiffi
Sc

p
þ
ffiffiffiffiffiffiffiffiffiffiffi
Sc�4c1

p
Þ eL

ffiffiffi
Sc

p ffiffiffiffiffiffiffiffiffiffiffi
Sc�4c1

p
� ey

ffiffiffi
Sc

p ffiffiffiffiffiffiffiffiffiffiffi
Sc�4c1

p� 	
eL
ffiffiffi
Sc

p ffiffiffiffiffiffiffiffiffiffiffi
Sc�4c1

p
� 1

ð1þ eentÞ

ð10dÞ
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The solution for the potential xpðy; tÞ given by Eq. (10b) is cou-
pled, and will be simultaneously obtained with that for the poten-
tial uhðy; tÞ .

3.2. Integral transform solution

Since all boundary conditions in y = 0 are now homogeneous,
the integral transformation of Eqs. (6a)–(6d) can be performed.
The first step is to choose an eigenvalue problem, which provides
the basis for the construction of a desired potential as an expansion
of orthogonal eigenfunctions. Such an eigenvalue problem is given
by:

d2wi

dy2
þ l2

i wi ¼ 0 ð11aÞ

wið0Þ ¼ 0; wiðLÞ ¼ 0 ð11b; cÞ
The analytical solution for this eigenvalue problem is given by

Özisik (1993) as follows:

wiðyÞ ¼ sinðliyÞ; li ¼
ip
L
; i ¼ 1;2;3; . . . ð12a;bÞ

Z L

0
wiðyÞwjðyÞdy ¼ 0; i – j

Ni; i ¼ j

�
; Ni ¼

Z L

0
w2

i ðyÞdy ¼ L
2

ð12c-eÞ

~wiðyÞ ¼ wiðyÞffiffiffiffiffi
Ni

p ð12fÞ

The eigenvalue problem above allows the definition of the fol-
lowing integral transform pairs:
�uh;iðtÞ ¼
Z L

0
w
�
iðyÞuhðy; tÞdy; transform; uhðy; tÞ ¼

P1
i¼1

w
�
iðyÞ�uh;iðtÞ; inverse (13a,b)

�xh;iðtÞ ¼
Z L

0
w
�
iðyÞxhðy; tÞdy; transform; xhðy; tÞ ¼

P1
i¼1

w
�
iðyÞ �xh;iðtÞ; inverse (14a,b)

�hh;iðtÞ ¼
Z L

0
w
�
iðyÞhhðy; tÞdy; transform; hhðy; tÞ ¼

P1
i�1

w
�
iðyÞ�hh;iðtÞ; inverse (15a,b)

�/h;iðtÞ ¼
Z L

0
w
�
iðyÞ/hðy; tÞdy; transform; /hðy; tÞ ¼

P1
i¼1

w
�
iðyÞ�/h;iðtÞ; inverse (16a,b)
The process of integral transformation is now accomplished by
multiplying Eqs. (6) and the initial conditions given by Eqs. (7a–d)
with the normalized eigenfunctions wi(y)/Ni

1/2 and integrated over
the domain [0,L] in the y direction and the inverse formulae given
by Eqs. (13–16b) are employed. Also, after the usual manipula-
tions, the following coupled ordinary differential system is
obtained:

d�uh;iðtÞ
dt

¼
X1
j¼1

Aij�uh;jðtÞ � l2
i ð1þ bÞ þM þ 1þ b

K1

� 
�uh;iðtÞ þ GrT

�hh;iðtÞ

þ GrC
�/h;iðtÞ þ 2b

X1
j¼1

Aij �xh;jðtÞ þ 2b
Z L

0

~wiðyÞ @xp

@y
dy

þ GrT

Z L

0

~wiðyÞhpdyþ GrC

Z L

0

~wiðyÞ/pdy ð17aÞ

d �xh;iðtÞ
dt

¼
X1
j¼1

Aij �xh;jðtÞ � l2
i

g
�xh;iðtÞ �

Z L

0

~wiðyÞ @xp

@t
dy ð17bÞ

d�hh;iðtÞ
dt

¼
X1
j¼1

Aij
�hh;jðtÞ � l2

i

Pr
�hh;iðtÞ �

Z L

0

~wiðyÞ @hp
@t

dy ð17cÞ
d�/h;iðtÞ
dt

¼
X1
j¼1

Aij
�/h;jðtÞ þ �l2

i

Sc
þ c1

� �
�/h;iðtÞ �

Z L

0

~wiðyÞ
@/p

@t
dy

ð17dÞ

�uh;ið0Þ ¼
Z L

0
w
�
iðyÞF1ðyÞdy; �xh;ið0Þ ¼

Z L

0
w
�
iðyÞF2ðyÞdy ð18a;bÞ

�hh;ið0Þ ¼
Z L

0
w
�
iðyÞF3ðyÞdy; �/h;ið0Þ ¼

Z L

0
w
�
iðyÞF4ðyÞdy ð18c;dÞ

With the following integral coefficient:

Aij ¼
Z L

0

~wiðyÞ d
~wjðyÞ
dy

dy ð19Þ

Eqs. (17a–d) form a coupled system of ordinary differential
equations (ODE) that needs to be solved numerically by appropri-
ate routines for this purpose, such as NDSolve from the symbolic
numerical platform Mathematica 9.0 (Wolfram, 2005).

3.3. Method of lines (MOL)

The MOL replaces the spatial (boundary-value) derivatives in
the PDE with algebraic approximations. Once this is done, the spa-
tial derivatives are no longer stated explicitly in terms of the spa-
tial independent variables. Thus, in effect, only the initial-value
variable, typically time in a physical problem, remains. In other
words, with only one remaining independent variable, it has a sys-
tem of ODEs that approximates the original PDE. Once this is done,
NDSolve can be used again to solve the system of ODEs. Thus, one
of the salient features of the MOL is the use of existing, and gener-
ally well-established, numerical methods for ODEs (Schiesser and
Griffiths, 2009).

Employing an approximation for the derivatives, the following
ODE system is generated:

duiðtÞ
dt

¼ uiþ1ðtÞ 1
2Dy

þ 1þ b
Dy2

� �
� uiðtÞ 2ð1þ bÞ

Dy2
þM þ 1þ b

K1

� 

þ ui�1ðtÞ 1þ b
Dy2

� 1
2Dy

� �
þ 2b

xiþ1ðtÞ �xi�1ðtÞ
2Dy

� 
þ GrThiðtÞ þ GrC/iðtÞ ð20aÞ

dxiðtÞ
dt

¼xiþ1ðtÞ 1
2Dy

þ g�1

Dy2

� �
�xiðtÞ 2g�1

Dy2

� �
þxi�1ðtÞ g�1

Dy2
� 1
2Dy

� �
ð20bÞ

dhiðtÞ
dt

¼ hiþ1ðtÞ 1
2Dy

þPr�1

Dy2

 !
�hiðtÞ 2Pr�1

Dy2

 !
þhi�1ðtÞ Pr�1

Dy2
� 1
2Dy

 !

ð20cÞ
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d/iðtÞ
dt

¼ /iþ1ðtÞ
1

2Dy
þ Sc�1

Dy2

 !
� /iðtÞ

2Sc�1

Dy2
� c1

 !

þ /i�1ðtÞ
Sc�1

Dy2
� 1
2Dy

 !
ð20dÞ

With the initial and boundary conditions as follows:

uið0Þ ¼ f 1ðyi;0Þ
xið0Þ ¼ f 2ðyi;0Þ
hið0Þ ¼ f 3ðyi;0Þ
/ið0Þ ¼ f 4ðyi; 0Þ

8>>><
>>>:

;

u1ðtÞ ¼ Up

x1ðtÞ ¼ �n1
u2ðtÞ�u1ðtÞ

Dy

���
y¼0

h1ðtÞ ¼ 1þ eent

/1ðtÞ ¼ 1þ eent

8>>>>><
>>>>>:

;

uNPTðtÞ ¼ 0
xNPTðtÞ ¼ 0
hNPTðtÞ ¼ 0
/NPTðtÞ ¼ 0

8>>><
>>>:

ð21a-lÞ
3.4. Engineering parameters

The local skin friction coefficient, local wall couple stress coeffi-
cient, local Nusselt number and local Sherwood number are impor-
tant physical quantities for this type of heat and mass transfer
problem. These are defined by Modather et al. (2009) as follows:

- Local skin friction factor:

Cf ¼ 2s�w
qU0V0

¼ 2 1þ ð1� n1Þb½ �u0ð0Þ ð22Þ

where the wall shear stress may be written as:

s�w ¼ ðlþKÞ@u
�

@y�

����
y�¼0

þKx�jy�¼0 ¼ qU0V0 1þ ð1� n1Þb½ �u0ð0Þ

ð23Þ
- Local couple stress coefficient:

C 0
w ¼ Mwv2

cU0V
2
0

¼ x0ð0Þ ð24Þ

where the wall couple stress may be written as:

Mw ¼ c
@x�

@y�

����
y�¼0

ð25Þ

- Heat transfer rate at the surface in terms of the local Nusselt
number:

NuRe�1
x ¼ �h0ð0Þ ð26Þ

- Mass transfer rate at the surface in terms of the local Sherwood
number:

ShRe�1
x ¼ �/0ð0Þ ð27Þ

where the local Nusselt number, the local Sherwood number and
the local Reynolds number are defined as follows:

Nu ¼ x
@T=@y�jy�¼0

T1 � Tw
ð28Þ

Sh ¼ x
@C=@y�jy�¼0

C1 � Cw
ð29Þ

Rex ¼ xV0=m ð30Þ
3.5. Recovering the original potentials

The original potentials and some related quantities can be eval-
uated from their definitions using the inversion formulae given by
Eqs. (13–16b) together with the respective particular solutions:
- Linear velocity field:

uðy; tÞ ¼ upðyÞ þ uhðy; tÞ ¼ upðyÞ þ
X1
i¼1

~wiðyÞ�uh;iðtÞ ð31aÞ

- Angular velocity field:

xðy; tÞ ¼ xpðy; tÞ þxhðy; tÞ ¼ xpðy; tÞ þ
X1
i¼1

~wiðyÞ �xh;iðtÞ ð31bÞ

- Temperature field:

hðy; tÞ ¼ hpðy; tÞ þ hhðy; tÞ ¼ hpðy; tÞ þ
X1
i¼1

~wiðyÞ�hh;iðtÞ ð31cÞ

- Concentration field:

/ðy; tÞ ¼ /pðy; tÞ þ /hðy; tÞ ¼ /pðy; tÞ þ
X1
i¼1

~wiðyÞ�/h;iðtÞ ð31dÞ
4. Results and discussion

To obtain numerical results from the coupled system of ordi-
nary differential equations, Eqs. (17) and (20), two methodologies
were applied: the eigenfunction expansions were truncated to a
finite number of terms N, which is the truncation order of the
recovered potential in the GITT approach and discretization of
the system with a number of points, NPT, in the mesh using
approximation formulas in the MOL solution. Therefore, N and
NPT were assigned to the NDSolve subroutine from the
numerical-symbolic computing platform Mathematica 9.0 (2005).
While not explicitly shown in the text, the results shown were
obtained by adopting N = 580 and NPT = 800, numbers high enough
to guarantee the convergence of all fields for the various situations
analyzed.

4.1. Convergence behavior analysis and verification of results

Convergence analysis of the linear and angular velocity compo-
nents, the temperature and the concentration fields, i.e., gradually
increasing the truncation order of the GITT expansions until a cer-
tain criterion of numerical error in the analyzed fields is reached.
Such analysis it was performed to illustrate the main numerical
features of the present approach at certain positions along the
plate.

Tables 1 and 2 illustrate the convergence behavior of the GITT
solution for two different dimensionless times, t = 1 and t = 50,
respectively, using the parameters K1=5, c1=0.1, e = 0.01, n1=0.5,
n = 0.1, b = 1, M = 2, GrT=2, GrC=1, Pr = 1, Sc = 2 and Up = 0.5.

According to these tables, with 20 terms in the series the tem-
perature and concentration fields are already substantially con-
verged within four digits, even at flow regions very close to the
plate entry (y = 0.5). In contrast, despite the temperature and con-
centration fields requiring fewer than 20 terms to converge, the
linear and angular velocity fields need more than 580 terms for a
convergence to four digits in both cases (t = 1 and t = 50). It is
noticed that the linear and angular velocity fields did not signifi-
cantly change for the two dimensionless times analyzed, although
for short time (t = 1) the temperature and concentration fields con-
verged with fewer terms in the series (N = 20) when compared to
t = 50 in which the convergence required N = 60.

The transient behavior of the linear and angular velocities, tem-
perature and concentration profiles is observed in Fig. 2a–d, which
is performed for the dimensionless times t = 0, 30, 40 and 50. Also,
from these figures, verification of results shows the excellent
agreement between the calculated concentration field using the
GITT approach with results of Modather et al. (2009), as well as
with those of the MOL approach. However, the results of the



Table 1
Convergence behavior of the GITT results for linear and angular velocity components, temperature and concentration distribution at different axial positions for t = 1, K1 = 5,
c1=0.1, e = 0.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5.

NT u(y,t) x(y,t)

y = 0.5 y = 1 y = 2 y = 3 y = 7 y = 0.5 y = 1 y = 2 y = 3 y = 7

500 0.443770 0.331285 0.151791 0.062468 0.001100 �0.013317 �0.009461 �0.004788 �0.002449 �0.000115
520 0.443790 0.331309 0.151808 0.062477 0.001100 �0.013422 �0.009534 �0.004822 �0.002465 �0.000115
540 0.443809 0.331331 0.151824 0.062485 0.001101 �0.013520 �0.009601 �0.004854 �0.002480 �0.000116
560 0.443827 0.331352 0.151838 0.062493 0.001101 �0.013610 �0.009663 �0.004883 �0.002494 �0.000116
580 0.443843 0.331371 0.151852 0.062500 0.001101 �0.013694 �0.009721 �0.004911 �0.002507 �0.000117
MOL (NPT = 800) 0.442667 0.329636 0.150708 0.062095 0.001109 �0.011160 �0.008290 �0.004620 �0.002560 �0.000130
Modather et al. (2009) 0.444485 0.332242 0.152625 0.063018 0.001447 �0.016603 �0.012078 �0.006405 �0.003407 �0.000282

NT h(y,t) /(y,t)

y = 0.5 y = 1 y = 2 y = 3 y = 7 y = 0.5 y = 1 y = 2 y = 3 y = 7

20 0.613156 0.371920 0.136905 0.050421 0.000685 0.392004 0.152033 0.022882 0.003447 0.000003
40 0.613158 0.371920 0.136906 0.050420 0.000685 0.392011 0.152033 0.022884 0.003446 0.000002
60 0.613158 0.371920 0.136906 0.050420 0.000685 0.392011 0.152033 0.022884 0.003446 0.000002
80 0.613158 0.371920 0.136906 0.050420 0.000685 0.392011 0.152033 0.022884 0.003447 0.000002
100 0.613158 0.371920 0.136906 0.050420 0.000685 0.392011 0.152033 0.022884 0.003447 0.000002
MOL (NPT = 800) 0.618940 0.375190 0.137936 0.050736 0.000686 0.378882 0.139199 0.018802 0.002541 0.000000
Modather et al. (2009) 0.613622 0.372430 0.137209 0.050559 0.000934 0.392371 0.152278 0.022939 0.003456 0.000002

Table 2
Convergence behavior of the GITT results for linear and angular velocity components, temperature and concentration distribution at different axial positions for t = 50, K1 = 5,
c1=0.1, e = 0.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5.

NT u(y,t) x(y,t)

y = 0.5 y = 1 y = 2 y = 3 y = 7 y = 0.5 y = 1 y = 2 y = 3 y = 7

500 0.783094 0.694151 0.367333 0.162921 0.003696 �0.450585 �0.308911 �0.144951 �0.067690 �0.001923
520 0.783149 0.694218 0.367381 0.162950 0.003697 �0.450876 �0.309114 �0.145049 �0.067737 �0.001924
540 0.783200 0.694279 0.367427 0.162975 0.003698 �0.451146 �0.309302 �0.145140 �0.067781 �0.001925
560 0.783249 0.694336 0.367469 0.162999 0.003700 �0.451396 �0.309476 �0.145224 �0.067821 �0.001927
580 0.783293 0.694390 0.367508 0.163022 0.003701 �0.451629 �0.309638 �0.145302 �0.067859 �0.001928
MOL (NPT = 800) 0.775663 0.688526 0.364418 0.161668 0.003652 �0.445160 �0.304980 �0.142910 �0.066650 �0.001880
Modather et al. (2009) 0.837083 0.779444 0.456567 0.227404 0.012499 �0.550269 �0.418623 �0.242337 �0.140326 �0.015812

NT h(y,t) /(y,t)

y = 0.5 y = 1 y = 2 y = 3 y = 7 y = 0.5 y = 1 y = 2 y = 3 y = 7

20 1.465646 0.865754 0.301967 0.105526 0.001160 0.932639 0.351231 0.049472 0.007295 0.000243
40 1.466223 0.865717 0.302171 0.105442 0.001070 0.933810 0.351153 0.049855 0.007052 0.000002
60 1.466229 0.865768 0.302143 0.105454 0.001068 0.933831 0.351261 0.049789 0.007075 �0.000003
80 1.466202 0.865773 0.302152 0.105458 0.001071 0.933773 0.351271 0.049810 0.007085 0.000003
100 1.466219 0.865767 0.302148 0.105457 0.001072 0.933809 0.351258 0.049800 0.007082 0.000004
MOL (NPT = 800) 1.480788 0.873786 0.304542 0.106151 0.001073 0.905699 0.32366 0.041402 0.005308 0.000000
Modather et al. (2009) 1.558884 0.978995 0.386972 0.153403 0.003891 0.998936 0.402042 0.065287 0.010636 0.000008

F.A. Pontes et al. / Journal of King Saud University – Science 31 (2019) 114–126 121
calculations of the other fields do not agree with the literature
results at longer times (t = 30, 40 and 50). This is due to the fact
that the solution methodology employed by Modather et al.
(2009) is an approximation. Thus, the integral transform results
may be considered closest to the actual behavior of the flow for
longer time, since these results agreed with the MOL results.

As seen in Fig. 2a–d, the fluid velocity, temperature and the
solute concentration in the fluid increase as time increases, while
the angular velocity of the fluid decreases with increasing time.
Furthermore, the velocity increases with time. The velocity profiles
achieve a maximum value near the surface, and approach an
asymptotic value (free stream velocity) with increasing distance
from the surface. In addition, the momentum boundary layer thick-
ness increases as t increases. The thermal boundary layer thickness
decreases and the temperature gradient at the wall increases as t
decreases. Hence, the heat transfer rate increases as t decreases.
The temperature is high near the surface of the plate and decreases
with increasing distance from the plate, approaching an asymp-
totic value

The following section studies the effect of the variation of the
system parameters on the linear and angular velocity, temperature
and concentration fields. The parameters employed in the present
analysis were:
- Magnetic field parameter (M): which is directly proportional to
the magnetic field applied externally, B0, Eq. (3n);

- Schmidt number (Sc): describes the relative thickness of the
velocity and the mass boundary layers. It is the relation
between the viscous diffusion rate, m, and the species diffusion
rate, D, Eq. (3m);

- Prandtl number (Pr): describes the relative thickness of the
velocity and the thermal boundary layers. It is the relation
between the viscous diffusion rate, m, and the heat diffusion
rate, a, Eq. (3l);

- Permeability parameter (K1): which is directly proportional to
the porosity of the media, K. The presence of a porous medium
provides an increase in flow resistance, Eq. (3s);

- Chemical reaction parameter (c1): which is directly propor-
tional to the reaction rate constant, c1⁄, Eq. (3t).

4.2. Effect of magnetic field parameter

Fig. 3a and b show the sensitivity of the linear and angular
velocities to the magnetic field parameter (M). The examination
is performed for M = 0, 2, 3 and 4. From these figures, it is shown
that the linear velocity decreases with increasing magnetic field
intensity, while the angular velocity increases with increasing M.



Fig. 2. Transient behavior of the potential distributions for K1 = 5, c1=0.1, e = 0.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5: a) linear velocity; b)
angular velocity; c) temperature; d) concentration.

Fig. 3. Effect of magnetic field parameter (M) on the potential distributions for t = 1, K1 = 5, c1=0.1, e = 0.01, n1 = 0.5, n = 0.1, b = 1, GrT = 2, GrC = 1, Pr = 1 and Up = 0.5: a) linear
velocity; b) angular velocity.
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The application of a magnetic field to an electrically conductive
fluid produces a resistive force to flow (Lorentz force), slowing
the movement of the fluid.

4.3. Effect of Schmidt number

The influence of the Schmidt number on the linear and angular
velocities and concentration field is illustrated in Fig.4a–c. The
investigation is performed for Sc = 1, 2, 3 and 5. There, it is
observed that the linear and angular velocities and the concentra-
tion field decrease as the Schmidt number increases. For Sc = 2 the
viscous diffusion rate (m) is twice the value of the species diffusion
rate (D); thus, the velocity and the concentration are larger than
the results for Sc = 5 where the viscous diffusion rate is five times
larger than the species diffusion rate.

4.4. Effect of Prandtl number

Fig. 5a–c illustrate the influence of the Prandtl number on the
linear and angular velocities and temperature field for Pr = 0.71,
1, 3 and 7. As shown in these figures, the linear velocity and the
temperature decrease as Pr is increased, while the angular velocity
increases with the Prandtl number. When Pr = 0.71 (air at 20 �C)
the viscous diffusion rate (m) is lower than the heat diffusion rate
(a) and thus the velocity and temperature are lower when com-
pared to the results of Pr = 1 (electrolytic solution) where m is equal



Fig. 4. Effect of Schmidt number (Sc) on the potential distributions for t = 1, K1 = 5, c1=0.1, e = 0.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1 and Up = 0.5: a) linear
velocity; b) angular velocity; c) concentration.

Fig. 5. Effect of Prandtl number (Pr) on the potential distributions for t = 1, K1 = 5, c1=0.1, e = 0.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Sc = 2 and Up = 0.5: a) linear
velocity; b) angular velocity; c) temperature.
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in order of magnitude to a. For Pr = 3 and Pr = 7 (water), where the
viscous diffusion rate is larger than the heat diffusion rate, the tem-
peratures are much lower when compared to the results from the
other values of Prandtl number.

4.5. Effect of permeability parameter

Fig. 6a and b show the influence of the permeability param-
eter (K1) on the linear and angular velocities and temperature
field for K1=1, 2, 3, 4, 5 and 1 (taken 10,000). As the perme-
ability parameter (K1) increases, the linear velocity increases
along with the thickness of the boundary layer, while the angu-
lar velocity decreases. The presence of a porous medium
Fig. 6. Effect of permeability parameter (K1) on the potential distributions for t = 1, e = 0
velocity; b) angular velocity.

Fig. 7. Effect of chemical reaction parameter (c1) on the potential distributions for t = 1, K
a) linear velocity; b) angular velocity; c) concentration.
increases flow resistance (i.e., as K1 decreases), so that the
resulting resistive force tends to reduce the movement of fluid
along the plate surface and promotes an increase in angular
velocity.

4.6. Effect of chemical reaction parameter

Fig. 7a–c show the influence of the chemical reaction parameter
(c1) on the linear and angular velocities and concentration field for
c1=0, 0.1, 0.2, 0.3 and 0.4. The linear velocity and the concentration
increase as c1 increases, while the angular velocity has the opposite
behavior, although it should be emphasized that c1 has little influ-
ence on the linear velocity field.
.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5: a) linear

1 = 5, e = 0.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5:



Table 4
Unsteady behaviors of the coefficients of skin friction, couple stress, heat transfer and
mass transfer with various values of t for K1 = 5, c1=0.1, e = 0.01, n1 = 0.5, n = 0.1, b = 1,
M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5.

t Cf C’w NuRex
�1 ShRex

�1

0 0.13379 �0.33944 1.003844 1.894163
1 0.129858 0.012227 1.00643 1.898082
3 0.136421 0.013787 1.009512 1.903274
5 0.144142 0.014956 1.012986 1.90926
10 0.171954 0.018567 1.024827 1.930465
20 0.294258 0.033806 1.075582 2.022959
30 0.626805 0.075172 1.213436 2.274371
40 1.530762 0.187615 1.588161 2.95778
50 3.987973 0.493268 2.60677 4.815479

Table 3
Effects of variations of chemical reaction and permeability parameters on the
coefficients of skin friction, couple stress, heat transfer and mass transfer for t = 1,
e = 0.01, n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5.

c1 K1 Cf C’w NuRex
�1 ShRex

�1

0 1 �0.81371 �0.09106 1.00643 2.00278
2 �0.28897 �0.03366
3 �0.08012 �0.0108
5 0.104194 0.009396
1 0.418018 0.043796

0.1 1 �0.79383 �0.08887 1.00643 1.89808
2 �0.26594 �0.03112
3 �0.05572 �0.0081
5 0.129858 0.012227
1 0.445951 0.046876

0.2 1 �0.76954 �0.08619 1.00643 1.77907
2 �0.23766 �0.02801
3 �0.0257 �0.00479
5 0.161488 0.015715
1 0.480476 0.050683
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4.7. Effect of parameters on Cf, C0
w, NuRex

�1 and ShRex
�1

Table 3 illustrates the effects of the chemical reaction parame-
ter, c1, and the permeability parameters, K1, on the coefficients of
skin friction, couple stress, heat transfer and mass transfer. It can
be seen that as K1 increases, both Cf and C0

w increase. For increasing
c1, both Cf and C0

w increase, while ShRex
�1 decreases as the chem-

ical reaction parameter increases.
Table 5
Effects of variations of flow conditions and fluid properties on the coefficients of skin fri
n1 = 0.5, n = 0.1, b = 1, M = 2, GrT = 2, GrC = 1, Pr = 1, Sc = 2 and Up = 0.5.

Cf

Pr 0.71 0.507916
1 0.129858

Sc 1 0.529522
2 0.129858

GrT 0 �1.92717
1 �0.89866
2 0.129858

GrC 0 �0.56531
1 0.129858
2 0.825031

n1 0 0.14121
0.5 0.129858
1 0.113438

n 0 0.127621
0.05 0.128725
0.1 0.129858
0.15 0.130877

b 0 0.575446
1 0.129858
1.5 �0.08273

e 0 0.100393
0.01 0.129858
0.1 0.395046

Up 0 2.75221
0.5 0.129858
1 �2.49249

M 0 3.04355
2 0.129858
3 �0.4929
4 �0.97399
Table 4 presents the variation of the coefficients of skin friction,
couple stress, heat transfer and mass transfer for different dimen-
sionless times. In general, skin friction, couple stress, heat transfer
and mass transfer increase with time.

Table 5 presents the effects of Pr, Sc, GrT, GrC, n1, n, b, e, Up and M
on skin friction and couple stress across the boundary layer, as well
as the local Nusselt and Sherwood numbers. It can be concluded
that the skin friction and the couple stress decrease as the plate
velocity, Up, and magnetic parameter, M, increase. It can also note
from this table that increasing Pr, GrT, GrC, n1, n or e causes Cf and C0

w

to increase, while increasing Sc or b produces lower values of Cf and
C0

w. On the other hand, the local Nusselt number increases as n, Pr
or e increase and the local Sherwood number increases as n, Sc or e
increase.
ction, couple stress, heat transfer and mass transfer for t = 1, K1 = 5, c1=0.1, e = 0.01,

C’w NuRex
�1 ShRex

�1

0.053958 0.715516 1.89808
0.012227 1.00643

0.056338 1.00643 0.893247
0.012227 1.89808

�0.21271 1.89808
�0.10024
0.012227

�0.06344
0.012227
0.08789

0
0.012227
0.033266

0.01205 1.00497 1.89539
0.012159 1.00569 1.8967
0.012227 1.00643 1.89808
0.012149 1.00716 1.89953

0.137349 1.00643 1.89808
0.012227
�0.00824

0.009076 0.995016 1.87663
0.012227 1.00643 1.89808
0.040586 1.10916 2.09118

0.300596 1.00643 1.89808
0.012227
�0.27614

0.33213
0.012227
�0.05596
�0.10855
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5. Conclusions

The present work has analyzed the unsteady one-dimensional
MHD oscillatory flow of a micropolar and incompressible fluid
with heat and mass transfer through a permeable vertical plate
embedded in a porous medium in the presence of chemical reac-
tion using the GITT approach as solution methodology for the
related governing equations.

In the results, it was observed that the angular velocity
increases with increasing magnetic field intensity, while the linear
velocity decreases with increasing the same. The linear and angular
velocities and the concentration field decrease as the Schmidt
number increases. It is also observed that the linear velocity and
the temperature decrease as Prandtl number is increased, while
the angular velocity increases with this parameter.

The results obtained with the GITT approach compare reason-
ably with the literature results and very well with those obtained
using the MOL approach. Therefore, the computer code developed
in this study was employed for an in-depth investigation of the
effects of governing parameters on the flow, heat transfer and mass
transfer over the plate.

The hybrid GITT approach proved to be a versatile method for
the solution of the nonlinear problem examined in this work,
therefore enabling the study of the class of problems that involve
electromagnetic phenomena combined with heat and mass trans-
fer in the presence of chemical reaction.

It is remarkable that there are no previous studies addressing
the solution of micropolar fluid MHD flow models by the GITT
method. Therefore, the present work represents an expansion of
the application of the present methodology and can be extended
to analyze other effects, such as radiation and viscous dissipation
in the governing equations.
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