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Abstract We consider two variants of the generalized phi-four equation with arbitrary constant

coefficients and general values of the exponents in the dissipation and nonlinear terms. By using sol-

itary wave ansatze in terms of sechp(x) and tanhp(x) functions respectively, we find the non-topolog-

ical (bright) as well as topological (dark) soliton solutions for the considered models. The physical

parameters in the soliton solutions are obtained as a function of the dependent model coefficients.

The conditions of existence of solitons are presented. Further, we show that the obtained soliton

solutions depend on the exponent of the wave function u(x, t), positive or negative, and on all the

dependent model coefficients as well.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In the theoretical investigation of the dynamics of nonlinear
waves in physical systems several kinds of nonlinear partial dif-
ferential equations (NLPDEs) take an important role. These

equations appear in a great array of contexts such as, for exam-
M. Wazwaz).

y. Production and hosting by

Saud University.

lsevier
ple, in plasma physics, fluid mechanics, nonlinear optics,

hydrodynamics, quantum mechanics and many other fields. It
should be noted that the propagation behavior of nonlinear
waves depends on the model coefficients which can be constant
or variable parameters depending on the physical situation.

In the past decades, studies have been made on the aspect of
integrability of NLPDEs. A given nonlinear evolution equation
can be considered integrable when it is equivalent to the com-

patibility condition for the associated Lax pair (Ablowitz and
Clarkson, 1992). Lax pair can be used not only to demonstrate
the integrability but also to construct the soliton solutions via

the Darboux transformation (Ablowitz and Clarkson, 1992).
In many practical physics problems ((Triki and Wazwaz,
2010), the resulting nonlinear wave equations of interest are
nonintegrable (Palacios, 2004). In some particular cases they

may be close to an integrable one (Palacios, 2004). It is remark-
able that non- integrability is not necessarily related to the non-
linear terms (Palacios and Fernandez-Diaz, 2000). Higher

http://dx.doi.org/10.1016/j.jksus.2012.08.001
http://dx.doi.org/10.1016/j.jksus.2012.08.001
http://www.sciencedirect.com/science/journal/10183647
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order dispersions, for example, also can make the system to be
non- integrable (while it remains Hamiltonian) (Palacios and
Fernandez-Diaz, 2000).

Bymeans of different modernmethods of integrability (Triki
and Wazwaz, 2009a,b, 2010, 2011a,b; Triki and Ismail, 2010;
Triki and Taha, 2012) such as the coupled amplitude-phase

formalism (Du et al., 1995; Palacios et al., 1999), the hyperbolic
tangent method (Malfliet, 1992), Hirota bilinear method
(Nakkeeran, 2002; Wazwaz, 2005a,b, 2010), the sub-ODE

method (Li andWang, 2007; Triki andWazwaz, 2009a), the sol-
itary wave ansatz method (Biswas et al., 2011; Biswas, 2008a,b,
2009a,b; Saha et al., 2009) and other methods as well, a rich
variety of exact solutions have been obtained. Based on these

exact solutions directly, we can accurately analyze the proper-
ties of the propagating waves in dynamical systems. These
methods work even though the Painleve test of integrability will

fail (Biswas, 2009b).
The phi-four equation reads (Wazwaz, 2005b)

utt � auxx � uþ u3 ¼ 0; a > 0; ð1Þ

arises in many branches of mathematical physics. Special solu-
tions known as kink and anti-kink solitons,

uðx; tÞ ¼ � tanh
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1� c2Þ
p ðx� ctÞ
 !

; ð2Þ

have been found (Triki and Wazwaz, 2009b). Here c is the

wave speed while the coefficient a satisfies the condition
a= 1 for the solution (2) to exist. In the same context, they
have investigated two generalized forms of the phi-four equa-
tion by using the sine-cosine ansatz. As an example of the con-

sidered generalized forms, one finds the following model
equations:

unð Þtt � a unð Þxx � um þ un ¼ 0; ð3Þ
u�nð Þtt � aðu�nÞxx � um þ u�n ¼ 0; ð4Þ

where the effect of the positive and negative exponents and the

coefficient a of the second derivative uxx on the obtained solu-
tions have been studied.

For the purpose of better understanding the effect of the
exponents and the dependent model coefficients on the proper-

ties of the resulting solitons, we consider the following two
variants:

ðulÞtt � aðunÞxx � bum þ cun ¼ 0; ð5Þ
ðu�lÞtt � aðu�nÞxx � bum þ cu�n ¼ 0; ð6Þ

where a, b and c are arbitrary nonzero constants and l, m and n
are integers. If setting l= n and b = c= 1, Eqs. (5) and (6) re-

duce to the model Eqs. (3) and (4).
Our interest in the present paper (Esfahani, 2011) is to

search for the solitary wave solutions for Eqs. (5) and (6) as

they appear, namely for three arbitrary coefficients a, b and
c and general values of the integers l, m and n. The technique
that will be used is the solitary ansatz method, which is one of

the most effective direct methods to construct solitary wave
solutions of nonlinear evolution equations, see for example
(Biswas et al., 2011; Biswas, 2008a,b, 2009a,b; Saha et al.,
2009) and references therein. In particular, we show that the
existence of solitary wave solutions (Triki and Taha, 2012) de-
pends essentially on the model coefficients a, b and c, and
therefore on the specific nonlinear and dissipation features of

the medium. Notably, solitary waves, which are localized trav-
eling waves, asymptotically zero at large distances, are very
interesting from the point of view of applications.

2. Soliton solutions via the solitary wave ansatz

2.1. Variant I

We first consider the variant I of the generalized phi-four equa-

tion with positive exponents (5):

ðulÞtt � aðunÞxx � bum þ cun ¼ 0; ð7Þ

where u(x, t) is the unknown function depending on the spatial

variable x and the temporal variable t. The subscripts x and t
denote partial derivatives with respect to these variables, and
a, b and c are real constants. In (7) the first term is the evolu-

tion term, the second term represents the dissipation term,
while the last two terms are the nonlinear terms.

2.1.1. Bright solitons

To find an exact bright soliton solution for (7), we use the fol-
lowing solitary wave ansatz (Biswas et al., 2011; Biswas,
2008a,b; Saha et al., 2009)

uðx; tÞ ¼ A

coshps
; ð8Þ

where

s ¼ Bðx� vtÞ; ð9Þ

and

p > 0; ð10Þ

for solitons to exist. Here, in (8) and (9), A represents the
amplitude of the soliton, while v is the velocity of the soliton
and B represents the inverse width of the soliton. The exponent

p will be determined as a function of l, m and n.
From the ansatz (8), one gets

ðulÞtt ¼
p2l2v2AlB2

coshpls
� plðplþ 1Þv2AlB2

coshplþ2s
; ð11Þ

ðunÞxx ¼
p2n2AnB2

coshpns
� pnðpnþ 1ÞAnB2

coshpnþ2s
; ð12Þ

un ¼ An

coshpns
; ð13Þ

um ¼ Am

coshpms
: ð14Þ

Inserting the expressions (11)–(14) into (7) yields

p2l2v2AlB2

coshpls
� plðplþ 1Þv2AlB2

coshplþ2s
� ap2n2AnB2

coshpns

þ apnðpnþ 1ÞAnB2

coshpnþ2s
� bAm

coshpms
þ cAn

coshpns
¼ 0: ð15Þ

Now, from (15), matching the exponents of 1/coshpn+2s and
1/coshpms functions gives

pnþ 2 ¼ pm; ð16Þ
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so that

p ¼ 2

m� n
: ð17Þ

Also, from (15), equating the exponents of 1/coshpls and
1/coshpns functions yields

pl ¼ pn; ð18Þ

and therefore

l ¼ n: ð19Þ

Now, the functions 1/coshpn+js with n = l, for j= 0, 2 in (15)
are linearly independent. Thus, their respective coefficients

must vanish. Setting their coefficients to zero gives the system
of algebraic equations:

p2n2AnB2ðv2 � aÞ þ cAn ¼ 0;

� pnðpnþ 1ÞAnB2ðv2 � aÞ � bAm ¼ 0: ð20Þ

Solving the above system gives

A ¼ ðmþ nÞc
2nb

� � 1
m�n

; m > n > 1 ð21Þ

B ¼ m� n

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c

a� v2

r
: ð22Þ

Thus, the 1-soliton solution of the generalized phi-four Eq. (7)
with positive exponents is given by

uðx; tÞ ¼ ðmþ nÞc
2nbcosh2½Bðx� vtÞ�

� � 1
m�n

; ð23Þ

where the width B is given by (22). In view of (22), we clearly
see that this solution exists provided that c(a � v2) > 0. Also
(21) shows that it is necessary to have bc > 0 for the bright sol-

iton to exist if m � n is an even integer. However, if m � n is an
odd integer there is no such restriction but the soliton will be
pointing downward. Finally, we would like to note that the

solution (23) exists provided (Adem et al., 2011) that m > n
as seen from (10) and (17).

2.1.2. Dark solitons

In this subsection the search is going to be for shock wave solu-
tion or topological 1-soliton solution to the generalized phi-
four equation given by (7). To start off, the hypothesis is given

by (Saha et al., 2009; Triki and Wazwaz, 2009a,b)

uðx; tÞ ¼ Atanhps; ð24Þ

where

s ¼ Bðx� vtÞ; ð25Þ

and

p > 0; ð26Þ

for solitons to exist. Here in (24) and (25), A and B are free
parameters while v is the velocity of the wave. Also, the un-
known exponent p will be determined during the course of

the derivation of the soliton solution to (7).
From the ansatz (24), we get
ðulÞtt ¼ plAlB2v2fðpl� 1Þtanhpl�2s� 2pltanhpls

þ ðplþ 1Þtanhplþ2sg; ð27Þ
ðunÞxx ¼ pnAnB2fðpn� 1Þtanhpn�2 � 2pntanhpns

þ ðpnþ 1Þtanhpnþ2sg; ð28Þ

un ¼ Antanhpns; ð29Þ

um ¼ Amtanhpms: ð30Þ

Substituting (27)–(30) into (7) yields

plAlB2v2fðpl� 1Þtanhpl�2s� 2pltanhpls

þ ðplþ 1Þtanhplþ2sg � apnAnB2fðpn� 1Þtanhpn�2s

� 2pntanhpnsþ ðpnþ 1Þtanhpnþ2sg � bAmtanhpms

þ cAntanhpns ¼ 0: ð31Þ

From (31), equating the exponents pn+ 2 and pm gives

pnþ 2 ¼ pm; ð32Þ

so that

p ¼ 2

m� n
: ð33Þ

Next, equating the exponents pl and pn gives

pl ¼ pn; ð34Þ

so that

l ¼ n; ð35Þ

which also follows if the exponents pair pl + 2 and pn + 2,
and pl � 2 and pn � 2, match up. Now, noting that the func-
tions tanhpn+js, with j= �2,0,2, are linearly independent, set-

ting their coefficients to zero yields

� 2p2n2AnB2ðv2 � aÞ þ cAn ¼ 0; ð36Þ
pnAnB2ðpnþ 1Þðv2 � aÞ � bAm ¼ 0; ð37Þ
pnAnB2ðpn� 1Þðv2 � aÞ ¼ 0: ð38Þ

To solve (38), we have considered the case pn � 1 = 0. This
yields

p ¼ 1

n
: ð39Þ

Substituting (39) into (36) and (37) gives

A ¼ c

b

� � 1
m�n
; m > n > 1 ð40Þ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

2ðv2 � aÞ

r
: ð41Þ

Hence, the topological 1-soliton solution to the generalized
phi-four Eq. (7) is given by

uðx; tÞ ¼ c

b
tanh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2ðv2 � aÞ

r
ðx� vtÞ

	 
� � 1
m�n

; ð42Þ

which exists provided that m= 3n as seen from equating the
two values of p from (33) and (39), and c(v2 � a) > 0 follow-

ing to (41).
It is of interest to note that when m= 3, n= l= 1 and

b= c = �1, the generalized phi-four Eq. (7) will be reduced

to (1) and the corresponding solution (42) will have a similar
form as the solution (2).
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2.2. Variant II

In this section, we consider the variant II of the generalized
phi-four equation with negative exponents (6):

ðu�lÞtt � aðu�nÞxx � bum þ cu�n ¼ 0: ð43Þ

The focus will be on searching the bright and dark soliton solu-
tions to (43).

2.2.1. Bright solitons

The starting hypothesis for the solution to (43) is the same as
in the variant I that is given by (8) and (9). Thus from the an-
satz (8), we obtain

ðu�lÞtt ¼
p2l2v2A�lB2

cosh�pls
� plðpl� 1Þv2A�lB2

cosh�plþ2s
; ð44Þ

ðu�nÞxx ¼
p2n2A�nB2

cosh�pns
� pnðpn� 1ÞA�nB2

cosh�pnþ2s
; ð45Þ

u�n ¼ A�n

cosh�pns
; ð46Þ

um ¼ Am

coshpms
: ð47Þ

Inserting the expressions (44)–(47) into (43) yields

p2l2v2A�lB2

cosh�pls
� plðpl� 1Þv2A�lB2

cosh�plþ2s
� ap2n2A�nB2

cosh�pns

þ apnðpn� 1ÞA�nB2

cosh�pnþ2s
� bAm

coshpms
þ cA�n

cosh�pns
¼ 0: ð48Þ

Equating the exponents of 1/cosh�pn+2s and
1/coshpms functions, we get

�pnþ 2 ¼ pm; ð49Þ

so that

p ¼ 2

nþm
: ð50Þ

Next, equating the exponents �pl and �pn gives

�pl ¼ �pn: ð51Þ

so that

l ¼ n; ð52Þ

which is also obtained by equating the exponents �pl + 2 and
�pn+ 2. Now, noting that the functions 1/cosh�pn+js, with
j= 0,2, are linearly independent (Adem et al., 2011), setting

their coefficients to zero yields

p2n2A�nB2ðv2 � aÞ þ cA�n ¼ 0; ð53Þ
� pnðpn� 1ÞA�nB2ðv2 � aÞ � bAm ¼ 0: ð54Þ

Solving the above equations gives

A ¼ cðn�mÞ
2nb

� � 1
nþm

; n > m; ð55Þ

B ¼ nþm

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c

a� v2

r
: ð56Þ

Thus, the 1-soliton solution of the generalized phi-four equa-

tion with negative exponents (43) is given by
uðx; tÞ ¼ cðn�mÞ
2nb

sec h2
nþm

2n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c

a� v2

r
ðx� vtÞ

	 
� � 1
nþm

: ð57Þ

In view of (56), we clearly see that this solution exists provided

that c(a � v2) > 0. Finally, we would like to note that the solu-
tion (57) exists under the conditions n + m > 0, n> m and
l= n.

2.2.2. Dark solitons

Now, we are interested in finding the dark soliton solution for
the considered generalized phi-four Eq. (43). To do this, we use

an ansatz solution of the form (24) and (25). Thus from
assumption (24), we obtain

ðu�lÞtt ¼ plA�lB2v2fðpl� 1Þtanh�plþ2s;�2pltanh�pls
þ ðplþ 1Þtanh�pl�2sg ð58Þ

ðu�nÞxx ¼ pnA�nB2fðpn� 1Þtanh�pnþ2s;�2pntanh�pns
þ ðpnþ 1Þtanh�pn�2sg ð59Þ

u�n ¼ A�ntanh�pns; ð60Þ
um ¼ Amtanhpms: ð61Þ

Substituting (58)–(61), (61) into (43), we have

plA�lB2v2fðpl� 1Þtanh�plþ2s� 2pltanh�pls

þ ðplþ 1Þtanh�pl�2sg � apnA�nB2fðpn� 1Þtanh�pnþ2s
� 2pntanh�pnsþ ðpnþ 1Þtanh�pn�2sg � bAmtanhpms

þ cA�ntanh�pns ¼ 0: ð62Þ

From (62), equating the exponents �pn + 2 and pm gives

�pnþ 2 ¼ pm; ð63Þ

so that

p ¼ 2

nþm
: ð64Þ

Again from (62), equating the exponents �pl and �pn gives

�pl ¼ �pn; ð65Þ

that yields

l ¼ n; ð66Þ

which is also obtained by equating the exponents’ pairs

�pl + 2 and �pn + 2, � pl � 2 and �pn � 2.
Setting the coefficients of the linearly independent functions

tanh�pn+js, where j= �2,0,2 to zero yields

pnðpn� 1ÞA�nB2ðv2 � aÞ � bAm ¼ 0; ð67Þ
� 2p2n2A�nB2ðv2 � aÞ þ cA�n ¼ 0; ð68Þ
pnA�nB2ðpnþ 1Þðv2 � aÞ ¼ 0: ð69Þ

To solve (69), we have considered the case pn+ 1 = 0. This
yields

p ¼ � 1

n
: ð70Þ

Note that in the sense of constructing the dark soliton solu-
tions for Eq. (43), one need to have p> 0 for solitons to exist.
This condition implies that n < 0 in Eq. (70). Substituting (70)

into (67) and (68) gives
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A ¼ c

b

� � 1
nþm
; ð71Þ

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

2ðv2 � aÞ

r
: ð72Þ

Also from equating the two values of p from (64) and (70), one

gets the condition

m ¼ �3n: ð73Þ

Further, the free parameter A in (71) becomes

A ¼ c

b

� �� 1
2n

: ð74Þ

Lastly, we can determine the topological 1-soliton solution to

the generalized phi-four Eq. (43) with negative exponents as

uðx; tÞ ¼
ffiffiffi
c

b

r
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2ðv2 � aÞ

r
ðx� vtÞ

	 
� ��1
n

: ð75Þ

which exist provided that c(v2 � a) > 0 as seen from (72) and
n < 0.

3. Conclusion

In this work, making use of solitary wave ansatze in terms of
sech and tanh functions, respectively, solitary wave solution

or bell-shaped soliton solutions and shock wave solution or
kink-shaped soliton solutions are obtained for two variants of
the generalized phi-four equations, including general values

of the exponents and arbitrary model coefficients. The physical
parameters in the soliton solutions are obtained as a function of
the dependent model coefficients. Parametric conditions for the

existence of envelope solitons have also been reported. We have
found that the key factors, which determine the closed form
solutions are the dependent exponents which can be positive

or negative, and the model coefficients a, b and c. It should
be noted that the existence of the resulting solutions is related
on whether c(v2 � a) > 0 or c(a � v2) > 0. In view of the anal-
ysis, we clearly see that the solitary wave ansatz method is very

efficient for solving this very interesting nonlinear equation
after proving its consistency to a wide range of NLPDEs with
constant and time-dependent coefficients.
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