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The coronavirus disease spread out rapidly in China and then in the whole world. Kuwait is one of those
countries which are positively affected by this pandemic. Objective: The current study aims to provide an
appropriate and novel framework for the analysis of the Severe Acute Respiratory Syndrome coronavirus
2 (SARS-CoV-2) infected patient’s counts and rate of change in these counts with respect to time.
Therefore, we considered the number of SARS- CoV-2 patients, i.e., confirmed cases, deaths, and recover-
ies for Kuwait, ranging from the 24th of February 2020 to the 25th of August 2020.Method: Here, we used
the Markov Chain Monte Carlo (MCMC) simulation methods for the data analysis of SARS-CoV-2 to
develop the Bayesian analysis of the Non-Homogeneous Poisson Process (NHPP). For this purpose, we
used the two unique models of NHPP: the linear intensity function and the power law process. The dis-
crimination methods are also discussed to select a better model for daily basis data of confirmed cases,
deaths, and recoveries of SARS-CoV-2 patients. The appropriate model is selected based on the Deviance
Information Criteria (DIC). Results: The value of DIC indicates that the power-law process performs better
than the linear intensity functions for estimating and presenting all the study variables. The current study
explored the usefulness and significance of the proposed research framework to analyze the SARS-CoV-2
new confirmed cases, recoveries, and deaths in a specific area. Conclusion: The findings of the study will
be helpful for the health organizations or authorities to develop the approaches based on the current
resources and situations due to the pandemic. The provided framework could be beneficial in analyzing
the second and third layers of COVID-19 in the area. The analysis of the counts for each study variable and
for each variable a comparative analysis of all the three layers is the aim of our future study.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The SARS-CoV-2 infections epidemic started in China in the last
months of 2019 and has rapidly grown worldwide. On the 31st of
January 2020, WHO declared an international emergency, and
despite strict control, now it converted to the pandemic globally.
According to the World Health Organization (WHO), this viral dis-
ease continues to emerge and presents a severe issue to public
health. This pandemic also became a serious challenge and threat
to the World economy (Jacobsen, 2020). According to the statistics
of WHO, Worldwide, approximately 10,710,005 confirmed cases of
COVID-19 pandemic caused by the SARS-CoV- 2 infection have
been reported, including an estimated 517,877 deaths in approxi-
mately 216 countries (WHO, 2020). Kuwait is also one of the most
affected countries by this pandemic. Around 81,573 confirmed
cases of this disease throughout the country, with an estimated
519 deaths till the 25th of August 2020. The number of confirmed
cases and the number of fatalities are still increasing worldwide,
including Kuwait (all these counts were based on the 25th of
August 2020, approximately at the end of the first layer of
COVID-19 in Kuwait).

There were no available vaccines or medicine that protect
against the COVID-19; therefore, several precautions were imple-
mented in the mentioned areas and cities, and later it was imple-
mented all over the country. In such a situation, the
epidemiologists and researchers frequently utilized statistical
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approaches for appropriately presenting, analyzing, and forecast-
ing the COVID-19 pandemic trends worldwide to reduce drastic
effects at the early stages of its layer/wave. Several models had
been used and proposed recently for the analysis of time series
and point pattern data. The researchers developed various statisti-
cal techniques for analyzing and forecasting the COVID-19 situa-
tions in most affected regions and countries globally by utilizing
time-series counts data (see Giuliani et al., 2020; Fanelli 2020;
Yang et al., 2020).

Fromtheprevious literature, it is generallynoted that in thepoint
pattern data analysis and analyzing the rate of change, the Homoge-
neous and Non-Homogeneous Poisson processes (HPP and NHPP)
play an essential role. For theHPP, it is to be assumed that the count-
ing of events or patient is autonomous among dissociate regions
with a homogeneous intensity, which is hardly fulfilled in real-life
data. On the Other hand, for NHPP, the expected number of event
occurrences and the number of patients is considered and assumed
to be varied with time. Therefore, mostly the analysts prevented
using HPP and preferred to use NHPP in the point pattern data anal-
ysis for both implementation time data and calendar time data (Lai
and Garg, 2012). The NHPP provides a system for explaining what is
measured as the point pattern data (Diggle, (2013). (Rodrigues et al.,
2015) used NHPP to analyze exceedance events in air quality stan-
dards. Iervolino et al. (2014) used it to explore the intensities of
earthquake ground motion. Achcar et al. (2016) and Ellahi et al.
(2020) used the NHPP to analyze drought periods.

The main point that should be considered in the analysis of the
number of events or patients is to determine the appropriate mean
value function (m(t)) or intensity function (c(t) = om(t)/ot) to esti-
mate the expected number of events or patients because the NHPP
has several mean value functions with different assumptions. Fur-
thermore, to extract the significant results from the NHPPs, the
most accurate values of the parameters present in the models
should be determined. The previous literature (see, Ellahi et al.,
2020; Achcar et al., 2016) concluded that using the Bayesian
approach under MCMC simulation performed significantly in the
estimation of parameters for the NHPP models. Other than these,
many researchers have discussed the Bayesian approach and infer-
ence for the NHPP models with various prior distributions for the
model parameters (Guarnaccia et al., 2015; Meng et al., 2017;
Vicini et al., 2012).

This paper mainly analyzed confirmed cases, recoveries, and
deaths of the COVID-19 first layer in Kuwait by utilizing the point
processes to these counts. For this purpose, we modeled the cumu-
lative numbers or counts of confirmed cases, recoveries, and deaths
by using linear intensity functions and the power-law process in
NHPP. These are the two different parametrical forms of intensity
functions discussed in the analysis of accumulated numbers of
drought events (Ellahi et al., 2020; Achcar et al., 2016). For the esti-
mation of NHPPs parameters, we used the Bayesian approach with
non-informative priors of model parameters under MCMC simula-
tion and selected the appropriate models using Deviance Informa-
tion Criteria (DIC). The current study explored the usefulness and
significance of the presented research framework to analyze the
COVID-19 new confirmed cases, recoveries, and deaths in an area.
The study results will help the health organizations or authorities
to develop the approaches based on the current resources and sit-
uations due to pandemics.
2. Methodology

2.1. Data and study area

For our study, the daily basis data set of each, i.e., new
confirmed cases, recoveries, and deaths, for approximately six
2

months periods (the 24th of February 2020 to the 25th of
August 2020) is used. This data set is provided by the Central
Agency for Information Technology, Kuwait, and collected from
https://corona.e.gov.kw/en/Home/CasesByDate. The data of
SARS-CoV-2 infected patients in Kuwait provided by the Central
Agency for Information Technology, Kuwait, are highly efficient
and accurate.

2.2. Mathematical description of Non-Homogeneous Poisson processes

Here, in this section, we discussed the mathematical structure
of the NHPP models. Let N(t) be the accumulative numbers of
new confirmed cases, recoveries, and deaths, which are observed
during the time interval (0,T) where T � 0. Let K denotes the total
numbers of new confirmed cases, recoveries, and deaths in the
time interval (0, T). So, it is to be supposed that {N(t)} follows
the NHPP with mean value function m(t;H) and intensity function
c(t)= om(t)/ot, where, t � 0 and b be the vector of parameters of
the models. Here we consider the two individual cases of NHPP
for the comparative study of our analysis. These two functions of
m(t) or c(t) .i.e., the Power Law Process (PLP), and Linear Intensity
Functions (LIF) are frequently used in the analysis of drought
events, reliability, and operating safety policies. The mathematical
functions of the mean value function, (t), and intensity function, c
(t), for PLP are,

mðt=hÞPLP ¼ t
b

� �a

and cðt=hÞPLP ¼ a
b

� �
t
b

� �a�1

where; h ¼ ða; bÞ 2 ð0;1Þ:

Similarly, the mathematical functions of m(t) and YðtÞ for LIF
are,
mðt=hÞLIF ¼ tk0 þ ðat22 Þ andYðt=hÞLIF ¼ k0 þ at; where; h ¼ ðk0; aÞ 2 ð0;1Þ

These two functions are considered to model the number of
confirmed cases, recoveries, and deaths up to time T. For each
study variable, the dataset or series is represented by ST={k;
t1,t2,. . ..tk: T}, where ‘‘k” is the total number of observed new
confirmed cases, recoveries, or deaths at the time ‘‘ti” which
are considered to be in order. Here, if N(ti) denotes the cumula-
tive number of new confirmed cases, recoveries, or deaths up to
ti,i.e., for the time interval (0,ti], assumed to be modeled by
NHPP. Now the main aim is to estimate the parameters of m
(t/H)LIF and m(t/H)PLP, sufficiently and efficiently for our
analysis.

3. Bayesian inference

This section introduced the Bayesian analysis for LIF and PLP
model, and their required posterior summaries were obtained
using MCMC simulations. Our interest in this analysis is to develop
or find the posterior distributions of NHPP models parameters.
Therefore, it is to be assumed that the parameters of the NHPP
models have uninformative uniform priors, i.e., all the parameters
of bLIF = (k0, a) and bPLP = (a, b) follows U(a, b), where a and b are
the hyperparameters of the prior distributions. Further, prior inde-
pendence among the parameters is also assumed. Let, P(bLIF or
bPLP) be the prior joint distribution of the parameters, and L(HLIF
or HPLP;St) is the likelihood function of the model under study
then the joint posterior distribution for the P(bLIF or bPLP /St)
can be expressed as,

P(HLIF or HPLP/St)1P(HLIF or HPLP)L(HLIF or HPLP/St)

where the likelihood function from the time truncated model is
given by,

L(HLIF or HPLP;St) (pj = 1 k c(tj/HLIF or HPLP)) exp (-m(T/HLIF or HPLP))

https://corona.e.gov.kw/en/Home/CasesByDate


Fig. 1. Bar-plots for the counts of daily new confirmed cases recoveries and deaths.
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where c (tj/HLIF orHPLP) and m(T/HLIF orHPLP) are the intensity
function and mean value function of LIF or PLP. The simulated sam-
ples for P(HLIF or HPLP/St) and the posterior summaries of inter-
ests for bLIF and bPLP are obtained under standard MCMC
algorithm, i.e., Gibbs sampling. In MCMC, Gibbs sampling is initi-
3

ated by an arbitrary value, which can be assumed or calculated from
the priors and then gradually converged to a target value. Several
techniques can be used to check this convergence; trace plots and
some useful summary statistics are frequently used. These plots
and results provide clear indications of stabilized simulations. The



Fig. 2. Accumulated numbers of new confirmed, recovered and deaths of COVID-19 patients.
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convergence can be evaluated with a reasonable degree of assur-
ance by utilizing these indications. For this purpose, Su and Yajima
(2012) introduced the R software library ‘‘R2jags,” which provides
considerable simplification. Based on well known Bayesian ade-
4

quacy measure called Deviance Information Criteria (DIC), we
choose the suitable model of NHPP for modeling each study vari-
able, i.e., the number of new confirmed cases, the number of recov-
eries, and deaths concerning the time interval T = 184 days. For
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further details of the intensity functions and Bayesian approach,
kindly visit the Guarnaccia et al., 2015; Achcar et al., 2016; Meng
et al., 2017 and Ellahi et al., 2020.
4. Results

Fig. 1 presents the Bar-plots for the frequency distribution of
new confirmed cases, recovered cases, and deaths. Fig. 1a indicates
that the ratio of the latest confirmed cases increases after the 1st of
April 2020. This ratio reaches its peak in the mid of May, and after
the 1st of June, the number of new confirmed cases on a daily basis
moderately decreased. Fig. 1b also provides detailed information
about the recoveries of SARS-CoV-2 infected patients. Its bar-plot
shows that in the start of April the number of recoveries was very
low concerning the new confirmed cases, but at the 1st of June
2020 ratio or the number of recoveries were much more than the
new confirmed cases, i.e., the number of recoveries were approxi-
Fig. 3. History plots for each p
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mately 1500, and the number of new cases was around 1050. How-
ever, from the mid- month of June, the number of new confirmed
cases was more than the number of recovered patients on a daily
basis. Fig. 1c presents that the number of deaths increases after
the mid of April, and in May and June, the number of deaths is
higher than the other months. However, before starting July, the
number of deaths daily was reduced until the 25th of August.

Fig. 2 shows the accumulated number of new confirmed cases,
the accumulated number of recoveries and deaths with respect to
time or days for the time period from the 24th of February to the
25th of August 2020. These plots present the total aggregated
new confirmed cases recoveries and deaths for each day versus
the days of each study month. To model the accumulated number
of new confirmed cases, recoveries, and deaths, we considered the
two NHPP models, i.e., PLP and LIF, and the parameters for each
model and each study variable are estimated using the Bayesian
approach under MCMC simulations as briefly explained in the
arameter of PLP and LIF.



A. Al-Dousari, A. Ellahi and I. Hussain Journal of King Saud University – Science 33 (2021) 101614
methodology section. For prior distributions of required parame-
ters in our study, we assumed that in the case of HLIF = (k0, a),
k0 � [0,100] and a � U[0,100], and in case of HPLP = (a,b), a � U
[0,100] and b � U[1,100]. There is no hard and fast rule for the val-
ues of the parameters of prior distributions, i.e., for hyperparame-
ters. Those values of hyperparameters can be used for which the
distributions have minimum variance, or these values can also be
considered based on the researcher’s personal experiences related
to concern problems. In the Bayesian analysis of each NHPP model,
the above discussed non-informative uniform priors were utilized
for each study variable. The single Markov chain was set up for the
sample’s simulations of the joint posterior distribution of LIF and
PLP and sampled it for 35,000 reiterations. The first 5000 iterations
were considered as the burn-in samples to eliminate or minimizes
the effects of the initial value used in the iteration process. Based
on history plots, we considered the number of burn-in samples,
Fig. 4. Trace plots of each pa
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where the distributions become in equilibrium states, see Fig. 3,
and the remaining 30,000 were used for the convergence checks
and summarization of the results. The trace plots in Fig. 4 indicate
the convergence of the MCMC, and it can be verified by the sum-
mary statistics regarding each parameter provided in Table 1.
The marginal posterior density plots of all the parameters of each
model for individual study variables are presented in Fig. 5. Simi-
larly, the autocorrelation plots are also shown in Fig. 6. It provides
the pattern of serial correlation in the chain, where the consecutive
draws of the parameters from the conditional distributions were
correlated.

The Monte Carlo estimates for the Posterior summaries of inter-
est and the Monte Carlo errors based on 30,000 simulated samples,
by taking every 150th simulated value, are given in Table 1. Simi-
larly, the Monte Carlo measures for the DIC values of each model
and each study variable are presented in Table 2. In the case of
rameter for PLP and LIF.



Table 1
Simulation results for the marginal posterior distribution of parameters and their properties.

Power Law Process

Variables Parameters Mean Standard Deviation 95% C.I. M.C error

Confirmed Cases a 2.514 0.001401 (2.512, 2.517) 0.00009236
b 1.894 0.004543 (1.886, 1.904) 0.0002994

Deaths a 2.412 0.01828 (2.377, 2.449) 0.00102
b 12.3 0.2267 (11.87, 12.76) 0.01265

Recoveries a 3.223 0.001868 (3.219, 3.227) 0.000145
b 5.293 0.01018 (5.273, 5.313) 0.0007905

Linear Intensity Function

Variables Parameters Mean Standard Deviation 95% C.I. M.C error

Confirmed Cases a 5.01 0.002203 (5.006, 5.015) 0.00000889
k0 0.0007044 0.0007025 (0.00001813, 0.002584) 0.000004042

Deaths a 0.03543 0.0001849 (0.03507, 0.0358) 0.000001144
k0 0.0007227 0.0007174 (0.00001761, 0.002651) 0.000004126

Recoveries a 1.734 0.002774 (1.728, 1.739) 0.00001768
k0 0.0007256 0.000727 (0.00001824, 0.002684) 0.000004173
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Fig. 5. Margional posterior density plots of each parameter for PLP and LIF.
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Fig. 6. Autocorrelation plots of each parameter for PLP and LIF.

Table 2
DIC values of each model for each study variable.

Study Variables Power Law Process Linear Intensity Function

Confirmed Cases 279,248 338,338
Deaths 4024.110 4608.70
Recoveries 227,896 239,798

Table 3
Root mean squared errors of estimated models.

Variable RMSE

Confirmed cases 5489.937
Deaths 54.4633
Recoveries 5513.525
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LIF, the DIC values for the new confirmed cases, deaths, and recov-
eries are 338338, 4608.70, and 239798. Similarly, the DIC values in
the case of PLP for the new confirmed cases, fatalities, and recover-
ies are 279248, 4024.110, and 227896. The DIC values in the case of
PLP for each study variable are much less than or smaller than the
DIC values of LIS. Therefore, we selected the NHPP model based on
PLP and used it for the analysis of the new confirmed cases, deaths,
and recoveries regarding COVID-19. We use the marginal posterior
means of the PLP parameters from Table 1 to model each study
variable and estimate the accumulated counts of these study vari-
ables with respect to time. The RMSE’s of the calculated results for
new confirmed cases, deaths, and recoveries are 5489.937,
54.4633, 5513.525, which are also provided in Table 3. The esti-
mated and observed number of new confirmed cases, fatalities,
and recoveries are presented in the plots of Figure 7. The values
of RMSE, s in Table 3 and the plots of Fig. 7 clearly show that the
PLP performs very well in the estimations of COVID-19 pandemic
8



Fig. 7. Estimated and onserved counts of daily new confirmed cases recoveries and deaths.
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study variables. The Redline in the plots presents the estimated
accumulated means estimated at each day. The number of new
confirmed cases, deaths, and recoveries of SARS-CoV-2 infected
patients was reported using the estimated parameter values. Here
the term accumulated denotes the mean value function assessed or
evaluated at each day counts of our study variables.
9

5. Discussion

The WHO indicates that COVID-19 viral infection keeps on
developing, and presenting a significant issue to Public health
and the world economy. On the 31st of January 2020, WHO
announced a worldwide emergency, and regardless of strict con-
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trol, now it changed over to pandemics worldwide. Kuwait is also
one of the most influenced countries by this pandemic. The num-
ber of affirmed cases and the number of deaths are still increasing
worldwide, including in Kuwait. As the level of that infection
changes state to state; thus, the executions of these controlled sys-
tems or guidelines additionally fluctuate as indicated by the
national circumstances. Consequently, the utilization of statistical
tools has incredible noteworthiness to anticipate or predict the
pandemic patterns of this contamination around the world.

This paper uses multiple statistical tools for the descriptive and
inferential analysis of COVID- 19 patients in Kuwait. At the initial
stage, Bar plots and Time-series plots were used for the descriptive
analysis of the number of confirmed cases, numbers of deaths, and
recovered SARS-CoV-2 infected patients. Fig. 1 shows the bar plots
based on the daily counts of new cases, deaths, and recoveries from
the 24th of February 2020 to the 25th of August 2020. These bar
plots present the fluctuations in the counts and provide a detailed
summary of the study variables daily with their six-month pattern.
Fig. 2 shows the time series plots for the accumulated counts of
new confirmed cases, deaths, and recoveries. These plots present
the rate of change of the counts concerning time. Fig. 2 (a, b, and
c) indicate that the rate of change was moderately increasing from
May 2020, and it became so high in June 2020 for each study vari-
able. However, the rate of change became moderate and remained
the same from the end of June till the 25th of August.

A common problem with counts data in statistical inference is
the selection of an appropriate model. In our case, we also
observed that the appropriate NHPP models could be of great
use. Interestingly, other intensity functions can also be used simi-
larly as considered the LIF and PLP in our study. We obtain the pos-
terior distribution summaries of quantities of interest by using
MCMC techniques under Gibbs sampling. The library R2jags of
software R was very helpful in the simulation of samples from
the posterior distributions of intensities parameters. These sam-
ples are then used to obtain the empirical summaries of the statis-
tics for the selection of appropriate NHPP models and are used to
draw inferences on the parameters (i.e., about the actual values
of the model parameters) of interest. The convergence of Gibbs
sampling techniques was monitored by MC errors (provided in
Table 1) and observed by using the history plots, trace plots, poste-
rior density plots, and autocorrelation plots, as shown in Figs. 3, 4,
5, and 6. The best models for our study variables were selected
based on existing Bayesian adequacy criteria such as DIC (the
approximation of Bayes factor); the lower the value of DIC better
will be the model. The PLP models for the counts of new confirmed
cases, deaths, and recoveries were better than the LIF, as indicated
by the values of DIC in Table 2. Therefore, for our further analysis,
for estimations of the counts of new cases deaths and recoveries
with its behavior for the observed time interval, we utilize the
PLP models.

Considering the PLP models (which are the best-fitted models),
we observed from the results of Table 1, that the MC error for both
parameters (alpha and beta) is low and can be acceptable, the mar-
ginal posterior standard deviation is also so small, which indicates
that all the parameter values for the generated samples were con-
centrated at marginal posterior means of a and b in each case. As
we know, the intensity function has a flexible behavior for PLP
due to the value of a. The function of c(t/b)PLP is decreasing for
a less than 1, increasing for a greater than one, and constant for
a = 1 (i.e., the NHPP is HPP). In our study, for the newly confirmed
cases, the value of a is 2.514; for the counts of deaths, the value of
a is 2.412; and for the counts of recovered patients, a is 3.223,
which are greater than 1. So, in our study, the intensity function
is increasing. By using these values of a and b provided in Table 1,
we could find the estimated average counts of new confirmed
cases, deaths, and recoveries for each specified value of time.
10
Fig. 7 (a, b and c) presented the estimated accumulated counts
(using the results of Table 1 for PLP) of each day with the observed
accumulated counts versus the days of all studied months. These
plots and their respective RMSE, s provided in Table 3, clearly show
the better performance of the PLP model in each case.

6. Conclusion

This paper presents the framework to analyze the accumulated
counts of new confirmed cases, deaths, and recoveries of SARS-
CoV-2 infected patients in Kuwait from the 24th of February
2020 to the 25th of August 2020, i.e., the first layer of COVID-19
pandemic. The descriptive analysis of the counts summarizes the
data efficiently and effectively. The NHPP models with linear inten-
sity function and Power-law process being used for comparative
study of the behavior of accumulated counts of COVID-19 pan-
demic. The parameters of the NHPP models were computed by
using a Bayesian approach with Gibbs sampling under the MCMC
algorithm. That performs very well in the simulation and estima-
tion of model parameter values. The results and graphs indicate
that the NHPP models under PLP perform much better than LIF.
The presented data clearly showed that during the first layer of
COVID-19 Pendamic in Kuwait, the intensity varied with time
and reached a high level in the mid of our study period. These fluc-
tuations in the intensities were efficiently estimated by the appro-
priate estimated intensity function in NHPP. The current study
explored the usefulness and significance of the presented research
framework to analyze the SARS-CoV-2 new confirmed cases, recov-
eries, and deaths in an area. Similarly, the proposed framework
may be utilized for other layers of the COVID-19 pandemic in
Kuwait and other countries or regions. The outcomes of the study
will support the health organizations or authorities in developing
the approaches or strategies to overcome the effects of the
COVID-19 pandemic dependent on the current resources and cir-
cumstances due to the pandemic. It is essential to point out that
for the comparative study to improve the results, different inten-
sity or mean value functions of NHPP models can also be utilized.

The results obtained from the proposed framework may be
improved by utilizing the comparative analysis of some other suit-
able intensity functions or by proposing an efficient and sufficient
intensity function for the NHPP model in such particular case stud-
ies. Furthermore, the proposed framework doesn’t consider the
abrupt change in the process, which is its drawback. These abrupt
changes could be considered, and the errors in the study may be
reduced by assuming a specified parametrical form consist of some
additional parameters for these particular changes in the process.
The work on all these limitations and the comparative studies of
all COVID-19 pandemic layers in Kuwait is the aim of our future
studies.
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