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In this paper, a singularly perturbed semi-linear boundary value problem with two-
parameters is considered. The problem is solved using exponential spline on a Shishkin mesh.
The convergence analysis is derived and the method is convergent independently of the perturbation

lems; parameters. Numerical results are presented which support the theoretical results.
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1. Introduction

It is well known that in various fields of science and engineer-
ing many reaction—diffusion as well as convection—diffusion
problems naturally occur. Heat transfer with large Péclet num-
bers, nuclear engineering, combustion, control theory, elastic-
ity, fluid mechanics, aerodynamics, quantum mechanics,
optimal control, chemical-reactor theory, convection—diffusion
process and geophysics are some examples of these fields.
However, reaction—diffusion problem when ¢; = 0 and con-
vection—diffusion problem when ¢, = 1 are enclosed in the
two-parameter singularly perturbed boundary value problem
(Gracia et al., 2006; Kadalbajoo and Gupta, 2009; Kadalbajoo
and Yadaw, 2008; Lin et al., 2009; Lin and Roos, 2004; Rao
and Chakravarthy, 2012; Rao and Kumar, 2008; Rao et al.,
2010; Reddy and Pramod, 2003; Roos and Uzelac, 2003;
Stynes and Kopteva, 2011; Valanarasu and Ramanujam,
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2003; Valarmathi and Ramanujam, 2003). This two-parameter
singularly perturbed semi-linear boundary value problem has
the following form:

Ly(x) = —eqy" + eep(x)y' +f(x,3) =0,
where the boundary conditions are:
Y(0) =, y(1) = py, 2

with two small parameters 0 < ¢. << 1, 0 < g; << 1, where
p(x) and f(x,y) are sufficiently smooth functions and
p(x) = p >0, for x €[0,1], assuming that f,(x,y) > 0.
Different numerical methods were proposed to solve singu-
larly perturbed problem with ¢. = 1 and ¢, = 0 such as Reddy
and Pramod (2003), Kadalbajoo and Gupta (2009), Lin et al.
(2009), Rao and Kumar (2008), Rao and Chakravarthy
(2012), Rao et al. (2010) and Stynes and Kopteva (2011). On
the other hand, the solution of the two-parameter singular
perturbation problem was made in limited researches such as
Gracia et al. (2006), Valanarasu and Ramanujam (2003) and
Valarmathi and Ramanujam (2003). Lin3 and Roos (2004)
considered linear two-parameter singularly perturbed convec-
tion—diffusion problem and used the simple upwind-difference
scheme on Shishkin mesh to establish almost first-order con-
vergence, independently of the parameters ¢. and ¢; Roos

x € (0,1), (1)
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and Uzelac (2003) also considered linear two-parameter
singularly perturbed boundary value problem. They used
stream-line diffusion finite element method on properly chosen
Shishkin mesh. As a result they proved almost second-order
pointwise convergence uniformly with respect to the parame-
ters &, ande; B-spline collocation method for solving linear
two-parameter singularly perturbed boundary value problems
on piecewise-uniform Shishkin mesh was investigated by
Kadalbajoo and Yadaw (2008), they conclude the uniform
convergence of the second order.

Herein, the exponential spline difference scheme method is
used to solve the two-parameter singularly perturbed bound-
ary value problems given by Egs. (1) and (2) by utilizing a
properly chosen piecewise-uniform Shishkin mesh proving that
the method is uniformly convergent independently of parame-
ters &, and &,

This paper is organized as follows: Section 2 provides a pri-
ori estimates of the continuous problem. In Section 3, the
Shishkin mesh technique is introduced. The design of exponen-
tial spline difference scheme method is presented in Section 4
followed by the uniform convergence of the method in Sec-
tion 5. In Section 6, numerical results and the comparison of
approximate solutions are presented to demonstrate the uni-
formity of the convergence. Finally, Section 7 is devoted for
the conclusions.

2. Properties of the continuous problem

The construction of a layer-adapted mesh as well as the anal-
ysis of the method requires information about the behavior of
derivatives of the exact solution, where we substitute
fix,y) = r(x)y — g(x) into Eq. (1). To describe the layers at
x = 0 and x = 1, the characteristic equation is used as given
in LinB and Roos (2004), as follows:

—ean(x)” + ep(X)n(x) + r(x) = 0. (3)

It has two real solutions #;(x) < 0 and #,(x) > 0, which char-
acterize the layers at x = 0 and x = 1, respectively. Let:

v, = fmax]n]( X)

x€[0,1

and Y, = minn,(x).
x€[0,1]

The situations of the two external layers are characterized by
2 <e or &J/eg—0 as g —0, which imply that
/ESRVAES \/% we have the layers similar to the reaction—diffu-

sion case ¢. = 0. Herein, a priori bounds for the solution and
its derivatives are established, as follows:

Lemma 1. For any 0 < d < 1, we have up to a certain order ¢
that it depends on the smoothness of the data

for 0 < k <gq.

4)

For the proof of the above lemma refer to Kadalbajoo and
Yadaw (2008).

|y ‘< C{1+l//k 751%\_‘_[///2{8751!1/2(17,\")}’

Lemma 2. The solution y(x) of Eqs. (1) and (2) has the repre-
sentation, see (Linf} and Roos, 2004 )

Y(x) = u(x) + wo(x) +wi(x), ()

where

[u® (x)]

< for 0 < q,
’ k)( )‘<

C k<gq
C for 0 < k < ¢,

Yre

and

‘14)(1”(, )‘ < CYhe 079 for 0 < k < gq.

3. Mesh selection strategy

In this section, for the selection of the mesh for the previously
discussed three subintervals; the solution regions are provided.
It is known that on an equidistant mesh no scheme can attain
convergence at all mesh points uniformly in ¢. and &, unless its
coefficients have an exponential property. Therefore, unless a
specially chosen mesh is used, we cannot obtain a parameter-
uniform convergence at all the mesh points. The simple possi-
ble non-uniform mesh, namely a piecewise-uniform mesh dis-
cussed by LinB and Roos (2004), is sufficient for the
construction of a parameter-uniform method. It is fine near
layers but coarser otherwise. We do not claim that these piece-
wise-uniform meshes are optimal in any sense. It is attractive
because of its simplicity and adequacy for handling a wide
variety of singularly perturbed problems. The Shishkin mesh
one should have a priori knowledge about the location and
nature of the layers which, applicable only by using. To obtain
the discrete counterpart of the two-parameter singularly per-
turbed boundary value problems Eqgs. (1) and (2), firstly the
considered mesh discretized the domain Q = [0, 1] into three
subintervals:

AO = [anl]a AC = [’ylal - VZ]

where transition parameters are given by

ol m) ol )

with n to be the number of subdivision points of the interval
[0,1] and we place n/4, n/2 and n/4 mesh points, respectively,
in [0,71], [y1,1 — 75] and [1 — y,,1]. Denote the step sizes in
each subinterval by i = 4% Jhy = u and h; = =2, respec-
tively. Accordingly the resulting plecew1se umform Shishkin
mesh may be represented by:

and A; =[1—y,,1],

/1]:4;%7 x,~=x,-,]+h1,fori=1,2,...,n/4,
h={ hy =200 =, oy, fori=n/4+1,...,3n/4,
hy =42, X;=xi_1+h3, fori=3n/4+1,....n

4. Description of the current method

Consider a uniform mesh A with nodal point x; on the interval
[0,1] such that A: 0 = x; < x < -+ < x,_1 < x, = 1 where

1
=ih and l1=2,i=0,1,27...,n. (6)

Let y(x) be the exact solution of the problem presented by Egs.
(1) and (2) and S; be an approximation solution to y; = y(x;)
obtained by the segment Q«x) passing through the points
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(x;8;) and (x;+1,S;+1). Each mixed Spline segment Q,(x) has
the following form, (for more details see (Zahra, 2009, 2011,)):

0,(x) = @) 4 he™ ) 4 ¢(x — x,) + d
i=0,1,2,....,n, (7

where a;, b;, ¢; and d; are constants and k is a free parameter.

To obtain the necessary conditions for the coefficients
introduced in Eq. (7), the segment values of
0:(x;), 0i(xi11), 01 (x;)and 0V (x;.,) should be considered at
the common node. Expressions for the four coefficients of
(7) can be developed in terms of S;, S;+1, M,, and M,., by
defining:

0.(x) =S 0i(xi1)=Si1, 07 (x)=M,;, OF (xi1) =M.
®)

Via a straightforward calculation we obtain the following
expressions:

u W (M — e "M,) o W (e'M; — M;.)
’ 20*sinh(0) 26 sinh(0)
Ci = (S’Jrlh SI) — h(MHéz M’) and d,' = Sl’ - (h ijl), (9)

where 0 = khand i = 0,1,2,...,n.

Using the continuity of the first derivative at the point
(x;,S;), where Q) (x) and Q)(x) the following relation for
i=12,....,n—11is obtained;

(Sit1 — 28i 4 Sisy) = W (M) + M+ aM;_,), (10)

where

o = (sinh(0) — 0)/0° sinh(0) and
B = (20 cosh(8) — 2sinh())/6* sinh(6),

when k — 0 that 6 — 0 then («, ) =1(1,4) and the relation
defined by Eq. (10) reduces to the following ordinary cubic
spline relation:

2

h
(SH] —2S,'+Sf—l) ZK(MHI +4Mi+Mi71)> (11)

at the point x; the proposed singularly perturbed problem may
be discretized by:

_ 1 o
M; = 6—(1 (&-PiSf +fi>7 (]2)
where
S — Si_ 381 — 4S8+ S
(1) _ i+l i—1 (l) _ i+1 i i—1
Si - 2/’[ I S1+1 2/’[ ’
=S +4S8;,— 35, .
St('i)l = - o7 l , Ji=fx,y) and  p; = p(x).

Substituting Eq. (12) into Eq. (11), we get the following non-
linear equations;

eh
—&4(Sis1 —28i+ Si) + 5 [DiSi_i + EiS; + A;Si1]

=~ (oficr + Bfi+afin) i=1,2,...n—1. (13)

Eq. (10) gives n — 1 linear algebraic equations in » — 1 un-
knowns S;, where:

Ai = —op,_y + Bp; +30p;,  Di = =30p,_ | — Bp; + opyy,

E = 40‘(*17#1 +piy)-

5. Convergence analysis

In this section, the convergence analysis of the current method
is investigated. The exponential spline solution of Eqs. (1) and
(2) is based on the nonlinear equation given by Eq. (13). It can
easily be seen that the system given by Eq. (13) gives n — 1
nonlinear algebraic equations in the n— 1 unknowns
S;,i = 1,2,...,n — 1. This can be written in the standard ma-
trix equation as:

N(S) = C, (14)

where N(S) = BS + i* BF(S) and the matrices B and B may be
written as:

ech . .
B =B+ By, F=diag((f,)). (15)
where
2 -1
-1 2 -1
BOZ ’ (16)
-1 2 -1
-1 2
p o
o f o«
o p o«
x B
E, A
D, E, A
Bl: ) (18)
anz En72 AIHZ
anl E,,,]

ech

Ealty — hz(xﬁ) ) Dl:uh
Ci = 07
Eally — hz@fn - %Dnﬂb

i=1,
i=23,...,n—2, (19)

i=n—1.

Let |p;,| < P, |F| < F and let N be the (i,/)th element of ma-
trix N given by Eq. (14). Thus the row sums of the N satisfy:

e h -
Ni=3Y my=e + 52 (204 B)P+ I (22 + P)F,

3 i=1l,n—1,

J
Ni=Y ny==KQu+pF, i=23,...,n-2
J

for small values of ¢; and ¢. then matrix N is irreducible and
monotone and it follows that N~ exists and N~' = 0 thus
the system in Eq. (14) has a unique solution; see (Henrici,
1962).
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Theorem 1. Let y(x) be the solution of Egqs. (1) and (2) and
S(x) be the solution the scheme defined on the piecewise-uniform

Shishkin mesh. Then

[S(x) = ¥(x)[. < C(n " Inn), (20)
where C is a constant independent of ¢, and e,.

Proof. The estimate is obtained on each subinterval Q; = [0, 1]

separately. Using (Kadalbajoo and Gupta, 2009), the e-uni-
form error estimate is

1S(x) = »(x)]

In our analysis, we split the numerical solution S correspond-
ing to the decomposition of the exact solution
S = U+ Wy + Wi. Then from Lemma 1, on Q;, we get

[S(x) = y(x)| < Chijmax|y"(x)],

< Cmaxly’ ()] (21)

< C}l?{l + w%e*j‘mx + lﬁ%eij\pg(lix)},
< CI{1+y7 + 3}

Also, using Lemma 2 and Eq. (21) on Q, see (LinB3 and Roos,
2004)

1S(x)

(22)

- y(x)

< |U+ Wo+ Wy —u—wy —w|,
é |U—u|+‘Wo—Wo|+|W1
< " (x)| +2mgax\wo(x)| +2man\w1 (x)],

—wil,

< U+ e 4 ), )

Case 1 The argument now depends on whether 22 1 ;and
2}/“" < 1 . In this caseyy; < Clnnand Y, < C Inn. Then
the result follows at once from Eq. (22)

Table 1

1S(x) — y(x)| < C(n ' I

Case 2 When y, = w% Innand y, = W 2 |n n. Suppose that i sat-
isfles 1 < i gg d3”<1 < n. Then h; = 4“ M
and &; = T = w Iy respectively. Now from Eq
(22), we get

1S() = ()| < Clr ),
if i satisfied 2<i<3¥
72 < 1 — Xx; and so

Then y;<x; and x;<1—7, or

2Inn
7

2Inn
¥,
Using this in the Eq. (23) gives the required result.

e L e = 20 — 72 dince y, =

e I3 Lo — 720 — =2 gince 9, =

|

6. Numerical examples

In this section, we apply our method to the following example
and verify experimentally uniform convergence.

Example 1. Consider the singularly perturbed boundary value
problem see (Kadalbajoo and Yadaw, 2008);

»(0)=0, y(1)=0.

(24)

—e9@ + ey +y=cos(nx), x€(0,1),

The exact solution is given by

Y(x) = pycos(nx) + py sin(mx) + ¥, exp(41x) + ¥ exp(— A (1 = x)),
(25)

where

Comparison of maximum errors for Example 1 with equidistant mesh.

& eg= 1072 n = 128

eg=107% n =128

Kadalbajoo and Yadaw (2008)  Our methods

1 1
a*127ﬁ _(2) a:ﬂvﬁ:

22
24

Kadalbajoo and Yadaw (2008)  Our methods

m

_ _ 1 p_2
a=3,8=03 a=5x6=%

1073 8.3832-5 9.2993-7 4.1924-5
10°*  8.2686-5 1.1557-7 4.1296-5
107> 8.2572-5 3.4933-8 4.1232-5
107%  8.2561-5 2.6878-8 4.1226-5
1077 8.2559-5 2.6072-8 4.1225-5

9.4446-3 1.3294-3 4.7598-3
9.0436-3 3.6708-4 4.2856-3
9.0036-3 2.8085-4 4.2295-3
8.9996-3 2.7232-4 4.2238-3
8.9992-3 2.7147-4 4.2232-3

Table 2 Comparison of maximum errors of Example 2, with equidistant mesh, n» = 128, « = 1/12, f = 10/12, and ¢, = 1.

X &g = 0.01 &g = 0.0015
Lin et al. (2009) Our method Lin et al. (2009) Our method

1/16 7.3-3 2.8-7 7.4-3 4.6-9
2/16 6.9-3 5.3-7 6.9-3 8.7-9
4/16 6.1-3 9.4-7 6.1-3 1.5-8
6/16 5.4-3 1.2-6 5.4-3 2.0-8
12/16 3.7-3 1.7-6 3.7-3 2.7-8
14/16 3.3-3 7.3-7 3.3-3 2.8-8




Numerical solution of two-parameter singularly perturbed boundary value problems via exponential spline 205
Table 3 Comparison of maximum errors for example 3 with equidistant mesh, n = 1024, o = 1/12, f = 10/12, and ¢. = 1.
X &g = 0.01 eg = 0.0015
Lin et al. (2009) Our method Lin et al. (2009) Our method
100/1024 3.0-3 2.6976-3 1.2-3 3.5060-4
200/1024 2.5-3 2.1497-3 1.1-3 2.9906-4
300/1024 2.1-3 1.6944-3 1.0-3 2.4419-4
400/1024 1.8-3 1.3163-3 9.0-4 1.9313-4
500/1024 1.5-3 1.0014-3 8.0-4 1.4820-4
600/1024 1.3-3 7.3780-4 7.0-4 1.0962-4
700/1024 1.1-3 5.1589-4 7.0-4 7.6771-5
800/1024 9.0-4 3.2785-4 6.0-5 4.8823-5
900/1024 7.0-4 1.6753-4 5.0-4 2.4958-5
1000/1024 5.0-4 3.0047-5 5.0-4 4.4775-6
Table 4 Comparison of maximum errors for Example 4 with equidistant mesh, o = 1/12, f = 10/12, and ¢. = 1.
n eq = 1077 es = 107*
Rao and Kumar (2008) Our method Rao and Kumar (2008) Our method
64 3.999-4 4.526-5 3.859-3 3.815-3
128 1.002-4 2.848-6 9.937-5 2.716-4
256 2.509-5 1.783-7 2.503-5 1.751-5
512 6.274-6 1.115-8 6.270-6 1.113-6
1024 1.568-6 6.970-10 1.568-6 6.966-8
gqm? + 1 & —ey? +y=—cos?(nx) — 2en’ cos(2nx), x€(0,1), y(0)=0, y(1)=0.
p _— ) p - b
: e2n? + (g4m* + 1)? : e2n? + (g4m* + 1)° (30)
1+ exp(—4y) 14 exp(4) The exact solution is given by
l//l - h 1— CXp(/’Ll — ;2) ’ lpz A 1— CXp(;L] — 22)7
(e~ U=/IVET) 4 g=x/ved) ,
i — g — /& + 48d. e+ + 48([. y(x) = [N — cos”(mx). (31)

28(1

N
Ay =

2841

Example 2. Consider the singularly perturbed boundary value
problem see (Lin et al., 2009);

—ey® +yV+y=1, x€(0,1), p(0)=0, p(1)=0.

The exact solution is given by

(26)

y(x) _ (e/lz _ 1)621.\/(6/11 _ex'.z) 4 (1 _ e/".])e/lzx (e;'l _ e/lz) + 17

/T

144/T 442 1
where /; = 4 Dy =

2e4

2e4

(27)

Example 3. Consider the semi-linear singularly perturbed
boundary value problem see (Lin et al., 2009);

ga'y(Z) + 2}(1) = _ev7 X e (07 1), y(O) = 07 y(l) =0.

The exact solution is given by:

y(x) = (1 —e %) In2 — In(x + 1).

(28)

(29)

Example 4. Consider the one-parameter singularly perturbed

boundary value problem see (Rao and Kumar, 2008);

The estimated maximum pointwise error using exponential
spline method applied to examplel is shown in Table 6. To
compute the experimental rates of convergence Ord" for every
fixed ¢. and ¢4, we use the rate of convergence from:

Table 5 Comparison of maximum errors for example 1 with

Shishkin mesh, n = 128, o = 1/12 and = 10/12.

& eq=107° gq = 10710

Kadalbajoo and  Our Kadalbajoo and  Our

Yadaw (2008) method  Yadaw (2008) method
10° 6.1243-3 6.5929-3  6.1108-3 6.8146-3
1071 1.9416-2 6.1326-3  1.9424-2 6.1407-3
1072 1.8314-2 5.7912-3  1.8500-2 6.4540-3
1072 1.3075-2 1.4464-3  1.8359-2 2.8582-3
107 9.4539-3 1.7624-3  1.8163-2 2.8119-3
107°  9.0525-3 1.7689-3  1.3076-2 1.2664-3
10°°  9.0124-3 1.7694-3  9.4540-3 7.8644-4
1077 9.0084-3 1.7695-3  9.0526-3 8.0674-4
10°%  9.0080-3 1.7695-3  9.0125-3 8.0870-4
107°  9.0079-3 1.7695-3  9.0085-3 8.0889-4
1071 9.0079-3 1.7695-3  9.0081-3 8.0891-4
10711 9.0079-3 1.7695-3  9.0080-3 8.0892-4
1072 9.0079-3 1.7695-3  9.0080-3 8.0892-4
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In E" — In E*
In2

The numerical results presented in Tables 1-4 clearly indicate
that the proposed scheme with uniform mesh is not uniformly
convergent for sufficiently small value of ¢ and &, and the
maximal nodal error increases as the number of mesh points
increases as in Table 4. To overcome this drawback, we have
used a special piecewise uniform mesh known as Shishkin
mesh. The numerical results displayed in Tables 5 and 6 clearly
indicate that the proposed method based on exponential spline
with Shishkin mesh is e-uniformly convergent. Fig. 1 shows the
exact and the approximate solution for various values of
ea = 107,107, 107%, 10> and for fix & = 10 % Also, we
note as ¢, decreases for fixed ¢, the width of boundary layer de-
creases and becomes more and more stiff at x = 0 and x = 1,
this shows clearly the effect of ¢, and ¢.on the boundary layer
(see Table 6). Fig. 2 shows the exact and approximate solutions

Oord' =

i T‘.; § —— epselon d=10"2 & epselone c=10°-6

08 .’ II’ \\ = = = = epselon d=10"3 & epselone c=10-6
!

06 4 N — . —epselon d=10"4 & epselone c=106
g
1,’ ....... epselon d=10"5 & epselone c=10°6

04

0.2

Exact solutions
o

0.2
04 1
i
06 4
N !k
08 S l’ I
\h‘-"l
./

0 0.1 0.2 03 04 05 06 07 08 09 1

X

Figure 1

which are taking the same shape and behavior. Also, numerical
results generated by the proposed scheme indicate that the
maximal nodal errors are smaller than those obtained by Lin
et al. (2009), Rao and Kumar (2008), Rao et al. (2010), Kad-
albajoo and Yadaw (2008) and Roos and Uzelac (2003).

7. Conclusion

A numerical method is developed to solve two-parameter
singularly perturbed semi-Linear boundary value problems
given by Egs. (1) and (2). This method is based on exponen-
tial spline with a piecewise uniform Shishkin mesh. The
method is shown to be uniformly convergent independent
of mesh parameters and perturbation parameters ¢. and &g
It has been found that the proposed algorithm gives highly
accurate numerical results and higher order of convergence
than other existing methods.

= = epslon d=10-3 & epslon ¢=10*-6

08
j — epslon d=10°-2 & epslon c=10*-6

05 i = - epslon d=10*-4 & epslon c=104-6
44 / N\ e epslon d=10A-5& epslon c=10A-6

02

0.2

Approximate solutions

04

06 \ | f

08 , / I

0 0.1 02 03 04 05 0.6 07 08 09 1
X

Exact and approximate solutions for examplel at different values of ¢; = 1072, 107, 1073, 107> and for fix ¢, = 107°.

Exact and Approimate solutions

Exact solution

Approximate Solution

0.5 0.6 0.7 0.8 0.9 1
X

Figure 2 Exact and Approximate solutions for examplel at &, = 10~ and &, = 107°.
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Table 6 Comparison of maximum errors and order of convergence for example 1 with Shishkin mesh, n =

1024, o = 1/12 and

p = 10/12.

& &g = 1072 &g = 107% &g = 107°
Our method Our method Our method Our method Our method Our method
n =512 n = 1024 n =512 n = 1024 n =512 n = 1024

107! 1.1976-5 2.9941-6 5.3351-4 2.6639-4 1.3240-3 6.4629-4
1.9999 1.0020 1.0346

102 6.1615-7 1.5401-7 4.9463-3 3.9897-3 1.1624-3 4.5526-4
2.0003 0.3101 1.3523

1073 5.6601-8 1.4131-8 6.7619-3 6.2360-3 6.4687-4 4.8213-4
2.0020 0.1168 0.4240

104 5.7018-9 1.4064-9 6.6922-3 6.1992-3 4.8827-4 3.1132-4
2.0191 0.1104 0.6493

103 6.6095-10 1.4622-10 6.6833-3 6.1933-3 4.7194-4 2.9663-4
2.1764 0.1098 0.6699

10-¢ 1.5743-10 2.0296-11 6.6824-3 6.1927-3 4.7033-4 2.9520-4
2.9554 0.1098 0.6720

1077 1.0712-10 7.7557-12 6.6823-3 6.1926-3 4.7017-4 2.9506-4
3.7878 0.1098

1078 1.0209-10 6.4920-12 6.6823-3 6.1926-3 4.7016-4 2.9505-4
3.9750 0.1098 0.6722

107 1.0160-10 6.3608-12 6.6823-3 6.1926-3 4.7015-4 2.9504-4
3.9975 0.1098 0.6722

10710 1.0154-10 6.3671-12 6.6823-3 6.1926-3 4.7015-4 2.9504-4
3.9953 0.1098 0.6722

10! 1.0154-10 6.3508-12 6.6823-3 6.1926-3 4.7015-4 2.9504-4
3.9953 0.1098 0.6722

10712 1.0153-10 6.3532-12 6.6823-3 6.1926-3 4.7015-4 2.9504-4
3.9953 0.1098 0.6722
es=10"8 gg= 10710 eg= 107"

107! 1.3325-3 6.5505-4 1.3326-3 6.5549-4 1.3267-3 6.5136-4
1.0244 1.0236 1.0263

102 1.5181-3 7.4409-4 1.5219-3 7.4713-4 1.5219-3 7.4716-4
1.0287 1.0264 1.0264

1073 2.9398-4 1.0464-4 4.3265-4 2.0375-4 4.3430-4 2.0500-4
1.4903 1.0864 1.083

10~* 1.3035-4 4.8235-5 2.8760-4 8.8530-5 2.9368-4 9.0505-5
1.4342 1.6998 1.6982

10-° 9.9913-5 3.9352-5 1.3035-4 4.0206-5 2.8793-4 8.8692-5
1.3442 1.6969 1.6988

10-¢ 9.9090-5 3.8527-5 6.2985-5 1.7731-5 1.3035-4 4.0192-5
1.3629 1.8287 1.6974

1077 9.9006-5 3.8446-5 6.3354-5 1.7717-5 5.9287-5 1.5575-5
1.3647 1.8383 1.9285

1078 9.8998-5 3.8438-5 6.3388-5 1.7716-5 5.9771-5 1.5638-5
1.3649 1.8392 1.9344

10~ 9.8997-5 3.8437-5 6.3392-5 1.7716-5 5.9816-5 1.5644-5
1.3649 1.8392 1.9349

10710 9.8997-5 3.8437-5 6.3392-5 1.7716-5 5.9819-5 1.5645-5
1.3649 1.8392 1.9349

101 9.8997-5 3.8437-5 6.3392-5 1.7716-5 5.9820-5 1.5645-5
1.3649 1.8392 1.9349

1012 9.8997-5 3.8437-5 6.3392-5 1.7716-5 5.9821-5 1.5645-5
1.3649 1.8392 1.9349
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