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Abstract In this paper, a reliable algorithm is presented to develop approximate analytical solu-
tions of fourth order singularly perturbed two-point boundary value problems in which the highest
order derivative is multiplied by a small parameter. In this method, first the given problem is trans-
formed into a system of two second order ODEs, with suitable boundary conditions and a zeroth-
order asymptotic approximate solution of the transformed system is constructed. Then, the reduced
terminal value system is solved analytically using the differential transform method. Some illustrat-
ing examples are solved and the results are compared with the exact solutions to demonstrate the
accuracy and the efficiency of the method. It is observed that the present method approximates

the exact solution very well not only in the boundary layer, but also away from the layer.
© 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

Singularly perturbed boundary value problems (SPBVPs) oc-
cur frequently in many areas of applied science and engineer-
ing, e.g., heat transfer, fluid dynamics, quantum mechanics,
optimal control and chemical reactor theory, etc. These prob-
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lems have received a significant amount of attention in the past
and in recent years due to the fact that the solution exhibits a
multiscale character, i.e., there are thin transition layer(s)
where the solution varies rapidly, and while away from the lay-
ers (s) the solution behaves regularly and varies slowly. There-
fore, the numerical treatment of singular perturbation
problems presents some major computational difficulties. For
the past two decades, many numerical methods have appeared
in the literature which cover mostly second order SPBVPs
(Kadalbajoo and Patidar, 2002; Kumar et al., 2007). But only
few authors have developed numerical methods for higher or-
der SPBVPs. Most notable among these are fitted mesh finite-
difference method (Shanthi and Ramanujam, 2002, 2003;
Valanarasu and Ramanujam, 2007), exponentially fitted finite
difference method (Valarmathi and Ramanujam, 2002a,b;
Shanthi and Ramanujam, 2002, 2003, 2004), fitted mesh finite
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element method (Babu and Ramanujam, 2007), fitted Nume-
rov method (Phaneendra et al., 2012), spline method (Siddiqi
et al., 2011; Akram and Amin, 2012), Adomain decomposition
and homotopy methods (Syam and Attili, 2005) and reproducing
Kernel method (Cui and Geng, 2008; Akram and Rehman,
2012). The aim of our study is to employ the Differential Trans-
form Method (DTM) as an alternative to existing methods for
solving higher order SPBVPs. The basic idea of DTM was ini-
tially introduced by Zhou (1986) who solved linear and nonlinear
initial value problems in the electric circuit analysis. It is a semi-
numerical and semi-analytic technique that formulizes the Taylor
series in a totally different manner. With this technique, the given
differential equation and its related boundary conditions are
transformed into a recurrence relation that finally leads to the
solution of a system of algebraic equations as coefficients of a
power series solution. Different applications of DTM can be
found in (Jang et al., 2000; Koksal and Herdem, 2002; Abdel-
Halim Hassan, 2008; Ayaz, 2004; Arikoglu and Ozkol, 2006;
Liu and Song, 2007, Momani and Noor, 2007; Chu and Chen,
2008; El-Shahed, 2008; Momani and Ertiirk, 2008; Odibat,
2008; Ravi Kanth and Aruna, 2009; Kuo and Lo, 2009; Al-Saw-
alha and Noorani, 2009a,b; Ebaid, 2010; Thongmoon and Pus-
juso, 2010; Kurulay and Bayram, 2010; Dogan et al., 2011;
Alomari, 2011; Demirdag and Yesilce, 2011; Gupta, 2011; Biazar
et al., 2012; Gokdogan et al., 2012 and El-Zahar, 2012, 2013). In
this paper, a reliable algorithm is presented to develop approxi-
mate analytical solutions of fourth order singularly perturbed
two-point boundary value problems in which the highest order
derivative is multiplied by a small parameter. In this method, first
the given problem is transformed into a system of two second or-
der ODEs, with suitable boundary conditions and a zeroth-order
asymptotic approximate solution of the transformed system is
constructed. Then, the reduced terminal value system is solved
analytically using the DTM. Some illustrating examples are
solved and compared with the exact solutions to demonstrate
the accuracy and the efficiency of the method. It is observed that
the present method approximates the exact solution very well not
only in the boundary layer, but also away from the layer.

2. Basic concepts of the DTM

The DTM that has been developed for the analytical solution
of ODEs is presented in this section for the systems of ODEs.
For this purpose, we consider the following system of ODEs
y’l(t) :fi([7yl7y27 s '7yn)7
y’z(t) :f;l([myhyb e '7yn)7

(1)
y::(t) :fﬂ(tvyl?y27 s '7yn)’
subject to initial conditions
»0)=¢, i=12...,n (2)

Let [0, L] be the interval over which we want to find the solu-
tion of the ODE system (1) and (2). In actual applications of
the DTM, the Nth-order approximate solution of the ODE
system (1) and (2) can be expressed by the finite series

ZY

=1,2,...,n, (3)

oY, telo,L], i

E.R. El-Zahar

Table 1 Fundamental operations of DTM.
Original function Transformed function
W) = B £ v@) Yk = ﬁ(i(k) + V(K
(@) = u()v(r) Y(k) =2 UO)V(k = 0)
(1) =G Y(k) = 5% Uk + m)
wo =" _ L ifk=m

g SAle=il) S { 0; if ketm
o = e Y(k) =%

»(1) = sin(w?) o 0; k € even
Y = rsin (%) = HCUT ke odd
(1) = cos(wr) of (=1}
Y(k) = %cos (42) = { —g—; k€ even
() =freos (%) {0; ke odd
where
d'yi(1)
Yi(k =1,2,...,n 4
"= k'{ dr* }z 0 77 " @

which implies that >, ., Y;(k)f* is negligibly small. Using
some fundamental properties of the DTM, (Table 1), the
ODE system (1) and (2) can be transformed into the following
recurrence relations
Yilk+1)=(Fi(k, Y, Ya,...,Y,)/(k+1), Yi(0)

=¢, i=1,2,...,n, (5)
where Fi(k,Y,Y,,...,Y,) is the differential transform of the
function f{(z,y1,y2,...,yn), for i=1,2,...,n. Solving the

recurrence relation (5), the differential transform Y(k),
k > 0 can be easily obtained .

3. Description of the method

Consider the fourth order linear SPBVP given by:

=&y (x) — a(x)y"(x) + b(x)y" (x) — e(x)p(x)
=—h(x), xeT, (6)
y(o):p7 y(1>:q7 y”(o):_r7 y”(]):_S? (7)

where 0 < ¢ << 1, a(x), b(x), c(x), and h(x) are sufficiently
smooth functions satisfying the following conditions:

alx) Zza>0, bx)=p>0 (8)
0 = C(X) = =7, Y > 07 (9)
o—7p(l4+9) = n>0 for some  and y > 0, (10)
and

=(0,1),T=10,1], and y(x) € C¥(T) N C*(T).

The SPBVP (6) and (7) can be transformed into an equivalent
system of two second order ODEs of the form

—17(x) = »(x) =0,
—&y5(x) — a(x)y5(x) + b(x)y,(x)
Ay=H < +e(x)y,(x) = ( ), xeT (11)
n0)=p, »()=
yz(o) =, ( )=

where p = (y1(x),y2(x))".
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Remark. Here after, the above system (11) is only considered
instead of SPBVP (6) and (7). The above conditions (8)—(10)
guarantee that it is not a turning point problem and the above
system (11), which is equivalent to (6) and (7), is quasi-
monotone. For more details about analytical results such as
existence, uniqueness, and asymptotic behavior of the solution
of (6) and (7) see, (Shanthi and Ramanujam, 2002, 2004).

3.1. A zeroth-order asymptotic approximate solution

One can look for the asymptotic approximation of the solution
of (11) in the form
y(x.8) = (¥o +20) + &y, +21) + O(e%)

Using one of the standard perturbation methods (Nayfeh,
1981), one can construct the zeroth-order asymptotic approx-
imate solution y,s = yo + zo where yo = (yo1(x), voo(x))7 is a
solution of the reduced system of (11) given by

=01(%) = y2(x) = 0,34, (0) =p,yo (1) =g, x €T }
—a(x)y (%) + b(x)yea (x) + c(x)p; (x) = h(x), oo (1) = s J
(12)
and z is the layer correction given by zy = (z¢1(x), Zoa(x))”
with
Z01 (X) = 07
(

202(x) = (r = y2(0)) (e7©/%),

Theorem 3.1. The zeroth-order asymptotic approximation yus of

the solution y of (11) satisfies the inequality

Hy - YasH < C187
For proof see (Shanthi and Ramanujam, 2002).

Now, in order to obtain an approximate analytical solution
of (11), we only need to obtain an approximate analytical solu-
tion to the terminal value system (TVS) (12).

3.2. The solution of the TVS (12) by DTM

In this section, the DTM is applied to solve the TVS (12). Tak-
ing differential transformation to (12) by using the related def-
initions in Table 1, we obtain the following recurrence relation:

(k+ 1) (k+2)Yo(k +2) = = Yoo(k),

zk:A(f)(k 0+ ) Yok —C+1)

,(13)
k k
= B(O)Yor(k— ) + Y C() Yo (k — £) — H(k)
(=0 =0
with transformed boundary conditions:
N N
> Yak)=q, Y Yuk) =s, (14)
k=0 k=0

where Yy(k), Yoo(k), A(k), B(k), C(k) and H(k) are the trans-
formed functions of yyi(x), yoa(x), a(x), b(x), c(x) and h(x)
respectively.

The recurrence relations (13) with the transformed bound-
ary conditions (14) represent a system of algebraic equations
in the coefficients of the power series solution of the system
(12). Solving this algebraic system, the differential transform
series solution 7, = (J1(x), o2 (x))" of (13) is obtained and gi-
ven by

ﬁm(x) = Zym(k)xk

. (15)
Foa(x) =Y Yo(k)xk

k=0

And thus, the approximate analytical solution y,, =
(y(,p(x),y;’p(x))r of (11) is obtained and given by

Vop(X) = For(x)
Vi (X) = =Joa(x) = (r — F02(0)) e~/ } (16)

3.3. The error analysis

The numerical error of the present method has two sources:
one from the asymptotic approximation and the other from
the analytical approximation by the DTM.

Theorem 3.2. The approximate analytical solution y,, of (11)
satisfies the inequality
1

Iy = vl < (54 o) (1)

Proof. Since the DTM is a formalized modified version of the
Taylor series method, then we have a bounded error given by

M< HyéN“)(c”)

; M
¥o — Yoll € —— , 0< e

(N+ 1)V
From Theorem 3.1 and the above bounded error, we have
Hy - yap“ < ||y - ygs” + Hyas - y(lp” < Hy - YasH + HyO - 510”
< C n [
< Cie+ (N+ 1)'

that is

1
ly — ¥, < C(8 +m>
In more times, the DTM results in the exact solution of the
reduced system (12) and the second term of the above error
inequality is vanished. The present method works well for sin-
gular perturbation problems since the singular perturbation
parameter ¢ is extremely small.

4. Illustrating examples

In this section, three examples are given to demonstrate the
accuracy and the efficiency of the method in solving the con-
sidered problems. These examples have been chosen because
the exact solutions are available for comparison.

Example 1. Consider the following SPBVP with variable
coefficients
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Figure 1  Solution comparison, exact solution of Example 1 (solid line) and (24) solution (doted line) at ¢ = 0.05.
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Figure 2 Solution comparison, exact solution of Example 2 (solid line) and (30) solution (doted line) at ¢ = 0.005.

o (x) — 4"(x) + (14 2 () = p(x) = —h(),

x € [0,1], (18)
y0)=1y1) =1, »'(0)=-1, y'(1)=-1, (19)
where
h(x) 73—46’74/84-82_(—164—82)674)‘/6_ 1 —2e%°\

VT =) T eI —e ) \B(1—e ¥

N 2 & —649e Y —2e N 7
3 64 8(1 — e %) T

The exact solution of (18) and (19) is given by
2

(x)=<1+ £ + S & e X
POZV Mot —em) 127 64 (1—e )

B 3_ 46—4/8 x2 B 8Ze—4x/s B x_? ‘
8(1 — e /) 64(1— e 7)) 24

The equivalent system of (18) and (19) is given by

V(%) =3(x) =0, »(0)=1, y(1)=1

—)5(x) = 45 (x) + (1 + x)35(x) + 31 (%) : (20)
= h(x)7y2(0) = 17y2(1) =1

and the reduced system of (20) is given by

—161(%) = y(x) =0, yu(0)=1, yu(1)=1
*4J’62(x) + (1 +X)p + Yo :%JF%X*%*%J(H(I) =1
1)

Taking differential transformation to (21), we obtain the fol-
lowing recurrence relation

Yoi(k+2) = =You(k)/((k+ 1)(k +2)),

 5(k—3)+36(k—2)—346(k—1)—185(k)
Yoo (k+1) = 96(k+1) . (22)

Yor ()43 (G0 +5(6-1)) Yoo (k1)
+ 40r1)
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Table 2 Numerical results of Example 1 (¢ = 10~%).

Error

(%)

I

Approximate solution )’

—9.9020e—01

Exact solution »”(x)

—9.9020e—01

Error

Approximate solution y,,(x)

1.0000e + 00

Exact solution y(x)

1.0000e + 00

0.0000e—16

6.1264e—12

1.0E—06

0.0000e—16

1.0000e + 00 5.1511e—11 —9.1758e—01 —9.1758e—01

1.0000e + 00

1.0OE-05

1.1102e—16
0.0000e—16

—7.5460e—01
—7.5025e—01

—7.5460e—01
—7.5025¢—01

1.5337e—10
1.5609e—10

1.0000e + 00

1.0000e + 00

1.0E—04

1.0004¢ + 00

1.0004¢ + 00

1.0E-03

0.0000e—16

1.0041e+ 00 1.5469¢e—10 —7.5250e—01 —7.5250e—01

1.0041e+ 00

1.0E—02

0.0000e—16

1.0379¢ + 00 1.4062e—10 —7.7500e—01 —7.7500e—01

1.0379¢+ 00

1.0E-01

0.0000e—16

1.0901e + 00 1.0937e—10 —8.2500e—01 —8.2500e—01

1.0901e+ 00

3.0E-01

0.0000e—16

1.1094¢ + 00 7.8125e—11 —8.7500e—01 —8.7500e—01

1.1094e + 00

S.0E-01

0.0000e—16

1.0936e + 00 4.6875e—11 —9.2500e—01 —9.2500e—01

1.0936e + 00

7.0E—01

0.0000e—16

—9.7500e—01

—9.7500e—01
—.0000e + 00

1.5625e—11

1.0409¢ + 00

1.0409¢ + 00

9.0E—01

0.0000e—16

—1.0000e + 00

1.1102e—16

1.0000e + 00

1.0000e + 00

1.0E +00

with transformed boundary conditions:

D oYulk) =1, Y Yok) =1 (23)
k=0 k=0

Solving the recurrence relation (22) with the boundary condi-
tions (23) results in

Jo(x) =1+ 3Sx—3x2 — L5
Joa(x) =3 +2 ’
which is the exact solution of (21). Thus we get the following

approximate analytical solution of (20)

yap(x)zl'i‘%x—%xz—ﬁxj 24
P (x) = — (i x4 l€f4.\'/e) (24)
ap 4 4 i

The results obtained using (24) compare very well with the ex-
act solutions as shown in Fig. 1.

Example 2. Consider the following SPBVP

—&y"(x) — y"(x) = —cos(x) + esin(x), x€[0,1], (25)
y0)=1, y(1)=1, »"(0)=1, »"(1)=sin(1). (26)
The exact solution is given by
y(x) = sin(1)x + &®x 4 1 — sin(x)
262 4 (x2 — x)e 1/t — 2g%e™¥/°
2(e~le —1) '

The equivalent system of (25) and (26) is given by

W) =pa(x) =0, »(0)=1, y(1)=1

ey (x) — ¥4(x) = cos(x) — esin(x) 7 (27)
1(0) = =1, yy(1) = —sin(l)

and the reduced system of (27) is given by

=101 (X) =y (%) = 0, ¥, (0) = 1, yp(1) =1, } (28)
—Vin(x) = cos(x),  yp(1) = —sin(1).
Applying differential transform to (28), results in
Yor(k+2) = —=Yn(k)/(k+ 1)(k+2))
N
Ya(0)=1, > Yo(k) =1
k=0 (29)

Yoo(k +1) =7 cos (&) /(k + 1)

zNonz(k) = —sin(1)
=0

Solving (29), we obtain the following approximate analytical
solutions

_ 63433 sin(l) _ (305353 _ sin(1)) .2
yap(x) =10+ (241920 )X 725760 2 )X
XX N2
+ 6 120 + 5040 362880 . (30)
W e 305353 S S
Vap(x) = (sin(1) — 38588) +x =% + %5 — 50w

; i —X/&
+36§w+ (Sm(l) + 35672582370)6 x/

The results obtained using (30) compare very well with the ex-
act solutions as shown in Fig. 2 .

Example 3. Finally, consider the following nonlinear SPBVP



Table 3 Numerical results of Example 2 (¢ = 107%).

X Exact solution y(x) Approximate solution y,,(x) Error Exact solution y”(x) Approximate solution y7, () Error
1.0E—06 1.0000e + 00 1.0000e + 00 9.9529¢e—11 9.9005¢—01 9.9005¢—01 4.9537e—08
1.0E-05 1.0000e + 00 1.0000e + 00 9.5190e—10 9.0485¢—01 9.0485¢—01 4.7416e—08
1.0E—04 9.9998e—01 9.9998e—01 6.3239¢—09 3.6798e—01 3.6798e—01 3.4050e—08
1.0E—03 9.9984e—01 9.9984e—01 1.0027e—08 1.0454e—03 1.0454e—03 2.4893e—08
1.0E-02 9.9841e—01 9.9841e—01 1.0272e—08 9.9998e—03 9.9998e—03 2.4892e—08
1.0E—01 9.8431e—01 9.8431e—01 1.2609¢—08 9.9833e—02 9.9833e—02 2.4892¢—08
3.0E-01 9.5692e—01 9.5692e—01 1.7081e—08 2.9552e—01 2.9552e—01 2.4892e—08
5.0E-01 9.4131e—01 9.4131e—01 2.0545e—08 4.7943e—01 4.7943e—01 2.4880e—08
7.0E-01 9.4481e—01 9.4481e—01 2.2544e—08 6.4422e—01 6.4422e—01 2.4398e—08
9.0E-01 9.7400e—01 9.7400e—01 1.6702e—08 7.8333¢—01 7.8333e—01 1.7071e—08
1.0E+00 1.0000e + 00 1.0000e + 00 2.2204e—16 8.4147¢e—01 8.4147e—01 0.0000e + 00

Table 4 Numerical results of Example 3 (¢ = 10~%).

X Exact solution y(x) Approximate solution y,,(x) Error Exact solution y”(x) Approximate solution y;,(x) Error

1.0E—06 1.0000e + 00 1.0000e + 00 9.9517e—11 9.9005¢—01 9.9005¢—01 3.7974e—11

1.0E-05 1.0000e + 00 1.0000e + 00 9.5178e—10 9.0485¢—01 9.0485¢—01 3.6318e—10

1.0E—04 9.9998¢—01 9.9998¢—01 6.3227¢e—09 3.6798¢—01 3.6798¢—01 2.4126e—09

1.0E-03 9.9984e—01 9.9984e—01 1.0015¢—08 1.0454e—03 1.0454e—03 3.8198e—09

1.0E—02 9.9841e—01 9.9841e—01 1.0150e—08 9.9998¢—03 9.9998¢—03 3.8537e—09

1.0E-01 9.8431e—01 9.8431e—01 1.1519¢—08 9.9833e—02 9.9833e—02 3.9785e—09

3.0E-01 9.5692¢—01 9.5692¢—01 1.4670e—08 2.9552e—01 2.9552e—01 2.7488¢—09

5.0E-01 9.4131e—01 9.4131e—01 1.7908e—08 4.7943e—01 4.7943e—01 8.8606e—10

7.0E—01 9.4481e—01 9.4481e—01 2.0627e—08 6.4422¢—01 6.4422¢—01 7.0014e—09

9.0E—-01 9.7400e—01 9.7400e—01 1.6180e—08 7.8333e—01 7.8333e—01 9.9222e—09

1.0E+00 1.0000e + 00 1.0000e + 00 3.0317e—10 8.4147e—01 8.4147e—01 3.8417e—10

9T

Teyez-[4 "d'd
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Table 5 Maximal error comparison for Example 1.

€ DTM-1 DTM-2 DTM-3 DTM-5 DTM-9
107! 4.1667e—001 4.1667e—002 1.3793e—004 1.3793e—004 1.3793e—004
102 4.1667e—001 4.1667e—002 1.5352e—006 1.5352e—006 1.5352e—006
1073 4.1667e—001 4.1667e—002 1.5589¢—008 1.5589¢—008 1.5589¢—008
104 4.1667e—001 4.1667e—002 1.5609¢—010 1.5609¢—010 1.5609¢e—010
1073 4.1667e—001 4.1667e—002 1.5610e—012 1.5610e—012 1.5610e—012
Table 6 Maximal error comparison for Example 2.
€ DTM-1 DTM-3 DTM-5 DTM-7 DTM-9
107! 1.5857e—001 8.1377e—003 6.6434e—003 6.6434e—003 6.6434e—003
1072 1.5853e—001 8.1377e—003 1.9566e—004 9.4397e—005 9.4397e—005
1073 1.5853e—001 8.1377¢—003 1.9566e—004 2.7557e—006 9.9235e—007
104 1.5853e—001 8.1377e—003 1.9566e—004 2.7557e—006 4.9537e¢—08
107° 1.5853e—001 8.1377e—003 1.9566e—004 2.7557e—006 4.9537¢—08
Table 7 Maximal error comparison for Example 3.
3 DTM-1 DTM-3 DTM-5 DTM-7 DTM-9
107! 1.5857e—001 8.1377e—003 6.6434e—003 6.6434e—003 6.6434e—003
1072 1.5853e—001 8.1377e—003 1.9566e—004 9.4396e—005 9.4396e—005
1073 1.5853e—001 8.1377e—003 1.9566e—004 2.7560e—006 9.9226e—007
1074 1.5853e—001 8.1377e—003 1.9566e—004 2.7560e—006 2.0627e—008
107° 1.5853e—001 8.1377e—003 1.9566e—004 2.7560e—006 1.8500e—008
— ey (%) — " (x) + 5" (x) = y(x)’ = —h(x), (31)  Yalk+2)= —Yoz(k>/(<k+ )(k+2))
yO0) =1, y(1)=1, H(0)=1, (1) =sin(1), (32) =1, ZYm
where
oo _ gl Yoo (k+1) Yoo (k) + ZY()] ) You(k — €) — L (cos (¥) —sin (¥2))
h(x) =cos(x) — (¢ + 1)sin(x) — = =0
67 &
) 262 1 (x2 — x)e /o — 2g2ex/e\ 2 - 0) +sin(1)6(¢— 1) — L sin
+ ( sin(1)x +&*x —sin(x) + € x)lev £e . Z )
2eMe—1) (k-0)n
*<(5(k—£)+s1n( Yotk —t—1) — g sm( - )))]/[k+1]
The exact solution of (31) and (32) is given by N
. 5 ) Z Ym = —sin 1)
y(x) =sin(1)x + & x —sin(x) + 1

N 282 + (X2 _ x)e’l/” — ¢ 6’7'\,/6
2(6—1/8 _ 1)

The equivalent system of (31) and (32) is given by
=) =pa(x) =0, »(0)=1, y(1)=1
—ey4(x) = 400) 1) + (W (0P =h(x) ¢ (33)
1,(0) = =1, yy(1) = —sin(1)
and the reduced system of (33) is given by
=01 (%) = y(x) =0, 3 (0) =1, yy(1)=1
=V (%) + Yoo (x) + (o1 (x))* = cos(x) — sin(x)

+(1 +sin(1)x — sin(x))2

J/02(1) =

Applying differential transform to (34), results in

—sin(1)

(35)
Solving (35), the approximate analytical solutions are obtained
and given by
V(%) =1—0.1585290x + 1.908001 10
—1.93000107°x* — 0.8333333 1072x° —
+0.1984127 1077 — 5.414054 10~ "2x® —0.2755730 107°x°
i, (x) =3.816001 10~ + x —2.31000 10~*x — 0.1666667°
—1.776763 10 x* +0.8333331 107x° +5.903878 10~ x6
—0.1984127 1073x7 4 5.414054 10~"2x® +0.2755732 107
+(1—3.816001 10"%)e "/

%2 4+0.1666667x°
5.90387 107" ¢

(36)

Results obtained by the method are compared with the exact
solution of each example and the results are listed in Tables
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Table 8 Processing times used in solving Examples 1, 2 and 3.

DTM-3 DTM-5 DTM-7 DTM-9
Example 1 0.0000 0.00001 0.00002 0.00002
Example 2 0.0000 0.00010 0.00011 0.00011
Example 3 0.0000 0.00009 0.00011 0.00013

2—4. The results show that the obtained approximate solutions
are in good agreement with the exact solutions not only in the
boundary layer, but also away from the layer.

Tables 5-7 present the maximum absolute point wise error for
the numerical solution obtained for each previous example at
different values of the perturbation parameter, ¢, and the DTM
order, N. Results in Table 5 show that when N > 3 the DTM
results in the exact solution of the reduced system (21) and the
numerical error source is only the asymptotic approximation.

The results in Tables 5-7 show that the accuracy of the
approximate solution increases as the order of the DTM
increases and the perturbation parameter ¢ decreases. More-
over, with a constant order of the DTM, the numerical error is
maintained at the same level (bold text) for a family of singular
perturbation parameter values, where the DTM is the dominant
error source, and vice versa when the asymptotic approxima-
tion is the dominant error source, which confirm that the
numerical results agree closely with the theoretical analysis.

Table 8 presents the processing times used in solving each
previous example by DTM at different order values, N, where
all calculations are carried out by MAPLE 14 software in a PC
with a Pentium 2 GHz and 512 MB of RAM. We can observe
that the DTM is a fast and effective tool for solving the
considered problems.

5. Conclusions

In this paper, we presented a new and reliable algorithm to de-
velop approximate analytical solutions of fourth order
SPBVPs in which the highest order derivative is multiplied
by a small parameter. The given fourth order problem is trans-
formed into a system of two second order ODEs, with suitable
boundary conditions and a zeroth-order asymptotic approxi-
mate solution of the transformed system is constructed. Then,
the DTM is applied to solve the terminal value system analyt-
ically. The method provides the solutions in terms of conver-
gent series with easily computable components. This
approach is simple in applicability as it does not require line-
arization or discretization like other numerical and approxi-
mate methods. We have applied it on three examples and the
approximate analytical solutions are presented for each one.
Results obtained by the method are compared with the exact
solution of each example and are found to be in good agree-
ment with each other not only in the boundary layer, but also
away from the layer. Numerical results are presented in figures
and tables at different values of the perturbation parameter, &,
and the DTM order N. The results show that the accuracy of
the approximate solution increases as the order of the DTM
increases and the perturbation parameter ¢ decreases which
agree with the theoretical analysis. The method works success-
fully in handling the considered fourth order SPBVPs with a
high accuracy and a minimum size of computations. This

emphasizes the fact that the present method is applicable to
other higher order SPBVPs.
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