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A B S T R A C T   

Visfatin is an adipocytokine that exists in two forms, intracellular and extracellular. Circulating visfatin, which 
lacks the nicotinamide phosphoribosyltransferase (NAMPT) enzyme activity, functions as adipocytokine. 
Increased concentration of circulating visfatin is associated with several diseases, including cardiovascular dis-
ease. However, therapeutic strategies to normalize the circulating visfatin concentration are less understood. In 
heart failure (HF) patients with obesity and insulin resistance (IR), the routine HF therapy, trimetazidine (TMZ), 
which is a sirtuin1 (sirt1) activator, is known to normalize the circulating visfatin concentration. Besides this 
preferred effect of TMZ, an adjuvant therapy including N-acetylcysteine (NAC, antioxidant and anti- 
inflammatory molecule), niacin (vitamin B3, NAD + booster) and magnesium (sirt1 activator and anti- 
inflammatory molecule) can be considered to address the underlying molecular mechanisms that are associ-
ated with the pathogenesis of HF. Such mechanisms include excess oxidative stress, increased circulating visfatin 
concentration, NAD + deficiency, sirt1 down regulation and elevated systemic and cardiac inflammation. 
Together, the proposition is that TMZ and the suggested adjuvant therapy could improve the clinical symptoms 
and normalize the circulating visfatin concentration by addressing the underlying mechanisms associated with 
HF.   

1. Introduction 

Visfatin is an adipokine that elicits paracrine and autocrine effects on 
the cardiovascular system. Previously, visfatin has been considered to be 
identical to pre-B cell colony-enhancing factor (PBEF) that promotes the 
maturation of early B-lineage precursor cells (Adeghate 2008). Further, 

visfatin has intrinsic enzyme activity as nicotinamide phosphoribosyl 
transferase (NAMPT) (Rongvaux et al. 2002). NAMPT catalyses the rate- 
limiting step in NAD+ (nicotinamide adenine dinucleotide) biosynthetic 
salvage pathway, wherein NAD + is an essential cofactor in several 
redox reactions (Revollo, Grimm, and Imai 2004). As shown in Fig. 1, 
NAMPT converts nicotinamide to nicotinamide mononucleotide (NMN); 
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then nicotinamide/nicotinic acid mononucleotide adenyl transferase 
(NMNAT) transforms NMN to NAD+ (Formentini, Moroni, and Chiarugi 
2009). 

Visfatin exists in two forms, intracellular and extracellular. Intra-
cellular form exhibits NAMPT enzyme activity so as to maintain the 
enzyme activities of NAD + -dependent enzymes, hence, the intracel-
lular visfatin regulates cellular metabolism and energy homeostasis (Ho 
et al. 2009). Whereas the extracellular form, which is synthesised and 
secreted by adipocytes and several other cell types (Romacho, Sánchez- 
Ferrer, and Peiró 2013) (including cardiac fibroblasts, cardiomyocytes, 
vascular smooth muscle cells, endothelial cells, cells in the atheroscle-
rotic plaque, activated immune cells, circulating blood cells), is an 
adipocytokine which is associated with hormone-like signalling path-
ways and intracellular signalling cascades (Verdin 2015). As circulating 
visfatin has been considered as a biomarker of inflammation and 
endothelial dysfunction (Romacho et al. 2013), here the focus is on the 
extracellular circulating visfatin and its association with the pathogen-
esis of heart failure (HF). Interestingly, a recent report has shown that 
extracellular circulating visfatin does not elicit enzymatic activity (for 
NMN biosynthesis) due to the insufficient concentration of ATP (the 
activator of enzymatic activity of visfatin/NAMPT) in the extracellular 
spaces (Hara et al. 2011), which shows that circulating visfatin functions 
as an adipocytokine rather than an enzyme (NAMPT). 

The physiological relevance and function of circulating visfatin re-
mains controversial. However, enhanced circulating visfatin concen-
tration has been reported in several pathologies (Romacho et al. 2013) 
including, obesity, type 2 diabetes (T2D), hypoxia, chronic kidney dis-
ease, preeclampsia, acute coronary syndromes, cerebrovascular diseases 
and non-metabolic chronic inflammatory diseases, among the others. 
Further, strategies to normalize the elevated circulating visfatin con-
centration are less explored. TMZ also exhibited antiinflammatory ac-
tivities (Liang et al., 2020; Engin etal., 2022). 

Trimetazidine (TMZ), a cytoprotective and an anti-ischemic agent, is 
a pharmacological drug that was previously approved for angina pec-
toris (Milinković et al. 2016). Eventually, the direct influence of TMZ in 
improving the myocardial metabolism via beta oxidation was estab-
lished (Kantor et al. 2000), besides the other benefits of TMZ. Hence, the 
European Society of Cardiology (ESC, 2016 guidelines) has included 
TMZ for the treatment of angina pectoris with HF (Milinković et al. 
2016). Since then, experimental and clinical studies have reported on 
the efficacy of TMZ in HF (Brottier et al. 1990). Different mechanisms by 
which TMZ exerts its cardioprotective effect includes sirt1 activation 
(Brottier et al. 1990), energy metabolism (Heggermont et al. 2016), 
apoptosis of cardiomyocytes, myocardial autophagy (Yang et al. 2019), 

myocardial interstitial fibrosis, myocardial inflammation, expression of 
atrial natriuretic peptide (Morgan et al. 2006), modifying the phosphate 
levels in left ventricle (Fragasso et al. 2006) and electrophysiological 
influence (Cera et al. 2010). Nevertheless, whether or not TMZ can in-
fluence the circulating visfatin concentration is yet to be understood. 

2. Mechanisms associated with circulating visfatin and heart 
failure 

Abdominal obesity occurs due to an imbalance between the energy 
intake and energy expenditure. Further, obesity is associated with T2D 
and insulin resistance (IR) (LinPark et al. 2017). The two major cellular 
events that occur in abdominal obesity are white adipose tissue (WAT) 
inflammation and hypoxia, as shown in Fig. 2. In cardiovascular disease, 
classically excessive oxidative stress occurs as an underlying molecular 
mechanism. Such elevated oxidative stress leads to more tissue inflam-
mation and reduced ejection fraction, which cumulatively leads to HF 
development. Majority of the reports (Erten 2021; Hara et al. 2011; 
Peiró et al. 2010) show that visfatin concentration is up-regulated in HF. 
Besides these oxidative stress induced effects, excess reactive oxygen 
species down-regulates the sirt1 enzyme activity and expression which 
in-turn leads to increase in circulating visfatin concentration (Vargas- 
Ortiz, Pérez-Vázquez, and Macías-Cervantes 2019). Therefore, it is 
possible that excess circulating visfatin contributes to HF development. 

2.1. White adipose tissue inflammation and adipocyte dysfunction 

The excess energy, which is stored in the adipose tissue, leads to 
adipocyte enlargement. Eventually, these hypertrophic adipocytes pro-
duce chemotactic adipocytokines, such as leptin, adiponectin, resistin, 
and visfatin, among the others. The secreted adipocytokines, in turn, 
attract the macrophages into the adipose tissue, to trigger inflammation 
(WAT inflammation) in the adipose tissue (Fig. 2). In WAT inflamma-
tion, lipolysis of the hypertrophic adipocytes causes leakage of free fatty 
acids. These free fatty acids directly contribute to apoptosis of non- 
adipose tissue, microvascular inflammation and altered adipose tissue 
perfusion to result in hypoxia and necrosis. These cellular events in turn 
promote several pro-inflammatory signalling pathways in adipocytes, 
fibroblasts and immune cells (Wang, Wood, and Trayhurn 2007). Be-
sides these events, an imbalance in the biosynthesis and secretion of pro- 
and anti-inflammatory adipocytokines is created, which causes adipo-
cyte dysfunction. Adipose tissue dysfunction then becomes an underly-
ing factor for several systemic and metabolic consequences such as, IR, 
systemic low grade inflammation, hyperlipidemia and hypercoagula-
bility which cumulatively furthers the pathogenesis of cardiovascular 
disease and T2D (Schrover et al. 2016). 

2.2. White adipose tissue inflammation, reactive oxygen species and 
circulating visfatin 

Excess circulating visfatin stimulates the pathogenesis of athero-
sclerosis and HF (Peiró et al. 2010) through multiple mechanisms, 
including, cell proliferation, cell survival, extracellular matrix, vascular 
reactivity, inflammation and myocardial fibrosis. However, pre- 
treatment with visfatin exhibits cardioprotective effect under hypoxia- 
reperfusion (Lim et al. 2008). Hence, visfatin may have potential ther-
apeutic benefits in the pathologies associated with ischemia. 

Elevated concentration of circulating visfatin activates NADPH 
(nicotinamide adenine dinucleotide phosphate, Fig. 2) oxidase in 
endothelial cells to contribute to endothelial dysfunction in the coronary 
vessels (Romacho et al. 2013). Activated NADPH oxidase generates 
excessive reactive oxygen species. Excess oxidative stress successively 
influences several critical molecules and cellular events including the 
following i) aggravated cell death of cardiomyocytes. Such an excessive 
cardiomyocyte cell death is one of the fundamental reasons for the 
pathogenesis of HF with reduced ejection fraction (HFrEF) (Simmonds, 

Fig. 1. NAD + biosynthesis by salvage pathway. CD38-cyclic ADP ribose hy-
drolase; NAD + -Nicotinamide adenine dinucleotide; NAM-nicotinamide; NR- 
nicotinamide riboside; NMN-nicotinamide mononucleotide’; iNAMPT- 
intracellular nicotinamide phosphoribosyltransferase (visfatin); NMNAT- 
nicotinate mononucleotide adenylyltransferase’ PARP-poly-ADP ribose poly-
merase; PPi-pyrophosphate; Vit B3-vitamin B3. 
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Cuijpers, and Heymans 2020); ii) degradation of the circulating NAD +
level (Braidy et al. 2011). It has been reported that, in HF patients, NAD 
+ deficiency is prevalent (Ziobrowski, Hannah N., Sonneville, Kendrin 
R. Eddy, Kamryn T., Crosby, Ross D., Micali, Nadia, Horton, Nicholas J., 
Field 2019), whose restoration reverses HF (Ziobrowski, Hannah N., 
Sonneville, Kendrin R. Eddy, Kamryn T., Crosby, Ross D., Micali, Nadia, 
Horton, Nicholas J., Field 2019). As NAD + is an essential co-factor for 
the deacetylase enzyme, sirt1, the deacetylase enzyme activity gets 
compromised in NAD + deficiency, which leads to accumulation of 
acetylated proteins in HF (Ziobrowski, Hannah N., Sonneville, Kendrin 
R. Eddy, Kamryn T., Crosby, Ross D., Micali, Nadia, Horton, Nicholas J., 
Field 2019). On the other hand, acetylation of endothelial nitric oxide 
synthase (eNOS) resulted in impaired enzyme activity, thereby 
contributing to nitric oxide (the primary vasodilator) deficiency, endo-
thelial dysfunction and atherosclerosis (Heiss and Dirsch 2014); and iii) 
in response to excess oxidative stress, activation of JNK, p38 and ERK 
pathways occurs in cardiomyocytes. Such cumulative activation of 
different pathways, eventually, results in cardiac hypertrophy, adverse 
left ventricle remodeling, cardiac fibrosis and HF (Romacho et al. 2013). 
Many of the visfatin-elicited effects (proliferative, proinflammatory and 
proangiogenic), on the cardiovascular system are through activation of 
several signalling pathways, such as PI3K, NFkB, STAT3 and ERKs (Lin 
et al. 2019). 

Besides the production and release of visfatin from the primary 
source (adipocytes and activated immune cells), apical epicardial adi-
pose tissue, periadventitial adipose tissue, cardiac fibroblasts, myocytes 
and the cells in the vascular walls contribute to the up-regulated local 
cardiac visfatin concentration (Pillai et al. 2013), which has been re-
ported to have an autocrine effect in the cardiovascular system 
(Romacho et al. 2013). In support, experimental studies have shown that 
in addition to the influence of circulating visfatin, visfatin that is 
secreted from rat cardiac cells becomes a local source of the adipocy-
tokine that leads to cardiac fibrosis (Erten 2021). 

Circulating visfatin, besides eliciting its proliferative effects on the 
cells in the vascular wall, it mediates the proliferation of cardiac fibro-
blasts. Proliferating fibroblasts synthesise and release more collagen 
(type-1 and − 2), which eventually promotes cardiac fibrosis (Erten 
2021). Moreover, visfatin up-regulates the mRNA and protein levels as 
well as enzyme activity of matrix metalloproteinases (MMP-2 and − 9) in 
monocytes and endothelial cells. MMPs promote angiogenesis by two 
simultaneous cellular events, degradation of the extracellular matrix 
and reduction in the concentrations of the tissue inhibitors of MMPs 
(TIMP-1 and − 2) (Romacho et al. 2013). Importantly, as these MMPs 
degrade the matrix, this degradation furthers the plaque vulnerability 
(Oviedo-Orta et al. 2008). Besides, the presence of more cardiac fibro-
blasts, excess collagen and accumulation of extracellular matrix pro-
motes myocardial fibrosis and remodeling (Yu et al. 2010). In 
endothelial cells, visfatin up-regulates the biosynthesis of pro- 
angiogenic soluble factors including VEGF, FGF-2, MPC-1 and IL-6 
(Adya et al. 2009), which play a crucial role in the initiation of 
atherosclerosis. 

Experimental and clinical studies have reported on the pro- 
inflammatory role of visfatin. Exposure of human vascular smooth 
muscle cells to exogenous visfatin activated ERK1/2 and NFkB, which 
up-regulated the expression of a pro-inflammatory molecule, inducible 
nitric oxide synthase (iNOS). Consequent to iNOS induction, the 
biosynthesis of nitric oxide and peroxynitrite (ONOO–) were up- 
regulated. The potent oxidant, ONOO– then expedites the occurrence 
of endothelial dysfunction, vascular injury and vascular inflammation 
(Pacher et al. 2012). 

Based on these observations, it is clear that, in patients with obesity, 
IR and HF, circulating concentrations of visfatin, biomarkers of 
inflammation and oxidative stress are elevated; and that the concen-
tration of NAD + is down-regulated. However, therapeutic strategies to 
cumulatively normalize these factors are few. Yet, one study (Haider 
et al. 2006) has reported that exercise training lowers circulating 

Fig. 2. Flowchart summarizes the reported effects of circulating visfatin in the cardiovascular system and the potential cardioprotective effects of trimetazidine 
(TMZ) and adjuvant therapy. EC-endothelial cells; ED-endothelial dysfunction; eNOS-endothelial nitric oxide synthase; FGF2-fibroblast growth factor-2; HFrEF-heart 
failure with reduced ejection fraction; IL-6-interleukin-6; iNOS-inducible nitric oxide synthase; LV-left ventricle; MCP-1-Monocyte chemoattractant protein-1; Mg- 
magnesium; MMP-matrix metalloproteinase; NAC-N-acetylcysteine; NAD+ - Nicotinamide adenine dinucleotide; NO-nitric oxide; NOx-NADPH oxidase; ONOO- 
peroxynitrite; ROS-reactive oxygen species; Sirt1-siruin-1; TNFα-tumor necrosis factor-alpha; VSMC-vascular smooth muscle cells; WAT-white adipose tissue; 
↑-upregulation; ↓-downregulation. 
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visfatin concentrations. 

2.3. Abdominal obesity, hypoxia and heart failure 

In obesity-mediated WAT inflammation, excessive circulatory vis-
fatin from the adipocytes and activated immune cells becomes the un-
derlying factor for the occurrence of hypoxia (Berezin, Berezin, and 
Lichtenauer 2020). Hypoxia occurs due to enhanced utilization of oxy-
gen or attenuated perfusion of the hypertrophic adipocytes. Hypoxic 
environment further leads to the over-expression of pro-inflammatory 
genes (including hypoxia-inducible-factor-1), excessive oxidative 
stress, lipotoxicity in adipose tissue and altered adipocytokines secre-
tion. These cellular events cumulatively facilitate the self-propagative 
vicious cycle as well as WAT inflammation to foster the development 
of IR, skeletal muscle wasting, cardiac and vascular remodelling and 
eventually to HF development (Murdolo et al. 2013). 

3. Potential strategies to alter the concentration of circulating 
visfatin for ameliorative effect in cardiovascular disease 

In obesity, adipose tissue dysfunction and hypoxia, among the other 
cellular events, are crucial factors in creating imbalances in the ratio of 
oxidants/antioxidants and pro-/anti-inflammatory molecules. It is 
evident that TMZ, one of the established conventional drugs in HF 
therapy, normalizes the circulating visfatin concentration [11]. Further, 
the effect of selected nutritional supplements, such as niacin (as NAD +
booster) (Pirinen et al. 2020), magnesium (as sirt1 activator and anti- 
inflammatory molecule) (Martins 2016; Veronese et al. 2022) and 
NAC (as anti-oxidant and anti-inflammatory) (Tenório et al. 2021) are 
well established. In this context, our proposition is that along with TMZ, 
inclusion of an adjuvant therapy which comprises of a multi-ingredient 
nutritional supplement [such as niacin (vitamin B3 form; an NAD +
booster), magnesium (sirt1 activator and anti-inflammatory) and N- 
acetylcysteine (anti-inflammatory and anti-oxidant)] could improve the 
adverse outcomes in patients with HF, obesity and IR, than TMZ alone. 
Possibly, TMZ + multi-ingredient nutritional supplement could address 
the unfavourably altered biochemical parameters (circulating concen-
trations of visfatin, NAD + and biomarkers of oxidative stress and 
inflammation) and cardiac structure and function (Fig. 2). 

In support of the inclusion of nutritional supplements, one study has 
reported that Quercetin, a sirt1 activator, reduces visfatin secretion 
(Vargas-Ortiz et al. 2019). Hence it is possible that TMZ as a sirt1 acti-
vator could directly reduce the circulating concentration of visfatin. 
Interestingly, exercise is known to activate sirt1 (Shu et al. 2021) and 
TMZ has been reported to improve HF symptoms by sirt1 activation 
(Milinković et al. 2016). Therefore, based on these reports, it is only 
logical to consider sirt1 activators as adjuvants for therapeutic effect in 
HF. 

Deficiencies of magnesium and NAD + are prevalent in HF (Zhu et al. 
2016). In this regard, based on our hypothesis, supplementation of NAC 
and magnesium could address the elevated oxidative stress and pro- 
inflammatory milieu. Parallelly, as a consequence of elevated circu-
lating visfatin and locally generated visfatin in the cardiovascular sys-
tem, cardiomyocyte cell death could be triggered. Such an apoptosis- 
induced augmented in vitro cell death has been reported to be abro-
gated by exogenous NAD + treatment (Zhu et al. 2016). Thus, thera-
peutically, NAD + booster could potentially mitigate the excess visfatin- 
induced cell death. Besides this in vitro cytoprotective effect of NAD+, 
repletion of NAD + in mice fed with nicotinamide riboside (NAD +
precursor and direct activator of NAD + biosynthesis) resulted in the 
reversal of HF with preserved ejection fraction (HFpEF) (Ziobrowski, 
Hannah N., Sonneville, Kendrin R. Eddy, Kamryn T., Crosby, Ross D., 
Micali, Nadia, Horton, Nicholas J., Field 2019). For these HF-associated 
cellular events, supplementation of magnesium for anti-inflammatory 
effect and niacin as NAD + booster could potentially mitigate the 
onset or pathogenic progression in HF. 

In HF, oxidative stress induces a reduction in the expression and 
activity of sirt1 (the deacetylase enzyme). This sirt1-deficiency then 
leads to hyper-acetylated proteins. In addition to the sirt1-deficiency- 
induced hyper-acetylated proteins, myocardial hyper-acetylated pro-
teins accumulate due to impaired NAD + biosynthesis pathway (causing 
NAD + deficiency) and compromised sirt3 expression (Ziobrowski, 
Hannah N., Sonneville, Kendrin R. Eddy, Kamryn T., Crosby, Ross D., 
Micali, Nadia, Horton, Nicholas J., Field 2019). Besides the NAD +
deficiency-mediated hyperacetylation, elevated oxidative stress com-
promises the sirt1 enzyme activity (Salminen, Kaarniranta, and Kaup-
pinen 2013) which consequently results in accumulation of 
hyperacetylated proteins. To counter the hyperacetylation milieu, mag-
nesium as sirt1 activator has been reported to be effective. Thus, mag-
nesium supplementation could restore the physiological status of 
acetylated/de-acetylated proteins in the myocardium. 

Together, TMZ and the nutritional supplements including sirt1 ac-
tivators, antioxidants, anti-inflammatory molecules and NAD + booster 
could potentially normalize the concentrations of visfatin, NAD+, free 
radicals and pro-inflammatory molecules, to eventually improve the 
adverse symptoms of HF. Besides the influences of nutrient supplements, 
it is possible that TMZ could reduce the excess circulating visfatin level 
via potential sirt1 activation. 

4. Conclusion 

To sum up, while the routine HF therapy with TMZ supports the 
improvement of clinical manifestations of HF and cardiac function, in 
terms of ejection fraction(Brottier et al. 1990) and the potential reduc-
tion of circulating visfatin concentrations, the adjuvant therapy with 
multiple nutritional supplements could have an additive effect to TMZ, 
as the individual supplement(s) is/are known for their effect to 
normalize the adverse cellular events associated with oxidative stress, 
inflammation, mitigated sirt1 activity and modified circulating con-
centrations of analytes (visfatin and NAD + ) that leads to the devel-
opment and progression of HF (Fig. 2). Hence, TMZ with the said 
nutritional supplements may have therapeutic and preventive effects in 
HF. 
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Tenório, M.C., Santos, D., Graciliano, N.G., Moura, F.A., Menezes, A.C., de Oliveira, and 
Marília Oliveira Fonseca Goulart., 2021. N-Acetylcysteine (Nac): Impacts on Human 
Health. Antioxidants 10 (6). https://doi.org/10.3390/antiox10060967. 
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