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A B S T R A C T

The current paper presents the 𝜆𝜆𝜆𝜆-Bernstein operators through the use of newly developed variant of Stancu-
type shifted knots polynomials associated by Bézier basis functions. Initially, we design the proposed Stancu
generated 𝜆𝜆𝜆𝜆-Bernstein operators by means of Bézier basis functions then investigate the local and global
approximation results by using the Ditzian–Totik uniform modulus of smoothness of step weight function.
Finally we establish convergence theorem for Lipschitz generated maximal continuous functions and obtain
some direct theorems of Peetre’s 𝐾𝐾𝐾𝐾-functional. In addition, we establish a quantitative Voronovskaja-type
approximation theorem.

1. Introduction and preliminaries

One of the most well-known mathematicians in the world, S. N. Bernstein, provided the quickest and most elegant demonstration of one of
the most well-known Weierstrass approximation theorems. Bernstein also devised the series of positive linear operators implied by {𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠}𝑠𝑠𝑠𝑠≥1. The
famous Bernstein polynomial, defined in Bernstein (2012), was found to be a function that uniformly approximates on [0, 1] for all 𝑓𝑓𝑓𝑓 ∈ 𝐶𝐶𝐶𝐶[0, 1] (the
class of all continuous functions). This finding was made in Bernstein’s study. Thus, for any 𝑦𝑦𝑦𝑦 ∈ [0, 1], the well-known Bernstein polynomial has
the following results.

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦),

where 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) are the Bernstein polynomials with a maximum degree of 𝑠𝑠𝑠𝑠 and 𝑠𝑠𝑠𝑠 ∈ N (the positive integers), which defined by

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) =

⎧

⎪

⎨

⎪

⎩

(𝑠𝑠𝑠𝑠
𝑖𝑖𝑖𝑖

)

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖(1 − 𝑦𝑦𝑦𝑦)𝑠𝑠𝑠𝑠−𝑖𝑖𝑖𝑖 for 𝑠𝑠𝑠𝑠, 𝑦𝑦𝑦𝑦 ∈ [0, 1] and 𝑖𝑖𝑖𝑖 = 0, 1,…

0 for any 𝑖𝑖𝑖𝑖 𝑖𝑖 𝑠𝑠𝑠𝑠 or 𝑖𝑖𝑖𝑖 𝑖𝑖 0.
(1.1)

Testing the Bernstein-polynomials’ recursive relation is not too difficult. The recursive relationship for Bernstein-polynomials 𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) is quite
simple to test.

𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) = (1 − 𝑦𝑦𝑦𝑦)𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖(𝑦𝑦𝑦𝑦) + 𝑦𝑦𝑦𝑦𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠−1,𝑖𝑖𝑖𝑖−1(𝑦𝑦𝑦𝑦).

In 2010, Cai and colleagues introduced 𝜆𝜆𝜆𝜆 ∈ [−1, 1] is the shape parameter for the new Bézier bases, which they called 𝜆𝜆𝜆𝜆-Bernstein operators.
This definition of the Bernstein-polynomials is defined as follows:

𝐵𝐵𝐵𝐵𝑠𝑠𝑠𝑠,𝜆𝜆𝜆𝜆(𝑔𝑔𝑔𝑔; 𝑦𝑦𝑦𝑦) =
𝑠𝑠𝑠𝑠
∑

𝑖𝑖𝑖𝑖=0
𝑔𝑔𝑔𝑔
( 𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠

)

𝑏̃𝑏𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖(𝜆𝜆𝜆𝜆; 𝑦𝑦𝑦𝑦), (1.2)
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The preconditioned iterative integration-exponential method is a novel iterative regularization method de-
signed to solve symmetric positive definite linear ill-conditioned problems. It is based on first-order dynamical 
systems, where the number of iterations serves as the regularization parameter. However, this method does not 
adaptively determine the optimal number of iterations. To address this limitation, this paper demonstrates that 
the preconditioned iterative integration-exponential method is also applicable to solving nonsymmetric positive 
definite linear systems and introduces an improved version of the preconditioned iterative integration-expo-
nential method. Inspired by iterative refinement, the new approach uses the residual to correct the numerical 
solution's errors, thereby eliminating the need to determine the optimal number of iterations. When the residual 
of the numerical solution from the initial preconditioned iterative integration-exponential method meets the ac-
curacy threshold, the improved method reverts to the original preconditioned iterative integration-exponential 
method. Numerical results show that the new method is more robust than the original preconditioned iterative 
integration-exponential method and eliminates the need for selecting regularization parameters compared to 
the Tikhonov regularization method, especially for highly ill-conditioned problems.
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1. Introduction

In recent years, ill-conditioned problems have attracted more and more attention and been widely used in engineering and mathematics fields, such 
as geodesy [1], geophysical exploration [2], signal and image processing [3, 4]. The solution methods of ill-conditioned equation have important 
research significance.

The ill-conditioned system can be expressed as the following form:

Ax b= (1)

where A� �
R
n n is an ill-conditioned matrix, x is solution b is observation. For an ill-conditioned system, a small disturbance in b or A can result in a 

significantly larger change in the solution x. This brings quite large difficulty when one solves the system (1) numerically. Thus, it is useless to use 
the conventional numerical methods to solve systems (1). To address this issue, iterative regularization methods such as Tikhonov regularization[5, 
6] (TR), the Landweber iteration [7], and direct regularization methods like truncated singular value decomposition [2, 8] (TSVD), modified truncat-
ed singular value decomposition [9], and modified truncated randomized singular value decomposition[10] have been developed and widely used. 
A common feature of these regularization methods is that their performance depends on various regularization parameters, such as the truncation 
order in TSVD, the Tikhonov regularization parameter, and the iteration number in iterative regularization methods. In recent years, iterative regu-
larization methods for ill-conditioned equations based on the numerical solution of dynamic systems have garnered attention [11–14]. 

The study on connections between iterative numerical methods and continuous dynamical systems often offers better understanding about iter-
ative numerical methods, and leads to better iterative numerical methods by using numerical methods for ordinary differential equations (ODEs) 
and devising ODEs from the viewpoint of continuous dynamical systems [15, 16]. For solving ill-conditioned linear systems, Ramm developed the 
dynamical systems method [11, 17]. Wu analyzed the relationship between Wilkinson iteration method and Euler method and proposed a new iter-
ative improved solution method to solve the problem of ill-conditioned linear equations [12, 18] . Enlightened by Wu’s work, Salkuyeh and Fahim 
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The aim of this study is to evaluate the diagnostic accuracy of the Metabolic Score for Insulin Resistance 
(METS-IR), Body Mass Index (BMI), insulin levels, homeostatic model assessment of insulin resistance (HOMA-
IR), Waist-TG Index (WTI), and Lipid Accumulation Product (LAP), among Saudi women, determining 
gestational diabetes mellitus (GDM). This multi-center case-control study included 495 pregnant women from 
Saudi, comprising 145 with GDM, considering a mean age of 30.1±5.6 years, including 350 without GDM, 
with a mean age of 28.6±5.2 years. Anthropometric measurements and fasting blood samples were taken to 
assess glycemic and lipid profiles. The METS-IR and additional indices were computed. Diagnostic validity 
was assessed through the area under the curve (AUC) analysis. METS-IR showed the highest AUC of 0.66, 
signifying its superior predictive capability for GDM, with a sensitivity of 51.3% and specificity of 73.1%. 
BMI and LAP exhibited moderate predictive power, evidenced by AUC values of 0.63. Insulin and HOMA-IR 
demonstrated high sensitivity and lower specificity, indicating their effectiveness in early screening while 
also revealing their limitations as independent diagnostic instruments. WTI exhibited a moderate level of 
predictive capability, evidenced by an AUC of 0.61. In conclusion, METS-IR demonstrates promise as a tool 
for predicting GDM, exhibiting a favorable balance of sensitivity and specificity, which indicates its potential 
for incorporation into clinical screening protocols. The diagnostic accuracy of BMI, insulin, and other indices 
is enhanced when integrated with METS-IR. The research highlights the necessity for a thorough assessment
strategy that integrates the clustering of metabolic indices to improve risk stratification and management of 
GDM, thereby minimizing negative outcomes for both mothers and infants. Subsequent investigations should 
focus on validating these results across varied populations and examining the long-term impacts on the health 
of the mother and fetus.

1. Introduction

Gestational diabetes mellitus (GDM) is a predominant metabolic 
condition that presents considerable dangers to both the mother and 
fetus, including heightened likelihood of developing type 2 diabetes 
mellitus (T2DM), preeclampsia, and fetal macrosomia (American 
Diabetes 2019; Choudhury and Devi Rajeswari 2021). The prevalence of 
GDM exhibits significant variation among diverse populations, shaped 
by genetic, environmental, and lifestyle determinants (Buchanan et al., 
2012; Chakraborty and Yadav 2024).

Insulin resistance characterizes GDM, wherein the body's cells 
exhibit reduced responsiveness to insulin, resulting in increased blood 
glucose levels (Shamsad et al., 2025). Identifying and quantifying insulin 
resistance in pregnant women is essential for the early diagnosis and 
management of GDM. Conventional approaches for evaluating insulin 
resistance, including the hyperinsulinemic-euglycemic clamp and 
the homeostasis model assessment of insulin resistance (HOMA-IR), 
while precise, frequently prove impractical in clinical environments 
due to their complexity and expense (Bello-Chavolla et al., 2018). 
Other fasting insulin-based indices, such as the quantitative insulin 
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sensitivity check index, commonly used in routine examinations, also 
suffer from limitations related to cost, complexity, and variability in 
measurement.

The Metabolic Score for Insulin Resistance (METS-IR) represents a 
new and effective method for evaluating insulin resistance. METS-IR 
is a composite index that integrates waist circumference, triglyceride 
levels, and fasting glucose levels, providing a more straightforward 
and accessible assessment of insulin resistance than conventional 
methods (Azizi et al., 2013). The association between METS-IR 
and GDM may be explained by the fact that its components—waist 
circumference, triglyceride levels, and fasting glucose—reflect key 
aspects of visceral adiposity and dyslipidemia. Increased visceral fat 
accumulation promotes insulin resistance through the secretion of 
inflammatory cytokines and free fatty acids, which in turn predisposes 
pregnant women to GDM (Reaven, 2011).

Research indicates that METS-IR demonstrates a strong correlation 
with recognized indicators of insulin resistance and serves as an effective 
predictor of metabolic syndrome and cardiovascular risk across diverse 
populations (Jang et al., 2021).
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There is a paucity of research regarding the application of METS-IR 
in Arab women, especially in those with and without GDM. Considering 
the significant prevalence of GDM among the Arab population and the 
related long-term health risks, it is crucial to assess the effectiveness 
of METS-IR in this demographic (Al-Daghri et al., 2011). Examining 
the association between METS-IR and GDM offers important insights 
into the metabolic health of Arab women, aiding in the formulation of 
targeted strategies for the management and prevention of GDM.

GDM in Saudi women poses distinct challenges attributed to the 
elevated prevalence of obesity, sedentary behavior, and particular 
genetic factors (Wani et al., 2020; Al-Musharaf et al., 2021). Research 
indicates that the incidence of GDM in Saudi Arabia markedly exceeds 
global averages. Mahha et al. (2024) indicated the GDM prevalence 
among Saudi women at approximately 23.9%%, significantly exceeding 
the global prevalence (14.1%) estimated by the International Diabetes 
Federation (International Diabetes Federation 2021; Mahha et al., 
2024). The high prevalence is attributable to multiple factors, such 
as the swift transition from traditional to Westernized diets, reduced 
physical activity, and an elevated baseline prevalence of obesity (Mabry 
et al., 2010; Mahha et al., 2024).

Additionally, GDM presents considerable long-term health risks 
for women in Saudi Arabia (Alsaedi et al., 2020). Women who have 
already had GDM exhibit an increased risk of developing T2DM 
and cardiovascular diseases in later stages of life (Sun et al., 2021). 
Furthermore, offspring of moms who have GDM exhibit a heightened 
risk of obesity, glucose intolerance, and metabolic syndrome in 
childhood and adolescence (Li et al., 2017). The significant prevalence 
of GDM and its associated complications requires the implementation 
of effective screening and management strategies that are specifically 
tailored to the needs of the Saudi population.

Studies demonstrate that Arab populations possess distinct genetic 
and lifestyle characteristics that influence the incidence of metabolic 
disorders (Al-Homedi et al., 2021; Alshehri 2023; AlAnazi et al., 2024). A 
study conducted in Saudi Arabia demonstrated a significant correlation 
between GDM and development of T2DM, emphasizing the necessity 
for effective diagnostic tools and preventive strategies. Recent findings 
suggest that lifestyle modifications, including increased physical 
activity and dietary interventions, play a crucial role in reducing the 
incidence of GDM among high-risk populations. (Tsironikos et al., 2023). 
The METS-IR score has been validated across diverse ethnic groups, 
confirming its utility in identifying insulin resistance and predicting 
metabolic syndrome. Bello-Chavolla and colleagues (2018) discovered 
a strong association between METS-IR and metabolic syndrome as 
well as cardiovascular risk factors in the Mexican population (Azizi 
et al., 2013). Studies conducted in Asian and European cohorts have 
corroborated the efficacy of METS-IR as a dependable indicator of 
insulin resistance (Badran and Laher 2012; Jang et al., 2021).

This study evaluates the efficacy of METS-IR in detecting insulin 
resistance in Arab women, both with and without GDM. This study aims 
to compare METS-IR values between two groups to assess its efficacy 
as a diagnostic tool for insulin resistance in pregnant women and to 
investigate the effects of this disorder on the health of the mother and 
fetus. The findings may enhance screening practices and management 
strategies, thereby decreasing the burden of diabetes mellitus during 
pregnancy and its related complications in Arab women.

2. Materials and method

2.1 Subjects

In all, 495 Saudi pregnant women aged 27-35 years were recruited 
and split into two groups: the GDM group (n= 145) and the control group 
(n= 350). Participants were thought to be at high risk of GDM due to 
variables such as GDM personal history or polycystic ovarian syndrome, 
glycosuria, T2DM familial history, great obesity, and macrosomia. The 
grouping of participants was based on the results of the standard 75 g 
oral glucose tolerance test (OGTT) performed at 27.1 ± 4.1 weeks of 
gestation. According to the International Association for Diabetes in 
Pregnancy Study Group criteria, women with a fasting glucose value 
of ≥5.1 mmol/L and/or a 2-hour OGTT value of ≥8.5 mmol/L were 
classified as GDM, while those with values below these thresholds were 

assigned to the control group (Metzger et al., 2010; Gupta et al., 2015). 
Although a history of GDM is generally regarded as a high‐risk factor, 
it was deliberately excluded in this study to evaluate the predictive 
capability of metabolic indices in a cohort without prior GDM, thereby 
reducing potential confounding associated with recurrent GDM. They 
were selected from a variety of hospitals in Riyadh, Saudi Arabia. The 
inclusion criteria were pregnant Saudi women carrying a singleton 
pregnancy. To keep a very homogenous population, women with 
known multiple pregnancies, history of GDM, or those with chronic 
conditions like T2DM and renal or hepatic problems were eliminated. 
Additional criteria for inclusion and exclusion were previously stated. 
(Al-Ajlan et al., 2015). All participants consented prior to inclusion. 
The study was approved by the Institutional Review Board (IRB) of the 
College of Medicine, King Saud University (KSU) (IRB no: E-13-1013).

2.2 Anthropometry and blood collection

Baseline examinations, including fasting blood withdrawal 
and anthropometric measurements, were performed at the time 
of recruitment (in the first trimester, between 8 and 14 weeks of 
gestation) as previously reported (Al-Ajlan et al., 2015). Anthropometric 
measurements comprised height (cm), weight (kg), waist and hip 
circumferences (cm), and systolic and diastolic blood pressure (mmHg) 
taken using conventional protocols. The fasting blood samples 
collected during this visit were immediately transferred to the Chair 
for Biomarkers in Chronic Diseases at KSU, where they were processed, 
aliquoted, and kept at the proper temperature for subsequent analysis. 
Later on in pregnancy (age of gestation 27.1 ± 4.1 weeks), participants 
were contacted for a follow-up hospital visit for standard GDM screening 
as previously described (Metzger et al., 2010; Gupta et al., 2015)

2.3 Laboratory measurements

Glucose, HbA1c%, total cholesterol, HDL cholesterol, triglycerides, 
and insulin (µU/mL) were the biochemical parameters examined for 
fasting blood samples taken at the first visit. Routine biochemical 
testing in an automated biochemistry analyzer (Konelab 20, Thermo-
Fischer Scientific, Espoo, Finland) measured these parameters. For 
glucose, the computed total CV was ≤5%; for HbA1c, ≤3.5%; for total 
cholesterol, ≤4%; for HDL cholesterol, ≤4%; for triglycerides, ≤4%; 
for insulin, ≤4%. KSU's Quality Assurance Department constantly 
assessed the standards and controls used for these biochemical tests to 
guarantee very repeatable study results.

2.4 Follow-up visit for GDM screening:

Later in pregnancy (age of gestation 27.1 ± 4.1 weeks), participants 
were contacted for a follow-up hospital visit for standard GDM 
screening. Blood samples were taken two hours after prandial and 
before eating (fasting).

2.4.1 The “Insulin resistance index” used was “Homeostasis Model 
Assessment for Insulin Resistance” (HOMA-IR) calculated as: (Tang 
et al., 2015)

HOMA IR
fasting�insulin� uU/mL fasting�glucose�mmol/L

� �
�( ) ( )

22..5

2.4.2 WTI consisting of WC (cm) and TG (mg/dL) was calculated as 
follows (Liu et al., 2020)

WTI ln triglycerides�mg/dL
waist�circumference� cm

� �
�

�
��

�
( )

( )

2 ��
��

2.4.3 The LAP index in females was computed based on the following 
equation:(Kahn 2005)

LAP� waist�circumference cm �triglycerides� /� � �( ( ) ) ( )58 mmol L

2.4.4 METS-IR was calculated as follow: (Bello-Chavolla et al., 2018)

METS IR
ln FPG mg dL TG mg dL BMI kg m

ln HDL mg dL
� �

� � �[ �( ) ( )] ( )

[ (

2 2/ / /

/ ))]
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Given that the accuracy of our study relies on the precise application 
of the METS-IR score in detecting insulin resistance in pregnant 
women with and without GDM, any inaccuracy in the formula would 
compromise the validity of our findings.

2.5 Statistical analysis

SPSS program version 21 (SPSS Inc., Chicago, IL) was used to analyze 
data. Participants' demographic and clinical traits were compiled using 
descriptive statistics. Mean ± standard deviation (SD) showed continuous 
data; categorical variables were stated as frequencies and percentages. 
The chi-square test for categorical variables and the independent t-test 
for continuous variables let one compare women with and without 
GDM. Pearson correlation analysis was used to evaluate METS-
IR's association with other clinical criteria. In addition, multivariate 
logistic regression analysis—adjusted for potential confounders such as 
age, BMI, and family history of diabetes—was conducted to examine 
the relationship between METS-IR and GDM. A p-value < 0.05 was 
considered statistically significant.

3. Results

The study analyzed clinical characteristics of participants, divided 
into a control group and a group with GDM, as presented in Table 1. 
The research included 495 pregnant women from Saudi Arabia, with 
350 in the control group and 145 in the GDM group. Data collected 
encompassed demographic details, physical measurements, and 
metabolic parameters. The average age was 28.6 years in the control 
group and 30.1 years in the GDM group, a statistically significant 
difference (p=0.004). Both groups showed similar mean ages at 
menarche, with no significant variation (p=0.33). The mean age at first 
pregnancy was 24.1 years in the control group versus 24.8 years in 
the GDM group, which was not statistically significant (p=0.12). Parity, 
however, differed significantly, with averages of 2.3 and 2.8 for the 
control and GDM groups, respectively (p=0.016).

The GDM group had notably more weight (P < 0.001). With a p-value 
of <0.001, the BMI in the GDM group—29.6 kg/m²—was noticeably 
greater than that in the control group—26.9 kg/m². The waist-hip ratio 
(WHR) was also larger in the GDM group (p=0.016), and both waist 
and hip circumferences were noticeably higher in this group as well 
(p<0.001 and p=0.003, respectively). Blood pressure readings in the 
two groups showed no appreciable variations (p-values 0.45 and 0.47, 
respectively).

The GDM group had much higher fasting glucose and the HbA1c 
values (P < 0.001 for both). With P-values of 0.01, 0.13, and 0.001, 
respectively, the GDM group had total cholesterol, HDL cholesterol, 
and triglyceride levels all higher. In the GDM group, insulin levels 
and HOMA-IR were significantly higher, p-values of 0.008 and 0.002, 
respectively. The Waist-TG Index (WTI) (p < 0.001), Lipid Accumulation 
Product (LAP) (p < 0.001), and METS-IR (p < 0.001) demonstrated 
statistically significant differences between the groups. In particular, 
the differences in LAP and METS-IR indicate that these indices were 
markedly higher in the GDM group compared to the control group.

The gestational week did not show any significant variation across 
the groups (p=0.81.). Results of all glucose tolerance tests revealed 
notably higher values in the GDM group (p<0.001 for fasting, 1-hour, 
and 2-hour glucose levels).

It is important to note that although METS-IR is proposed as a 
predictive tool for GDM, the standard 75-gram OGTT was performed 
later in pregnancy (at 27.1 ± 4.1 weeks of gestation). Baseline 
measurements—including fasting blood glucose, triglyceride levels, 
BMI, and HDL cholesterol—were obtained during the first trimester 
(between 8 and 14 weeks of gestation). This early assessment allowed 
for the calculation of METS-IR before the conventional GDM diagnosis, 
and its first-trimester values were subsequently correlated with the 
later GDM diagnosis. This approach evaluates whether early metabolic 
profiling using METS-IR can provide additional predictive value over 
standard diagnostic methods, potentially enabling earlier intervention 
and improved risk stratification.

These findings highlight the significant metabolic differences 
between the control and GDM groups, emphasizing the need for careful 
monitoring and management of metabolic parameters in pregnant 
women at risk for GDM. The relative risk for GDM-associated with 
various metabolic parameters has been presented in Table 2. The odds 
ratios (OR) and 95% confidence intervals (CI) were calculated using two 
models: Model 1 (unadjusted) and Model 2 (adjusted for age, parity, 
previous GDM, menarche age, family history of GDM, and first relative 
DM). P-values indicate the statistical significance of the associations, 
with significance levels at 0.05 and 0.01.

For BMI, in Model 1, the odds of developing GDM were 1.42 times 
higher for those with a BMI of 25-30 and 2.48 times higher for those 
with a BMI greater than 30 compared to those with a BMI < 25. The 
p-value was significant at <0.001 for the >30 BMI category. In Model 
2, the odds increased to 1.49 for the 25-30 BMI range and 2.92 for the 
>30 category (p=0.003).

Regarding insulin levels, in Model 1, participants in the second 
tertile (6.31-14.38) had a 1.74 times higher risk, and those in the third 
tertile (>14.38) had a 1.77 times higher risk of GDM, with P-values of 
0.033 and 0.023, respectively. In Model 2, the odds ratios were not 
significant, indicating that adjustment for confounders reduced the 
association. For HOMA-IR, Model 1 showed a 1.98 times higher risk 

Table 1.  
Clinical characteristic of the subjects.

Parameters Non-GDM GDM P-value

N 350 145

Age (year) 28.6 ± 5.2 30.1 ± 5.6 0.004

Menarche age 12.4 ± 1.4 12.5 ± 1.5 0.33

Age at first pregnancy 24.1 ± 4.4 24.8 ± 4.6 0.12

Gestational week 26.4 ± 2.4 26.34 ± 2.4 0.81

Parity 2.3 ± 1.9 2.8 ± 2.1 0.016

Anthropometrics

Weight (kg) 64.6 ± 14.7 70.6 ± 16.4 <0.001

BMI (kg/m2) 26.9 ± 6.2 29.6 ± 6.7 <0.001

Waist (cm) 90.2 ± 12.6 95.4 ± 13.4 <0.001

Hips (cm) 106.7 ± 11.7 110.3 ± 11.1 0.003

WHR 0.85 ± 0.07 0.86 ± 0.08 0.016

Systolic BP (mmHg) 114.1 ± 13.6 113.0 ± 12.4 0.45

Diastolic BP (mmHg) 67.3 ± 9.4 67.4 ± 9.5 0.47

Glycemic Profile

Fasting glucose (mmol/L) 4.25 ± 0.5 5.23 ± 0.9 <0.001

Glucose 1-hour 6.78 ± 1.5 9.09 ± 2.3 <0.001

Glucose 2-hour 5.94 ± 1.2 7.89 ± 2.1 <0.001

HbA1c (%) 5.03 ± 0.5 5.27 ± 0.5 <0.001

Insulin (uU/mL) 8.56 (4.46-19.46) 11.54 (6.28-21.10) 0.008

HOMA-IR 1.82 (0.9-4.0) 2.66 (1.37-5.28) 0.002

Lipid profile

Total cholesterol (mmol/L) 4.93 ± 1.0 5.16 ± 1.1 0.01

HDL cholesterol (mmol/L) 1.32 ± 0.3 1.28 ± 0.4 0.13

Triglycerides (mmol/L) 1.35 ± 0.6 1.52 ± 0.6 0.001

Indices

WTI 8.52 ± 0.5 8.69 ± 0.5 <0.001

LAP 45.9 ± 29.1 58.8 ± 31.9 <0.001

METS-IR 7.57 ± 0.34 7.78 ± 0.36 <0.001

Note: Data presented mean ± SD. SBP: systolic blood pressure, DBP: diastolic blood 
pressure, FPG: fasting plasma METS-IR metabolic score for insulin resistance, HOMR-
IR: homeostatic model assessment for insulin resistance, MET: (metabolic equivalent) 
of task P-value for the comparison of baseline characteristics between participants 
who developed GDM and those who did not develop GDM at the baseline survey. 
Significance was set at a p < 0.05
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for the second tertile and a 1.86 times higher risk for the third tertile, 
both significant with p-values of 0.009 and 0.015, respectively. Model 
2 showed reduced odds ratios, and no significance was observed for 
the third tertile. The WTI in Model 1 showed a 2.58 times higher risk 
for those in the third tertile (>8.8) with a P-value of <0.001. In Model 
2, the odds ratio for the third tertile was 2.25, significant at 0.034. For 
LAP, Model 1 indicated a 2.86 times higher risk for the third tertile, 
with a P-value of <0.001. In Model 2, the risk was 2.45 times higher 
for the third tertile, with a P-value of 0.018. Lastly, METS-IR in Model 
1 showed a 3.45 times higher risk in the third tertile, with a significant 
p<0.001. In Model 2, the odds ratio for the third tertile was 2.37, 
significant at p=0.022. These results underscore the strong associations 
between elevated BMI, insulin, HOMA-IR, WTI, LAP, and METS-IR with 
the increased risk of developing GDM, highlighting the importance 
of monitoring these parameters in pregnant women. The adjustments 
in Model 2 demonstrate the impact of confounding factors on these 
associations, emphasizing the need for comprehensive risk assessments 
in clinical settings.

Table 3 evaluates the accuracy of the Receiver Operating 
Characteristic (ROC) analysis for many metabolic markers to project 
GDM. Among the measures measured are BMI, insulin, HOMA-IR, WTI, 
LAP, and METS-IR. Every parameter—optimal cut-off value, sensitivity, 
specificity, accuracy, and Youden index (J)—is shown along with its 
Area Under the Curve (AUC) and 95% confidence interval (CI).

BMI showed an AUC of 0.63 (95% CI: 0.56-0.69) with an optimal 
cut-off value of 26.11. It had a sensitivity of 64.1% and specificity of 
56.3%, resulting in a J of 0.204, indicating moderate discriminatory 
ability. Insulin had an AUC of 0.59 (95% CI: 0.53-0.65) with a cut-
off value of 5.86, demonstrating high sensitivity (77.8%) but lower 

specificity (40.8%), leading to a J of 0.186. HOMA-IR exhibited an AUC 
of 0.60 (95% CI: 0.54-0.66) with a cut-off of 1.14, achieving sensitivity 
and specificity values of 79.5% and 39.6%, respectively, and a J of 
0.191.

The WTI had an AUC of 0.61 (95% CI: 0.55-0.67) with a cut-off 
value of 8.72. It showed balanced sensitivity and specificity (54.7% 
and 66.8%), resulting in a J of 0.215. The LAP index had an AUC of 
0.63 (95% CI: 0.57-0.69) with a cut-off of 51.60, showing sensitivity 
and specificity of 55.6% and 66.8%, with a J of 0.224. The MET-IR 
demonstrated the highest predictive ability with an AUC of 0.66 (95% 
CI: 0.60-0.72) and a cut-off value of 7.75. It had a sensitivity of 51.3% 
and the highest specificity of 73.1%, resulting in the highest J of 0.244 
among the indices evaluated.

These results indicate that while METS-IR has the highest AUC 
and specificity, insulin and HOMA-IR demonstrate higher sensitivity. 
The J value suggests that MET-IR provides the best balance between 
sensitivity and specificity, making it a potentially valuable tool for 
predicting GDM. The P-values for all parameters were significant at the 
0.05 and 0.01 levels, indicating the robustness of the findings.

The ROC curves for many metabolic markers have been shown in 
Fig. 1 as predictors of GDM. Since the discriminating threshold of a 
binary classifier system varies, the ROC curve, a graphical depiction, 
showcases its diagnostic power. The AUC gauges a parameter's capacity 
to separate the two diagnostic groups—control from GDM. Better 
diagnosis performance is indicated by AUC values near to 1. Every 
metabolic indicator in the figure—including BMI, insulin, HOMA-
IR, WTI, LAP, and METS-IR—is shown by its ROC curve along with 
matching AUC values. The ROC curve demonstrates that METS-IR and 
HOMA-IR have the highest AUC values, suggesting they are the most 
effective predictors of GDM among the indices tested. BMI, WTI, and 
LAP also show good predictive capabilities but are slightly less effective 
compared to MET-IR and HOMA-IR. The optimal cut-off points for each 
parameter can be identified by the point on the ROC curve closest to 
the top-left corner of the plot, representing the best balance between 
sensitivity and specificity.

Sensitivity (true positive rate) and specificity (true negative rate) 
values are derived from the ROC curve to evaluate the performance 
of each index. Higher sensitivity indicates the parameter is good 
at identifying true positive cases (women with GDM), while higher 
specificity reflects its ability to identify true negative cases (women 
without GDM). The results suggest that incorporating MET-IR and 
HOMA-IR into clinical assessments could enhance the early detection 
and management of GDM in pregnant women. This analysis emphasizes 
the importance of choosing appropriate indices for GDM screening to 
improve outcomes for both mothers and their infants. These findings 
highlight the value of ROC curve analysis in evaluating the diagnostic 
performance of various metabolic indices, providing insights into the 
most effective predictors for GDM.

Table 3.  
ROC, optimal cut-off values, sensitivity, specificity and Youden index for 
GDM.

Parameters AUC
(95% CI) 

Cutoff P-value Sensitivity 
(%)

Specificity 
(%)

Younden 
Index J

BMI 0.63
(0.56-0.69)

26.1 <0.001 64.1 56.3 0.204

Insulin 0.59
(0.53-0.65)

5.9 <0.001 77.8 40.8 0.186

HOMA-IR 0.60
(0.54-0.66)

1.1 <0.001 79.5 39.6 0.191

WTI 0.61
(0.55-0.67)

8.7 <0.001 54.7 66.8 0.215

LAP 0.63
(0.57-0.69)

51.6 <0.001 55.6 66.8 0.224

METS-IR 0.66
(0.60-0.72)

7.8 <0.001 51.3 73.1 0.244

Note: Data presented AUC (95%) CI, Sensitivity (%), Specificity (%) and Younden 
index J. P-value significant at 0.05 and 0.01 level.

Table 2.  
Relative risk for GDM.

Parameters Model 1 Model 2

Odd ratio (95%) P- value Odd ratio (95%) P-value

BMI

<25 1 1

25-30 1.42 (0.86-2.33) 0.17 1.49 (0.7-3.16) 0.29

>30 2.48 (1.55-3.96) <0.001 2.92 (1.43-5.98) 0.003

Insulin

T1 (<6.31) 1 1

T2 (6.31-14.38) 1.74 (1.05-2.89) 0.03 0.94 (0.45-1.94) 0.88

T3 (>14.38) 1.77 (1.08-2.90) 0.02 0.96 (0.46-1.98) 0.91

HOMA-IR

T1 (<1.30) 1 1

T2 (1.30-3.29) 1.98 (1.19-3.31) 0.009 1.67 (0.82-3.38) 0.16

T3 (>3.29) 1.86 (1.13-3.10) 0.02 1.07 (0.50-2.30) 0.85

WTI

T1(<8.34) 1 1

T2 (8.35-8.80) 1.58 (0.89-2.81) 0.12 1.74 (0.85-3.58) 0.13

T3 (>8.8) 2.58 (1.48-4.51) <0.001 2.25 (1.06-4.78) 0.03

LAP

T1 (<30) 1 1

T2 (30.99-56.84) 1.48 (0.82-2.67) 0.19 1.42 (0.67-3.01) 0.35

T3 (>56.84) 2.86 (1.63-5.0) <0.001 2.45 (1.16-5.15) 0.02

METS-IR

T1 (<7.44) 1 1

T2 (7.44-7.77) 1.47 (0.85-2.53) 0.17 1.03 (0.49-2.12) 0.94

T3 (>7.77) 3.45 (2.1-5.79) <0.001 2.37 (1.13-4.97) 0.02

Note: Data presented Odd ratio (95% CI), Model 1 unadjusted and model 2 to adjusted 
for age, parity, Previous GDM, Menarche age, Family GDM and first relative DM, 
P-value significant at 0.05 and 0.01 level.
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Supplementary Table S1 shows the correlations among BMI, insulin 
levels, HOMA-IR, WTI, LAP, and METS-IR.

4. Discussion

The present study evaluated the predictive capabilities of various 
metabolic indices, including BMI, insulin, HOMA-IR, WTI, LAP, and 
METS-IR, in diagnosing GDM. The analysis of these indices provides 
insights into their relative effectiveness and potential utility in clinical 
settings. Our findings offer valuable contributions to the growing body 
of research on the identification and management of GDM.

One potential mechanism underlying the association between METS-
IR and GDM is that the components of METS-IR—waist circumference, 
triglyceride levels, and fasting glucose—are direct reflections of visceral 
adiposity and dyslipidemia. Increased visceral fat is known to secrete 
pro-inflammatory cytokines (such as TNF-α and IL-6) and free fatty 
acids, which impair insulin signaling and lead to systemic insulin 
resistance. This inflammatory state, combined with dysregulated lipid 
metabolism, contributes significantly to the development of GDM 
(Reaven, 2011). Moreover, these metabolic disturbances are captured 
by the METS-IR score, thereby explaining its strong predictive value 
for GDM.

The ROC analysis indicated that METS-IR had the highest AUC, 
suggesting it is the most effective predictor of GDM among the indices 
tested. With an AUC of 0.66 and a J of 0.244, METS-IR demonstrated 
the best balance between sensitivity (51.3%) and specificity (73.1%). 
This finding highlights the potential of METS-IR as a reliable tool for 
GDM screening, offering a practical alternative to traditional methods 
by integrating key metabolic parameters such as waist circumference, 
triglycerides, and fasting glucose. These results are consistent with 
previous studies that have shown the efficacy of METS-IR in predicting 
insulin resistance and related metabolic disorders (Bello-Chavolla et al., 
2018). Other studies have also found METS-IR to be useful in predicting 
metabolic syndrome and type 2 diabetes in non-pregnant populations, 
indicating its broader applicability (Qiu et al., 2024).

BMI and LAP also showed moderate predictive capabilities, with 
AUC values of 0.63, but they had different sensitivity and specificity 
profiles. BMI exhibited a sensitivity of 64.1% and specificity of 56.3%, 
indicating its utility in identifying individuals at risk but with limited 
specificity. LAP, on the other hand, showed slightly better specificity 
(66.8%), which may be advantageous in specific clinical contexts where 
reducing false positives is critical. The findings suggest that while BMI 
is a widely used and easily accessible measure, its use in isolation may 
not be sufficient for accurate GDM prediction (Cho et al., 2018).

The role of BMI in predicting GDM has been supported by some 
studies, which emphasize that higher BMI increases the risk of developing 
GDM due to increased insulin resistance and altered adipokine secretion 
(Nakshine and Jogdand 2023). However, other research has suggested 
that BMI should be used in combination with other metabolic indices 
to enhance predictive accuracy, as it does not fully capture the complex 
metabolic changes occurring during pregnancy (Teshome et al., 2021).

Insulin and HOMA-IR showed high sensitivity, 77.8% and 79.5%, 
respectively, indicating their strength in identifying true positive cases 
of GDM. However, their lower specificity values (40.8% and 39.6%, 
respectively) suggest a higher rate of false positives, which may limit 
their utility as standalone screening tools. The high sensitivity of these 
indices suggests that they could be particularly useful in early screening 
to ensure high-risk individuals are not missed, but they should be 
complemented with other measures to improve specificity (Metzger et 
al., 2010; Landon et al., 2011).

HOMA-IR, in particular, has been extensively studied and validated 
as a measure of insulin resistance, with numerous studies supporting its 
use in predicting GDM risk (Buchanan et al., 2012; Xiang et al., 2013). 
It reflects the interaction between fasting glucose and insulin levels, 
providing insights into the insulin sensitivity of peripheral tissues 
(Reaven 2011). However, its lower specificity in this study suggests 
that relying solely on HOMA-IR may lead to overdiagnosis in clinical 
practice.

The WTI showed a moderate predictive capacity with an AUC of 
0.61. Although it provided balanced sensitivity and specificity, its 
overall performance was less robust compared to MET-IR and other 
indices. This suggests that while WTI can be part of a comprehensive 
assessment strategy, it may not be suitable as a primary diagnostic 
tool for GDM. Previous research has highlighted the potential of 
WTI in assessing cardiovascular and metabolic risk, but its utility 
in GDM prediction remains less clear (Sweeting et al., 2022). Waist 
circumference, a component of WTI, is an indicator of visceral fat, 
which is metabolically active and contributes to insulin resistance 
(Ramírez-Manent et al., 2023).

The correlation analysis further supported these findings, revealing 
strong associations between MET-IR and other metabolic parameters. 
MET-IR’s strong correlations with indices like HOMA-IR and LAP 
indicate its ability to capture multiple aspects of insulin resistance and 
lipid accumulation, which are critical factors in the pathophysiology 
of GDM. This aligns with previous studies that have emphasized the 
importance of comprehensive metabolic profiling in predicting GDM 
risk (Farrar et al., 2017).

Overall, this study underscores the importance of utilizing a 
combination of metabolic indices to enhance the accuracy and 
reliability of GDM screening. The integration of METS-IR with other 
measures could optimize risk stratification and improve outcomes 
for pregnant women by enabling timely interventions. Future studies 
should focus on validating these findings in larger and more diverse 
populations to confirm the generalizability of these indices and refine 
their application in clinical practice. Additionally, longitudinal studies 
could elucidate how these indices predict long-term maternal and fetal 
outcomes, further enhancing their clinical utility (Morgan et al., 2021, 
Chen et al., 2023). The early detection and management of GDM are 
crucial in preventing adverse pregnancy outcomes such as macrosomia, 
pre-eclampsia, and the T2DM development later in life for both the 
mother and the child (Zhang et al., 2016).

The main benefits of this work are its thorough evaluation of 
numerous metabolic indices, including METS-IR, BMI, insulin, HOMA-
IR, WTI, and LAP. This multifarious strategy emphasizes each index's 
possible contribution to early identification and therapy and enables a 
complete knowledge of the metabolic alterations related to GDM. The 
research increases the knowledge of how a combination of metabolic 
indicators might enhance the prediction of GDM by concentrating on 
METS-IR, a very novel and integrative index. Clinicians might find 
METS-IR a useful tool as it can balance sensitivity and specificity, 
therefore providing a possible benefit over conventional indices. 
Furthermore, the computation of AUCs and the use of ROC curves 
provide a strong approach for evaluating the diagnostic performance 
of every index, thus enabling direct comparisons of their efficacy in 
controlling GDM. The results underline the need to include many 
metabolic indicators in GDM screening procedures, hence enhancing 
risk classification and intervention plans in clinical environments. 
The research has some restrictions. It was conducted on a particular 
population, so the generalizability might be limited. A greater sample 
size would help to verify the relevance of these indicators throughout 
several ethnic groups and geographical areas. As it limits the ability 
to show causal relationships between the metabolic indices and the 

Fig. 1. AUC plots of METS-IR and other metabolic indices. METS-IR: Metabolic score 
for insulin resistance.

https://dx.doi.org/10.25259/JKSUS_445_2024


Yakout et al.� Journal of King Saud University - Science Article in Press

6

development of GDM, the cross-sectional aspect of the study underlines 
the need for longitudinal studies to monitor changes over time and 
generate causation. Though some confusing elements were considered, 
there might still be unmeasured variables affecting the correlations 
between the metabolic indices and GDM. The emphasis of the research 
on early pregnancy indicators did not fully reflect all the metabolic 
changes that develop later in pregnancy, thereby influencing the 
prediction capacity of the indices. Moreover, the research neglected to 
thoroughly assess lifestyle elements, including nutrition and physical 
exercise, which are known to affect the metabolic condition and can 
affect the indices' prognostic accuracy. Eventually, the dependence on 
biochemical measurements, which may be influenced by many elements 
like stress, disease, or laboratory variability, may impair the outcomes. 
Dealing with these constraints in future studies might help to improve 
the creation of efficient screening tools and provide a more complete 
knowledge of the use of these indices in forecasting GDM.

5. Conclusion

This research emphasizes how certain metabolic indices, including 
METS-IR, may be useful in predicting GDM. The findings suggest that 
METS-IR, which integrates key metabolic parameters, offers a more 
balanced approach in terms of sensitivity and specificity compared to 
traditional indices like BMI, insulin, and HOMA-IR. The comprehensive 
assessment of these indices emphasizes the importance of a multifaceted 
approach to screening, which can enhance the accuracy and reliability 
of GDM predictions. The results indicate that incorporating METS-
IR alongside other indices could improve risk stratification and early 
identification of high-risk individuals, ultimately facilitating timely 
intervention and management of GDM. This approach can potentially 
reduce adverse maternal and fetal outcomes associated with GDM, such 
as macrosomia, pre-eclampsia, and the development of T2DM later in 
life
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