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Inverse Lindley distribution

In this paper, we proposed a new extension of inverse Lindley distribution called Logarithmic inverse
Lindley (LIL).To this end, an extension of the Marshall-Olkin generalization approach, by Marshall and
Olkin (1997), has been used. This generalization method was introduced by Pappas et al. (2012). It is
shown that the distribution belongs to the family of upside-down bathtub shaped distribution. The prop-
erties of the LIL distribution are discussed and the maximum likelihood estimation is used to evaluate the
parameters involved. The moments of the new model are derived. We use the Lambert function to derive
explicit expressions for the quantiles and its special case (the median). A Monte Carlo simulation study is
presented to exhibit the performance and accuracy of maximum likelihood estimates of the LIL model
parameters. Finally, the usefulness of the new model for modeling reliability data is illustrated using a

real data set to show the performance of the new distribution.
© 2018 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

“The Lindley distribution was proposed by Lindley (1958) in the
context of the Bayes theorem as a counter example of fiducial
statistics with the probability density function (pdf)”
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“Ghitany et al. (2008) discussed the Lindley distribution and its
applications extensively and showed that the Lindley distribution
is a better fit than the exponential distribution based on the wait-
ing time at the bank for service.”

“Mazucheli and Achcar (2011) worked on the Lindley distribu-
tion applied to competing risks lifetime data. Krishna and Kumar
(2011) estimated the parameter of Lindley distribution with pro-
gressive Type-II censoring scheme. They also showed that it may
be better lifetime model than exponential, lognormal and gamma
distributions in some real life situations. Since then the distribu-
tion has been widely discussed in various context. Singh and

g(t;0) = t>00>0 (1)
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Gupta (2012) have used the Lindley distribution under load sharing
system models. Al-Mutairi et al. (2013) developed the inferential
procedure of the stress-strength parameter, when both stress and
strength variables follow Lindley distribution. It may be mentioned
here that the Lindley distribution is useful when the data show
increasing failure rate. This is the property that encourage the
use of Lindley distribution in lifetime data analysis over exponen-
tial distribution. Although the family of Lindley distributions pos-
sess very nice properties and gained great applicability in various
disciplines, its applicability may be restricted to non-monotone
upside down bathtub (UBT) hazard rate data see Sharma et al.
(2014). Therefore, the Lindley distribution has been extended to
various ageing classes and introduced various generalized class
of lifetime distribution based on Lindley distribution. Zakerzadeh
and Dolati (2009) introduced three parameters extension of the
Lindley distribution. Nadarajah et al. (2011), Ghitany et al. (2013)
proposed two parameter generalizations of the Lindley distribu-
tion, called as the generalized Lindley and power Lindley distribu-
tions. These distributions are generated using the exponentiation
and power transformations to the Lindley distribution. Merovci
(2013) and Merovci and Elbatal (2014) investigated transmuted
Lindley and transmuted Lindley-geometric distributions respec-
tively. The beta-Lindley distribution is introduced by Merovci
and Sharma (2014). Statistical and mathematical properties of
Kumaraswamy Quasi Lindley and Kumaraswamy Lindley distribu-
tions are discussed by Elbatal and Elgarhy (2013) and Akmakyapan
and Kadlar (2014) respectively. The exponentiated power Lindley
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distribution is introduced by Ashour and Eltehiwy (2015). The
generalized Poisson-Lindley and another extension of the Lindley
distribution are discussed by Mahmoudi and Zakerzadeh (2010)
and Oluyede and Yang (2015)".

“Shanker and Mishra (2013) proposed two parameter exten-
sions of the Lindley distribution with the pdf”

02
f2.0) =5
In the references cited above, authors mainly focused on the
estimation of increasing, decreasing and bathtub shaped failure
rates data. Nobody has paid attention to the modelling of the
upside down bathtub data. “Recently, the inverse Lindley distribu-
tion was introduced by Sharma et al. (2015) using the transforma-
tion X =1 with density and cumulative distribution functions
defined, respectively, by”:

(1+ pz)e

z>00,>0

0 (1+x\ o
g(x,e)_1+0<x3 )e ; x>0,0>0 (2)
and
0 )
g(x,e)_<l+m>e ; x>0,0>0 (3)

where T is a random variable having pdf (1).

“Sharma et al. (2015) discussed the properties of inverse Lind-
ley distribution with application to stress strength reliability anal-
ysis. Sharma et al. (2016) introduced two parameter extension of
inverse Lindley distribution using power transformation to inverse
Lindley random variable. Recently, Alkarni (2015) proposed three
parameter inverse Lindley distribution with application to maxi-
mum flood level data”.

“Another two parameter inverse Lindley distribution intro-
duced by Barco et al. (2017), called “the power inverse Lindley dis-
tribution,” is a new statistical inverse model for upside-down

bathtub survival data that uses the transformation X = T™* with
the following pdf ”,

al® (147 o
o\t )¢

In this paper, we proposed another extension of inverse Lindley
distribution which offers more flexibility with an effective shape
parameter. To this end, an extension of the Marshall-Olkin gener-
alization approach, by Marshall and Olkin (1997), has been used.
This generalization method introduced by Pappas et al. (2012).
We refer to the new model as the Logarithmic inverse Lindley
(LIL) distribution.

“Pappas et al. (2012) proposed a generalization formula of a dis-
tribution G(x) that introduces a new parameter f > 0”. This
approach is defined through the cumulative distribution function
(cdf).

fx0,0) =

0,0,x >0

In[1 - (1 - )GX)]

F(x,0,5)=1- Y3 ,

x>0,0,peR, —{0} (4)
where G(x) = 1 — G(x) is the survival (or reliability) function of
the inverse Lindley distribution.
Now, combining Eqs. (3) and (4) and simplifying the expression
leads to the cdf of the Logarithmic-inverse Lindley distribution as

F(x,0,6) =1— Int -0 ﬁ)<11n_/3<1 ) ) X0 0,

peR, — {0} (5)

By differentiating Eq. (5) with respect to x, then the pdf after
some simplifications can be written as

fx,0,p) =

P(p-1) (1+x)e
(1+0)Inp |y [1 (- ﬁ)(l - (1 +ﬁ>e)]

(6)

where 6, 6 > 0, is a scale parameter and j, f € R, — {0}, is a shape
parameter.

For 8 € (0, 1), the pdf given by Eq. (6) can be obtained as a com-
pound of the Logarithmic and the inverse Lindley distributions.
“According to Barlow and Proschan (1996) and Arnold et al.
(1992), consider the lifetime X = min(X;, Xy, ..., Xy) of a series sys-
tem of N identical components. If the lifetimes of the components
are iid random variables with survivals given by (2) and the distri-
bution of their number n is Logarithmic, independently of the X's,
with pmf

P(N:n):*(r}l /f) :NeN-—{0},5e(0,1) (7)

then, the conditional cdf of (X/N = n) is given by

Fx/m)=1-[G)]" " =1— {1 - <1 +ﬁ) e} " (8)

and the conditional pdf of (X/N = n) is given by

[ ()]

1+0x

fx/n) = ngR)[Gx)"" = no’(1 +x)e

where g(x) and G(x) are the pdf and the survival function corre-
sponding to inverse Lindley distribution.

Then, the joint distribution of the random variables X and N,
denoted by f(x, n), is obtained as

fxn)=f(xin).P(N=n)
—(1-p)" (1 +x)e’t 0 N\
T (1+0)3Ing {“‘ﬁ)(]_(H(HO)QeK)]

Hence, it can be found the marginal pdf of X follows

{1’ (- (156))‘)6,,;,}“4

(10)

> = _(1-p)"0*(14+x)e~*
fo=> fxn Z A+0xX°Ing

n=1 n=1

which directly leads to Eq. (6). From Eq. (10) we note that the den-
sity function of LIL can be expressed as a linear combination of the
density of X|n = min(X;,Xy,...,Xy) given by (9).

Tahmasbi and Rezaei (2008), proposed the exponential-
logarithmic distribution using the same procedure. Warahena-
Liyanage and Pararai (2015) proposed the logarithmic Lindley dis-
tribution and studied its properties as special case of The Lindley
Power series class of Distributions.

The following propositions discuss the limiting behavior and
other characteristics of LIL distribution.

Proposition 1. The inverse Lindley is a limiting distribution of
the LIL distribution when g — 1.

Proof. Using Eq. (5)

In[1-(1-p)(1-(1+5%)e )]

limg_1F(x,0,B) =1 —limy_, nj

By using L’Hopital’s rule, we obtain
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limF(x,0, ) = 1 — lim ﬁ(l - <1 +ﬁ)e*‘z’)
p1 = {1 -1 —ﬂ)(] _ (1 +ﬁ)e*‘;’)]

Clearly, for g — 1; the proposed model (LIL distribution) given
in Eq. (6) reduces to the inverse Lindley distribution. Therefore,
the LIL distribution can be viewed as an extension of the base
model (which is asymptotically related to the usual one-
parameter inverse Lindley distribution).

B-10* 11 0
f(X) 1+0 (%)e *

2.1. The survival and hazard rate function

The survival function of the LIL distribution, denoted by R(x), is
given by

a1y = 2L C (1))

The other characteristic of interest of a random variable is the
hazard rate function, h(x), also known as instantaneous failure rate
which is an important quantity characterizing life phenomenon.
The hazard rate function for a LIL distribution is given by

(11)

R(x) [1fafﬁm1f(rhgwy%ﬂhﬂlfﬂfﬁwlf

Proposition 2. For the pdf of the LIL distribution, we have

limf(x, 6, ) = 0

and

lim f(x,0,8) = 0

The LIL distribution is always unimodal. Fig. 1 illustrates some
of the possible shapes of the pdf of the LIL distribution for different
values of the parameters 0 and .

Plots of the pdf are shown in Fig. 1. The pdfs appear always uni-
modal. The mode moves more to the right and the pdf becomes
less peaked with increasing values of 8. The mode moves more to
the right and the pdf becomes less peaked with increasing values
of 0.

2. Reliability analysis

In this section, we present the survival (or reliability) function
and study the hazard (or failure) rate function. Also, the cumulative
hazard rate function and the mean residual lifetime are obtained
for the LIL distribution.

T T
(x,2,0.5)
f(x,2,1.2) 0.4 h
i R
£(x,2,2) K .
--- .’...-...0..
f (."12’ 5) . o)
£(x,2,10) 0.2 ,','_,-’ - ~~.\_': —
%, S
.l, -~ -.!.
Y
0 | |
0 1 2 3

(=)

Now, we shall study the behavior of the hazard rate function of
the Log-IL distribution show its different shapes.

First, depending on Egs. (2) and (3) we can compute the hazard
rate function of the inverse Lindley distribution, denoted by #(x), as
follows

gk 0*(1 +x)
TG R0+ x(1+0) (et - 1)]

nx)

Then, by taking the limit of Eq. (11) when x — 0 and when
X — oo as follows

_B-1
~ Blnp

lim,_oh(x) lim, o7 (x) =0,

and
lim,_ . h(x) = lim,_..5(x) =0

Because the hazard rate function of inverse Lindley distribution
is always unimodel function in X, the new distribution is also a
unimodal.

Fig. 2 illustrates the behavior of the hazard rate function of the
LIL distribution at different values of the parameters involved.

Plots of the hazard rate function are shown in Fig. 2 indicates
that the hazard function is upside down bathtub shaped. The

f(x,5,9 1
f(x,1.2,9

- 0.5
f(x,10.9

Fig. 1. Probability density function of the LIL distribution for 0 = 2 and g = (0.5,1.2,2,5,10) (left); for 0 = (0.5,1.2,2,5,10) and g = 5 (right).
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Fig. 2. Hazard rate function of the LIL distribution for 0 =2 and g =

hazard rate function appears always unimodal. Its shape becomes
less peaked with increasing values of p and less peaked with
increasing values of 0.

2.2. The mean residual life time
The mean residual lifetime (MRL) is given by
‘l 00
mx)=EX-xX>x)= 7—/ t. tdt}—x.
00 = Ex =i = { s [ eoaw
The following Lemma is introduced to evaluate the mean resid-

ual life time
Lemma 1. Let

r 0O (1 +X)€_;<_‘ { ( 0 ) ,g:| n-1
= " 1-(1 X
Ci(0,n,1,t) [ P + A5 0% e

X3
then
n i n—1\ —10 [T(k—r+2,(i+1)0t)
e = Z;;(k)( i )(1+0){ [(i+ 1)) "2
C(k—r+1,(i+1)0t)
[+ 1o

Proof. Using the series expansion for |Z| < 1 and n > 0,

1-z"! :i(cn— 1i)Z' (12)

using Z = (1 + (Jﬂ))()e*ﬁ, we have

—1'0

i=

(i+1)6

* dx

10,nr,t)=

Consequently,

I'(k—r+2,(i+1)6t)

G (O,n,r,t): [(i+1)0]k—r+2

i\ (n—-1\ -1k

Mo k:0<k>< i )(1+9)"

C(k—r+1,(i+1)0t)
[(i+1)0]k—r+l

(13)

Using Lemma (1), the MRL function m(x) for LIL random vari-
able is given by
Now,

139

1.5
h(x,0.5,5)
h(x,1.2,5 1f
h(x,2,5)
h(x,5,5)
h(x,10,5) 0.5} .
0

(0.5,1.2,2,5,10) (left); for 0 = (0.5,1.2,2,5,10) and g = 5 (right).

3 (B —1)6*C1(6,n,1,x) B
me) = {m 1--p(1-(1+55)ed)]a +9)}

3. Statistical properties
This section investigates the statistical properties of the LIL dis-

tribution such as the moments, the moment generating function,
the quantiles and the median.

3.1. Moments

In order to find moments, the following lemma is proved.
Lemma (2). Let

* (1+x)e* 0 i
— r\- /" _ - X
C2(0,n,1) 7/0 X e 1 1+ T+0x e

then
1l n—1\ -1 | T(k-r+2) T(k-r+1)
2(0.n,7) :Z ( )( i )(1+9) : kr2 T k—r+1
=0 k=0 ! [(i+1)0] [(i+1)0]
Proof. Using the series expansion in Eq. (12) with
Z= (l + (M)X)e*z we have
n-1 i i n—-1 7‘11.916 o (it 1)0
Co(0,n,1) = ) / x K301 1 x)e
2(6m1) ;k:(J(k)( i )(1+0)k o (1%
Consequently,
i i\ /n=1\ =16 | T(k-1+2) T(k=r+1)
Cz(()?n,r):z (k)( i ) 1 k : k—r+2—‘r . k—r+1
-0 k=0 (1+0)" [[(i+1)0] [(i+1)0]
(14)

The " non-central moment of the LIL distribution is given by
E(X) = / X (x)
0

n=

PO = x(1+x)e
+ 0 lnﬁ x3

Using Lemma (2), the r" non-central moment of the LIL distri-
bution is given by
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n_ o= —(1=p)"0*Co(0,m,1)
EX) =2 (1+0)Inp (15)

n=1

Depending on Eq. (15), we can conclude the basic statistical
properties as follows;
The mean p and the variance, Var(x), of the LIL random variable

X are, respectively, given by

x B)"6*Cy(0,n,1)
r= ; +01nﬁ
and
Var(x) = [ —

where [, is the second non-central moment given by

= 0°C5(0,n,2)
Z +61n/3

n=1

The n central moment 4, can be obtained easily from the r
moments through the relation.

n

o= EX =" =S (1) m=12,

r=0
Then, the n" central moment of the LIL distribution are given by

—(1-p)"¢*C(0,n,1)
sz:> (1+0)Inp

r=0n=1

3.2. The moment generating function

The moment generating function, Mx(t), can be easily obtained
from the r™ non-central moment through the relation
Mx(t) = Y270 5 fr,

Then, the moment generating function of the LIL distribution is
given by

AR (1 - p)"0°C(0,n,T)
Mx®=>D 5= onp

(16)

3.3. Quantile function

Let X denotes a random variable with the probability density
function (Eq. (6)). The quantile function, say x; defined by
F(xq) = q is the root of the equation

AV 1-p1
<1+0+E>eq{1— -

Multiplying both side by

_<1 +9+Xﬂ>e(1+o+;;’) _ _{1 1 _ i

9 -5

(1+0) (17)

—e~(149 in (17), we obtain

(1+0)e"1+9  (18)

for 0 < g < 1. Substituting Z(q) =
Eq. (18) as

Z(@explz()} = ~[1 - 55 (1 + 0)e- 0

for 0 < g < 1. So, the solutlon for Z(p) is

1-p"¢
zmy:w<b -

where W is the Lambert W function (see Corless et al. 1996)
for detailed properties. Moreover, for any 6 >0 and x >0, it is

— (1 +0+ %) one can rewrite

(1+0)e”1+0 ) (19)

immediate that (1 + 0+ i) > 1,and it can also be checked that that

[1 — 1L q](l +0)e"149 ¢ (00, —1) since 0 < q < 1. Therefore, by

taking into account the properties of the negative branch of the
Lambert W function, (Eq. (19)) becomes

1-p"¢
Z(Q)—W1<—[1— -5

(14 0)e” ”“) (20)

for 0 < g < 1, Inverting (Eq. (20)), one obtains
1 1 1-p1
— 1+§+§W1<—|:1— Ty

for 0 < g < 1. The particular case of (Eq. (21)) for (8 — 1) gives the
quantile function of inverse Lindley distribution, see Jodra (2010).
when q=0.5 in Eq. (21), one can obtain the median of the distribu-

-1
. —(1+0)
tion as xg5 = — {1 +I+Iw, <— %)}

-1
(1+0)e” ”oﬂ (21)

+/B

4. Estimation of the parameters

Let xq,...,X, be a random sample of size n from LIL. Then, the
log-likelihood function is given by

= " Inf(x)L(B,0
i1
02
=-—nln[lnp]+nln(f—1) +nln (1+6>

+Zln< +x,>7 %
1

i=1

_Z?nb-ql_m<1—<1+a{%§>fg} (22)

The MLEs 0, j of 0, B, are then the solutions of the following non-
linear equations:

) Cn0+2) a1
0“0 =501 " 2ok
(1= e ¥[0°(1 +x) + 0(2x + 1)] 23
=01 (12 )]
n
ﬁ £ = s Gy
17(1+(H(,))e“ 24

[1-a-p(1-(1+wm)ed)]
In order to solve above equations, one can apply a suitable

iterative procedure such as the Newton- Raphson method.

5. Generation algorithms and Monte Carlo simulation study

In this section, the algorithms for generating random data from
LIL distribution are given. A simulation study was also conducted
to check the performance and accuracy of maximum likelihood
estimates of the LIL model parameters.

5.1. Generation algorithms

In this subsection, we present two different algorithms that can
be used to generate random data from LIL distribution.
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Table 1
Monte Carlo simulation results: Average Bias, RMSE, CP and AW.

1

Il

Parameter n

Average bias RMSE CcP AW Average bias RMSE cpP AW
0 25 0.00468 0.02262 0.98080 0.13859 0.16756 0.71375 0.98720 3.63908
50 0.00289 0.01807 0.98080 0.09807 0.10053 0.52504 0.98220 2.50945
75 0.00262 0.01610 0.98000 0.08024 0.09089 0.45331 0.98220 2.04865
100 0.00192 0.01478 0.97880 0.06945 0.07244 0.40718 0.97460 1.75856
200 0.00184 0.01205 0.96960 0.04924 0.04158 031182 0.96360 1.22790
400 0.00101 0.00885 0.95740 0.03451 0.02955 0.22128 0.95560 0.86329
600 0.00063 0.00720 0.95400 0.02804 0.02160 0.18137 0.95240 0.70262
B 25 —0.10488 0.28690 0.95260 2.26965 —0.08595 0.26145 0.98160 1.98164
50 —0.08667 0.26303 0.95020 1.61974 -0.07816 0.24433 0.93800 1.38358
75 —0.08384 0.24889 0.93420 1.33696 —0.07781 0.23321 0.93560 1.14433
100 —0.06867 0.23041 0.92120 1.13093 —0.06477 0.21019 0.92480 0.94998
200 -0.05515 0.19298 0.92560 0.77673 —0.04021 0.16403 0.92660 0.62195
400 —0.03259 0.13717 0.93500 0.50956 -0.02591 0.11198 0.94780 0.41789
600 —0.02087 0.10701 0.94380 0.39892 —0.01637 0.08733 0.94860 0.32971
Table 2 used to generate random data from the LIL distribution. The simu-
Flood C. lation study was repeated N =5000 times each with samples of
0.654 0.654 0315 0.449 0297 size n =25, 50, 75, 100, 200, 400, 600 combined with param'eFer
0324 0.269 0.74 0.418 0.412 values (I): 0 =0.1,8= 0.7 and (I): 6 = 2.5, 8 = 0.7. Four quantities
0.338 0.392 0.484 0.265 0.379 were computed in this simulation study: (i) Average bias of the
0.423 0.379 0.402 0.494 0.416

(a) The first algorithm is developed by taking the mixture form
of the inverse Lindley (IL) distribution. The density function of the
inverse Lindley distribution can be defined as a two-component
mixture of an inverse exponential distribution with scale 0, and a
special case of inverse gamma distribution with shape 2 and scale

6, using a mixing proportion p = ;. That is,
0 (1+x\
Fi(x) = 110 (7)9 =pfi(x) + (1 -p)f,x)

where p =%, f(x) = 0x~?e% and f,(x) = g5;x*e~ for 0> 0 and
x> 0.

Algorithm I (Mixture form of the inverse Lindley distribution)

1. generate L; ~ logarithmic(0) from equation (7),i=1,...,n.
2. generate U;; ~ Uniform(0,1),j=1,...,L.

3. generate E;; ~ inverseExponential(0),j =1,...,L;.

4. generate G;; ~ inverseGamma(2,0),j=1,...,L;.

5. if Ui < p = 1%, then set X;; = E;j, otherwise set X;; = Gij,
6. set Y; = min(Xjs,....,Xi),i=1,...,n

(b) The second algorithm is based on generating random data
from the inverse CDF in Eq. (21) of the LIL distribution.

Algorithm II (Inverse CDF)

—

. Generate U; ~ uniform(0,1), i=1,...,n.

2. Set
—p Ui
X = —[l Fielwg (—[1 -5 ]
(1+0)e )] fori=1,...,n, where W(.) is the negative
branch of the Lambert W function.

5.2. Monte Carlo simulation study

In this subsection, we study the performance and accuracy of
maximum likelihood estimates of the LIL model parameters by
conducting various simulations for different combinations of 7
sample sizes with two sets of parameter values. Algorithm II was

MLE Jof the parameter ¢ =0,$: & SN, (9 —¥); (ii) Root mean
squared error (RMSE) of the MLE ¢ of the parameter 9 = 0, §:
Hzf’zl(&—ﬂ)z]o's; (iii) Coverage probability (CP) of 95% confi-
dence intervals of the parameter 9 = 0,8; (iv) Average width
(AW) of 95% confidence intervals of the parameter ¥ = 0, f.

Table 1 presents the Average Bias, RMSE, CP and AW values of
the parameters 6 and g for different sample sizes. According to
the results, it can be concluded that as the sample size n increases,
the RMSEs decrease toward zero. We also observe that for all the
parameters, the biases decrease as the sample size n increases.
The results show that the coverage probabilities of the confidence
intervals are quite close to the nominal level of 95% and that the
average confidence widths decrease as the sample size increases.
Consequently, the MLE’s and their asymptotic results can be used
for estimating and constructing confidence intervals even for rea-
sonably small sample sizes.

6. Data analysis

In this section, we present example to illustrate the flexibility
and superiority of the LIL distribution in modeling real data. We
use a set of real data (given in Table 2) of flood levels to demon-
strate the applicability of the LIL distribution. The data were
obtained in a civil engineering context and gives the maximum
flood level (in millions of cubic feet per second) for the Susque-
hanna River at Harrisburg, Pennsylvania over 20 four-year periods
from 1890 to 1969. These data have been widely discussed by
many authors and were initially reported by Dumonceaux and
Antle (1973).We fit the density functions of LIL distribution in
Eq. (6) and its sub-model the inverse Lindley (IL) distribution in
Eq. (2).

We also compare the LIL distribution with seven alternative dis-
tributions such as:

e The inverse Weibull (IW(B, 6)) distribution specified by the pdf

f(X) _ ﬁHx—(/Hl)e—Ux’/"
e The inverse gamma (IGM(8, 0)) distribution specified by the pdf
x,5,0>0

x,58,0>0
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Fig. 3. P-P plots for the fitted distributions.

The generalized inverse exponential (GIE(f,0)) distribution
specified by the pdf

The lognormal (LN(p, ?)) distribution specified by the pdf

]

The log-Logistic (LLog(B, 0)) distribution specified by the pdf

10+ G)) oo

(logx — p)*
202

fx) =

2ToX

—0

flx) = %e’?“(l - eT)ﬂ, x,5,6>0

The inverse Gaussian (IG(B, 0)) distribution specified by the pdf

(BN [Bx—0°
f(x)7<2m(3> EXP{W’ X,5,0>0

}, X,0>0,—0co< <o

fx) =
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Table 3
Summary of fitted distributions.
Distribution MLE logL AIC BIC SS
Statistics
logIL(}, 0) 9 —2.9801 16.4321 —28.8642 -30.26214 0.03581
B =0.0076
X)) 9 —0.01253 15.77892 ~27.55783 ~25.56637 0.05005
B =4.3140
IGM(3, 0) # = 5.5565 15.72657 —27.45315 —25.46168 0.04552
B =14.0879
GIE(3, D) = 1.75845 13.9709 -23.9418 —21.95033 0.09598
B =45.85107
1G(3,0) 0 —0.4231 15.4068 -26.8136 —24.82214 0.05426
B=12.8128
LN(jt, 62) it = —0.894436 15.3617 —26.7234 —24.73194 0.0602
6 = 0.28151
LLog(}, 0) 9 —0.4018 15.241 —26.482 —24.49054 0.03769
B =6.5752
FW(B.0) 0 = 3.6456 13.5886 -23.1772 —24.57514 0.15402
B =08217
the observed data. The measures of closeness are given by the
Table 4 sum of squares
Goodness-of-fit tests. .
o n F Y j—0.375]°
Distribution w* A KS P-value = Z LogIL (X(i)’ﬁ’ ) " Tn+025
=1 ‘
Statistics
logIL(B,0) 0.04822 0.2934 0.11946 0.9379 The goodness-of-fit statistics W* and A", are also presented in
IW(B,0) 0.05775 0.3447 0.15312 0.6761 the tables. These statistics can be used to verify which distribution
IGM($, 0) 0.05276 0.34756 0.13246 0.8742 provides the best fit to the data. In general, the smaller the values
GIE(B, 0) 0.08326 054487 018511 0.4408 of W* and A", the better the fit. Let F(x, ®) be the cdf, where the
IG(B.,0) 0.06593 0.43384 0152723 0.7393 form of F is known but ® (a k-dimensional parameter vector,
LN(f, 6%) 0.06512 0.43089 0.151857 0.7456 say) is unknown. To obtain the statistics W* and A", we can proceed
LLog () 0.05016 0.3563 0.119211 0.9121 35 follows:
FW(B,0) 0.15937 0.96669 0.2068 0.3624 .

The flexible Weibull (FW (g, 0)) distribution specified by the pdf

fx)= (6 +x£2> e exp{—e*”"*g}, x,8,0>0

For the data set, the estimates of the parameters of the distribu-
tions, Akaike information criterion (AIC) and Bayesian information
criterion (BIC) are obtained. To choose the best possible model for
the data set among all competitive models, the statistical tools
used are described as follows: AIC=-2loglL+2q and
BIC = —2logL + qlogn, where, q is the number of parameters are
to be estimated from the data. Moreover, we apply the formal
goodness of fit tests in order to verify which distribution fits better
to these data. We consider the Cramer-von Mises (W*) and
Andrson-Darling (A") statistics. The statistics W* and A" are
described in detail in Chen and Balakrishnan (1995). The statistic
of the Kolmogorov-Smirnov test (KS as well as its respective p
value is presented. This test observes the differences between the
assumed cumulative distribution function and the empirical
cumulative distribution function from the data to verify the fit of
the distributions (p-value > 0.05). The sum of squares (SS) from
the probability plots are also presented.

When comparing models, the model with the smallest AIC is
considered to be the best fit model for a given data set. When
selecting the best model for a given data set based on the values
of SS, the model with the smallest SS is considered as the best fit
model.

Fig. 3 shows the probability-probability (P-P) plot for all the fit-
ted models. For the probability plot, we plotted Fiogn(x(); B, 0)

: j=0375
against T55s

j=1,2,...,n, where x;; are the ordered values of

1. Compute z; = F(x;, ®), where the x/s are in ascending order;

2. Compute y; = ® ' (z;), where ®(.) is the standard normal cdf and
@ 1()) is its inverse;

3. Compute u; = O{(y; —¥)/sy}
s2=n-1)"S8L -5

4, Calculate

2 N~f, @111
W_Z{”' 2n }+12n

i=1

where y=(1/n)3I,y; and

and
AP=_n-— %;{(21‘ —1)In(w) + 2n+1-=2i)In(1 — )}

;Modify W? into W* = W?(1 +0.5/n) and A" = A’ (1 + 225 4 225) for
more details see (Chen and Balakrishnan (1995)).

We use the likelihood ratio (LR) test statistic to check whether
the shape parameter associated with LIL distribution improves its
applicability. The hypothesis can be stated as

Null hypothesis Hq : X ~ IL(0)(i.e.f = 1)

versus

Alternative hypothesis Hy : X ~ 1IL(8, 0)(i.e.#1).

In this case, the LR test statistic for testing Hy, versus H; is
o* =2(l4 — ), where I; and [, are the log-likelihood functions
under H; and H,, respectively. The statistic w* is asymptotically

(asn — oo) distributed as y? with k degree of freedom, where k
is the number of parameters. The LR test rejects Ho if w* > y2(y)
denotes the upper 1009% quantile of the 2 distribution. For given
real data set, the log-likelihood under the IL is I, = 0.5854 with
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0=0.6344 and under H;, I; is 16.4321 with (§=0.0076,
0 = 2.9801). Clearly, the shape parameter § can never be 1 for the-
ata since = 0.0076 which is very far from unity. However, the LR
test is ®* = 31.6934 which is greater than %2(0.05) = 3.84. The
results indicate that evidences do not support the null hypothesis.
Therefore, the LIL is a better model than its special case, IL
distribution.

The selection criterion is that the lowest AIC and BIC correspond
to the best model fitted. The MLEs, AIC and BIC are shown in
Table 3. From the Table 3, we can observed that the LIL distribution
shows the smaller AIC and BIC than other competing distributions.
Thus, the LIL distribution fits well the data set.

The value of the sum of squares (SS=0.03681) from the
probability plots in Fig. 3 is smallest for the LIL distribution. Conse-
quently, there is clear evidence, based on the goodness-of-fit statis-
tics W* and A” that the LIL distribution provides the best fit for the
maximum flood level data.

Regarding the KS test shown in Table 4, it is clear that all distri-
butions fit the data (p-value >0.05), but LIL distribution obtaining
the lowest test statistic with the largest p-values in eight tests.
The plots of probability-probability and the fitted cumulative dis-
tribution of the LIL are shown in Fig. 3 for maximum flood level
data. Fig. 3 also indicates that the LIL is a good fitted model for
the data.

7. Concluding remarks

In this paper we have proposed a new two parameter model,
the Logarithmic-inverse Lindley distribution which extends the
inverse Lindley distribution in the analysis of data with real sup-
port. An obvious reason for generalizing a standard distribution
is because the generalized form provides larger flexibility in mod-
eling real data. The generalization approach used here backs to
Pappas et al. (2012) along the lines with Marshall and Olkin
(1997). We derive expansions for the moments, moment generat-
ing function, hazard rate function, mean residual lifetime distribu-
tion. We use the Lambert function to derive explicit expressions for
the quantiles and its special case (the median). The estimation of
parameters is approached by the method of maximum likelihood.
We present a simulation study to exhibit the performance and
accuracy of maximum likelihood estimates of the LIL model
parameters. Real data application is also presented to illustrate
the usefulness and applicability of the LIL distribution.
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