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1. Introduction

By way of introduction, let us begin with the motivation for this
work.
A classical variational problem. The Sobolev space is given by

H'([0,1)) = {u € 1%([0,1)) : 3g € [*([0, 1)) such that /]U(p’

1 Jo (1)

= —/ g9,V € C.(0, l)},
0

where C!(0,1) is the space of continuously differentiable functions

defined on [0, 1] with support in (0,1). The function g in (1) is
named the weak derivative of u and is denoted by u. We set

H3(0.1]) = {u € H'(0, 1]) : u(0) = u(1) = 0.

Consider the following variational problem:
Given f e I?([0, 1)), find u € Hy([0, 1])such that

V/O]it<'p+/:wp=.[f<p (2)

for all ¢ € H}([0,1)). This variational problem arises from consider-
ing the following boundary problem (Brezis, 2011):
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—it+u=fae. on(0,1);

u(0) =0, u(1) = 0. ®

The space Hy([0,1]) has certain properties that are useful in
order to find a solution to variational problems (2): it is a Hilbert,
separable and reflexive space.

What happens if f is not of square Lebesgue integrable? In
several physical phenomena, highly oscillating or singular func-
tions appear (Condon et al., 2009; Hamed and Cummins, 1991;
Hong and Xu, 2001; Samoilov et al., 2005). The Lebesgue integral
is not enough for some highly oscillating functions leading to the
possibility that the integral on the right side of the Eq. (2) does
not exist for this type of functions and so the variational problem
(2) would not be well defined. One way to solve this problem is
to change the type of integral to be considered, in this work we will
use the Henstock-Kurzweil integral. Different authors have stud-
ied differential equations involving Henstock-Kurzweil integrable
functions. In Ledn-Velasco et al. (2019) the authors use the Finite
Element Method (FEM) for finding numerical solutions of elliptic
problems with Henstock-Kurzweil integrable functions. They use
open quadratures and Lobatto quadratures to approximate numer-
ically the integrals that appear in the FEM. In Liu et al. (2018) are
given conditions to establish the existence of a solution to nonlin-
ear second-order differential equations of type —D*x = f(t,x)+
g(t,x)Du subject to the boundary conditions x(0)= pDx(0),
Dx(1) + Dx(n) = 0, where the derivatives are in the distributional
sense, x,u are regulated functions and g is of bounded variation.

1018-3647/© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In that paper the Henstock-Kurzweil-Stieltjes integral is used to
transform the distributional differential equation into an integral
equation, then the Leray-Schauder nonlinear alternative theorem
is applied for finding a solution. In Sanchez-Perales and
Mendoza-Torres (2020) the existence and uniqueness of the
Shrédinger equation, —y” + qy = f a.e. on [a, b] subject to arbitrary
boundary values, is guaranteed for functions f,q Henstock-Kurz-
weil integrable. Properties of the inverse of the Shrédinger opera-
tor are established, then the authors give conditions so that the
solution of the differential equation can be expressed as a Fourier
type series.

Henstock-Kurzweil-Sobolev space. Around the 1960s, R. Hen-
stock and J. Kurzweil, independently, define a Riemann-type inte-
gral, known as Henstock-Kurzweil integral, which is equivalent
to Denjoy and Perron integrals. This integral is more general than
the Lebesgue integral. In this work we introduce, using the Hen-
stock-Kurzweil integral instead of the Lebesgue integral, a space
analogous to H'(]0,1]), which we will call the Henstock-Kurz
weil-Sobolev space and denote it by Wy. Since the product of
two Henstock-Kurzweil integrable functions is not necessarily an
integrable function, the Wygspace is not provided with a natural
internal product. Thus we cannot apply classical theorems, such
as Lax-Milgram’s, to guarantee the existence and uniqueness of
the solution to variational problems such as (2). In this paper, we
will use Fredholm’s alternative for compact operators and the
properties of the Henstock-Kurzweil-Sobolev space to solve such
problems.

2. Preliminaries

The symbol R denotes the set of real numbers, C stands for the
complex numbers and [a, b] C R is a closed finite interval. A tagged
partition {([ti_1,t],&):i=1,...,n} of [a,b] is a finite collection of
non-overlapping intervals [t, 1,6] such that [a,b] = UP, [tiq, 8],
and ¢& € [tiq,t;] for all i=1,...,n. A function 6:[a,b] > R is a
gauge on [a,b] if §(t) >0 for every t € [a,b]. Given a gauge ¢ on
l[a,b] and a tagged partition P = {([ti_1,t],&):i=1,...,n} of
[a,b], P is o-fine if

(i1, 6] C (& —=0(&),&+6(&)), i=1,...,n

A function f : [a,b] — C is Henstock-Kurzweil integrable (HK-
integrable) on [a, b] if there exists a number I such that for every
€ > 0 there exists a gauge ¢ on [a, b] such that for each 5-fine tagged
partition {([ti_1,t],&) :i=1,...,n} of [a,b],

n

Zf(fi)(fi —tiq) =1

i=1

< €.

The number [ is called the integral of f over [a,b] and it is
denoted by f: f. The space of Henstock-Kurzweil integrable func-

tions is denoted by HK([a, b]). The Alexiewicz semi-norm of a func-
tion f € HK([a, b)) is defined by

1= sup {\/ b

A function ¢ :[a,b] — C is of bounded variation on [a,b]
(¢ € BV([a,b])) if
}<oo

- {SToa)

where the supremum is taken over all finite collections
{[ci,di] : i=1,...,n} of non-overlapping intervals of [a, b].

Theorem 2.1. (Talvila, 1999, Lemma 24) If f € HK([a,b]) and
g € BV([a, b)), then fg € HK([a,b]) and

/a'bfg / f(oyde

Theorem 2.2. (Sargent, 1948, Theorem D) Let f, ¢ be functions such
that f is of real values and f € HK([a, b]). Then, f¢ € HK([a, b)) if and
only if there exists ¢, € BV ([a,b]) such that ¢ = ¢, a.e. on [a,b].

inf |g(t)

tela,b]

+ fllaViang-

The next Fubini’s Theorem is a direct consequence of Talvila
(2002, Lemma 25).

Theorem 2.3. If f € HK([a,b]) and h € BV([a,b]),
subintervals A, B of [a, b], we have

//f dtdx_/ /f x)dxdt.

A function F : [a,b] — C is absolutely continuous (respectively,
absolutely continuous in the restricted sense) on a set E C [a, b], if
for each € > 0 there exists 6 > 0 such that Y73 ;|F(d;) — F(c;)| < €
(respectively, >°; ; sup{|F(x) — F(y)| : x,y € [ci,di]} < €) whenever
{[ci,di]};_, is a collection of non-overlapping intervals with end-
points in E and such that 3} ,(d; — ¢;) < 6. The space of absolutely
continuous functions on E is denoted by AC(E), and the space of
absolutely continuous functions in the restricted sense on E is
denoted by AC. (E).

then for any

The function F is generalized absolutely continuous in the
restricted sense on [a,b] (F € ACG.([a,b])), if F is continuous on
[a,b] and there exists a countable collection (E,),_; of subsets of
[a, b] such that [a, b] = U, E, and F € AC.(E,) for all n € N. This con-
cept leads to a very strong version of the fundamental theorem of
calculus:

Theorem 2.4. [Fundamental theorem of calculus] (Gordon, 1994)
Let f,F : [a,b] — C be functions and let c € [a, D).

1. If feHK(a,b]) and F(x)= ['f for all xelab], then
F € ACG.([a,b]) and F = f almost everywhere on [a, b]. In partic-
ular, if f is continuous at x € [a, b], then F'(x) = f(x).

2. F € ACG,([a, b)) if and only if F' exists almost everywhere on
[a,b] and [*F = F(x) — F(c) for all x € [a, b].

Theorem 2.5. [Integration by parts formula] (Sanchez-Perales and
Mendoza-Torres, 2020, Corollary 2.4) If ue ACG.([a,b]) and
v € AC([a,b]), then u'v € HK([a, b)),u?v’ € L([a, b)) and

b b
/ W () (t)dt = u(b)v(b) — u(a)v(a) — / uw(e) v (6)de.

3. The HK-Sobolev space

In what follows from this document, we have presented the
results on the interval [0, 1] without loss of generality, since they

can be generalized to any compact interval. Let C2([0, 1]) the space
of all functions ¢ € C([0, 1)) for which there exists {[t;_1,t;]}l, a
partltlon of [0,1] such that ¢ € C*((t;_1,t;)) foralli=1,---,n; and

P®(to+), M (t1-), @M (t14),- -, P (tr 1), ™ (tn4+).,<p (ta—)
exist for all k = 1,2. We set

V={pcC(0,1]): ¢(0) = (1) = 0}.
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It is clear that if ¢ € C3([0,1]), then ¢ and ¢' belong to
AC([0,1])(Cc BV(]0,1])). The next theorem is proved in a similar
way to Hestenes (1966, Lemma 15.2, p. 51) with some
modifications.

Lemma 3.1. [Fundamental lemma of calculus of variations] Let
f,& € HK([0,1]) with g continuous on the right at t = 0. Then

o1
/0 FOP) + )¢

for every @ €V, if and only if,

- /0 f(s)ds + g(0).

for almost all t € [0,1].

‘(t)]dt =0

Proof. We assume that fand g are HK-integrable on [0, 1], then the
function G(t fog is differentiable except for a set K of measure

zero. Let t € (O, 1)\ K, choose € such that 0 < € < t/2, and define
the function

toifo<r<e,

1, ife<t<t-—e
(p(t)_%, ift—e<t<t

0, ift<t<l.

Then ¢ € V and so

1 € 1 € b€ 1 t ) 1 ot
1 ttdt+f/ +/ +f/ HE-ode—1 [ g
2 [rouere [es [ reg [ roi-na- [ g
4)
Since g is continuous on the right at 0, it follows that
e [ =g0

From Bartle (2001, Theorem 12.5),

nge/f t)tde = 0 = lim - /f

Thus the right side of (4) tends to g(0) + féf —G(t) as e — 0.
Therefore, g(0) + fo f-G({)=0,ie.

t) = /0 tf+g(0)

Conversely, suppose that

0= [ 1+ 500)
for almost all t € [0,1]. We set H(t fo s)ds +g(0), then H=g

and H' = f a.e. on [0, 1], hence by Theowm 2.5,

/[f<p+g<p] /[ ¢+ He'| = H1)p(1) — H0)p(0) = 0. [

Corollary 3.2. Let f € HK[0,1]. If

/O]fq):O,

for every ¢ €V, then f =0 a.e on [0,1].

Proof. Taking g = 0 in Lemma 3.1, we obtain that

/Otfzo,

for almost all t € [0, 1]. We set F(t fof by continuity of F and the
zero function, we have that f = 0 a.e.on [0,1].

Corollary 3.3. Let f € HK[0,1]. If

./01f</)’=

for every ¢ €V, then there exists a constant C such that f = C a.e on
[0,1].

Proof. Consider the function

4t, if0<t<

VO= 414

1.
\27
if I<t<1.

Let ¢ € V and define

0= [ [o-([ 3]

Then z € C3([0,1]) and z(0) = z(1) = 0, hence z € V. Thus by
hypothesis and Fubini’s Theorem, we have that

- e[ el
- [ 100 dr—/ /f
:./Olf(x) dx—/ /f t)dtdx

[ (w-[ f(rw(r)dr)(p(x)dx.

Therefore, by Corollary 3.2, f — f(} fy=0ae.on|0,1].

t)dxdt

Theorem 3.4. Let g € HK([0, 1]). For a fixed y, € [0, 1] define

Xg(t)dt,x €[0,1].

Yo

Then v € C[0,1] and

.1 "1
/ Vo' = - / g9,
0 0

forall p eV.

v(x) =

Proof. It is clear that v is continuous. By Fubini’s Theorem it fol-
lows that

/Uq) //y X)dtdx

/ " y°g X)dtdx + /y 0 /y :g(t)qo’(x)dtdx
-, yo/ st
=- g( )(p(t) —

0
- [s0pwa

x)dxdt + / g(t) (x)dxde
Yo Jt
1

e0)dt+ [ g(t)(e(1) -

Yo

p(t)dt
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Definition 1. The HK-Sobolev space Wy is defined to be

Whk = {u € HK([0,1]) : 3g € HK([0, 1]) such that

fol up' = ff(} gp, Vo € V}.

For u € Wy we define the weak derivative of u, denoted by 1, as

u=g,

where g is the function given in Definition 1. Observe, by Corollary
3.2, i is well defined. Also, from Theorem 3.4 we have that for every
f € HK([0,1)), there exists a continuous function v defined on [0, 1]
such that # = f, that is, each HK-integrable function is the weak
derivative of a some continuous function.

Proposition 3.5. Ifu = u; a.e on [0, 1] and uy belongs to ACG, ([0, 1]),
then u € Wy and 1t = u}.!

Proof. Let u,u; be functions such that u; € ACG,(]0,1]) and u = u;
a.e. on [0,1]. Then u) exists a.e on [0, 1], and by Theorem 2.5,

1 1
/U’ﬂp:umo\éf/ u Q'
Jo JO

for all ¢ € V. Therefore

1 1 1
/U<o’=/ u1¢/=7/ U
0 J0 0

for all ¢ € V. Consequently, u € Wy and u =u). O

Remark 1. As an immediate consequence of the previous proposi-
tion, we have that if u is a continuous function on I such that v’
exists except on a countable set, then u € Wy and u = v'.

Theorem 3.6. [Fundamental theorem of calculus] Let u € Wy.
Then there exists a function u € C([0, 1]) such that

u=1ua.e. onl0,1]

and

d
u(d) —u(c) = / u, for all c,d € [0,1].

JC

Proof. Write ii(x) = [; it. By Theorem 3.4 we have

1 1
/ ﬂq)/ = 7/ U(P~
0 0

for all ¢ € V. On the other hand, as u € Wy, then

1
JO

Therefore

/Ol(ufa><o'=07

for all ¢ € V. Consequently by Corollary 3.3, there exists a constant
C such that u—a=C ae. on [0,1]. The function & =1+ C is the
desired and satisfies the second part of the theorem. O

1 ¢/ denotes de usual derivative of v. From u; € ACG, ([0, 1]) it follows that U} exists a.e

on [0,1].

Remark 2.

1. Every function u € Wy admits one (and only one) continuous
representative ii on [0,1]. Therefore u e L*([0,1]). Moreover,
it € ACG,([0,1]) and by Proposition 3.5, i = ul'.

2. If v € Wy and there exists w € C([0, 1]) such that w = ¥ a.e on
[0,1], then by Theorem 3.6, # € C'([0,1]), i.e. v has a continu-
ously differentiable representative on [0, 1]. Therefore by Theo-
rem 2.2, gveHK([0,1]) for all real valued function
g € HK([0, 1]).

Corollary 3.7. [Integration by parts formula] If u, v € Wy, then
uv € Wy and
(uv)y =uv+uw.

Also, if uwveHK(0,1)]) and
v(0),u(1-) =u(1) and v(1-) = v(1), then

1 1
/iw:uv\(l,—/ ui. (5)
0 0

Proof. Let u, v € Wyk. Then by Remark 2, u, v € ACG,([0,1]),u = 1w
and # = ?/. From Sanchez-Perales and Mendoza-Torres (2020,
Proposition 2.5), 2w € ACG,([0,1]). Thus by Proposition 3.5,
uv € Wyg and

u(0+) = u(0), v(0+) =

(uvy = (U2) = Vo +0v = uv + ub. (6)

Integrating (6) we obtain (5). O

4. Existence and uniqueness of a solution of a boundary value
problem
Define the spaces
WIZ-IK = {u (S WHI( N u S WHK}
and
WHKO = {u e Wy : U(O) = u(0+) = u(]) = u(l—) = O}

Let f € HK([0, 1]) and let q, p be real valued functions such that
q € L*(0,1]), p € ACG,([0,1]) N BV([0,1]) and |p(x)| = « for all

x € [0,1] and some o > 0. Consider the following problems:
I Find u € W, that satisfies

—[pu] +qu=fae. on (0,1);
u(0) =u(0+) =0, u(l)=u(1-) =0.

II. Find u € Wy, that satisfies

/Olpu(p’+/01quqo:/olf<p (8)

forall p e V.

The boundary value problem (I) and the variational problem (II)
are equivalent. Indeed, suppose that u € Wﬁ,( is a solution of the
boundary value problem (I). Multiplying both sides of the differen-
tial equation in (7) by ¢ € V and integrating it from O to 1, we
obtain that

- /Ol[pﬂ]'ao + /01 quep
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Therefore

1 1 1
/pllgo’+/ qu(p:/fqo
0 0 0

for all ¢ € V. Conversely, suppose that u € Wy, satisfies (8) for all
@ € V. Then,

/O] pug’ = ffol(quff)qo

for all ¢ € V. Thus put € Wy. Since %e ACG.([0,1]), it follows by
Proposition 3.5 and Corollary 3.7 that © € Wy, consequently
u € W2,. On the other hand, since pit € Wyx we have that

/0] pug’ = —/Ol(pll)'qﬂ

for all ¢ € V. Consequently, from (8),

1
/O [—(pu) +qu—flp=0

for all ¢ € V. Hence, by Corollary 3.2, —(pu) + qu =f a.e. on [0, 1].
To find a solution to the boundary value problem (I), we demon-
strate the existence and uniqueness of the variational problem (II).
Define B on Wy, x V and I, [ on V by
B(u.p)= [y pitg,
(@)= Jo que,
L) = ffo.

It is clear that I, and [; are linear operators and B is a bilinear
operator. The variational problem (8) is equivalent to find
u € Wy, such that

B(u, @) + (@) = :() 9)
forall @ € V.

Affirmation 1. There exists an operator A : Wyx, — Wy, such
that l,(p) = B(A(u), @) for all u € Wyg, and ¢ € V.
Proof. Define the functions

1 ot
mm=—a54qu

and

)

1
h
where o, = f”—

f“ Observe z,€ Wy and  z,(0) =z,(0+) =
0P

zy(1) = z,(1-) = 0. Define the operator A : Wyg, — Wiy, by

Au) = z,. (10)

Then A is a linear operator, and for each ¢ € V,

Bw.0)= [ st = [ p(n-nt)or = [ iph - e

:/(:K/Olqu) —ocu}qo’(t)dt:/oqul(P:lu(@)-

Affirmation 2. There exists a function vy € Wy, for which
() = B(vf, ) forall p e V.

Proof. Let F be the primitive of f, observe that F =f. Then Vs
defined by

mw:A%w—mx

1 E
where 8, = ]"—1’1 satisfies that vy € Wy, and

1 1 1
B(vﬁ(p):/o pqu)’:/o (Ffﬁu)¢’=/) fo=1ko),

forall @ € V.

Therefore, the problem (9) is equivalent to find u € Wy, such
that

B(u, ®) + B(A(u), @) = B(vf, @),
forall p eV, or
B(u+A(u) - v, ¢) =0,

forall p € V.

Remember that an operator T:X — Y between two normed
spaces is compact if and only if for any bounded sequence (x,) in
X, the sequence (Tx,) contains a converging subsequence. The fol-
lowing is the Arzela-Ascoli Theorem.

Theorem 4.1. A subset H of C([0, 1)) is relatively compact on C([0, 1])
if and only if:

(i) H is pointwise bounded, i.e. for every x € [0, 1],
sup|v(x)| < oo.
veH

(ii) H is equicontinuous, i.e. for every € > O there exists § > 0 such
that

lo(x) — v(y)| <€,
forall x,y € [0,1] with |x —y| < §, and for each v € H.

Affirmation 3. The operator A: (Wyg,, || - ||) = Whk,, || - |I) is
compact, where |[u|| = ||ull, + ||i]| 5

Proof. Let Q c Wy, be bounded. Then there exists M > 0 such
that |lul| < M for all u € Q. Let

H:{hu—aul:ueQ}.
p

We shall use the Arzela-Ascoli theorem to prove that 7 is rela-
tively compact in C([0, 1]) with the uniform norm.

(i) First observe that if u € Q, then

o bl o el @t g,  jgim

F IV E R T
0p Jop Jo p 0p

Let x € [0, 1]. Then for every u € Q,

) <[ 10) ]

pX)
1
< Ul lfully + fow])

|ot| =

hy(x) — oy

alMpy 1
|

(ii) We set Q(t) = [, |q[. Let € > 0, since Q and 1 are continuous
on [0, 1], there exists 6 > 0 such that if |y — x| < §, then
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1 1

'_ 1 €
Py px)

<
2q M1+~
H H2 ( Otfolfl’)

oe

Q) — QW < 55

Let x,y € [0,1] be such that |y — x| < J. Suppose that x < y. Then

and

1 1
hay) = = (0 - )
1 1

X hu _hu UL Al
< huty) = o) + o oo

1 1 17
<[5~ agg|1alM-+ b+, [ lau
g‘L_LHqHM 14— Y ap-am <

py)  p)|"" fx‘fol }7( o

Therefore, by the Arzela-Ascoli theorem, H is relatively compact
in C([0,1]) with the uniform norm. Now, let (u,) be a bounded
sequence in Wy, then for the above, there exists a subsequence
(un,) of (un) and g € C([0, 1]) such that hy, — o, }—, — g uniformly.
This implies that

t -1 t
Zuy, (t) :/0 (hunk = Oy, ﬁ) H/0 g

uniformly for all ¢t € [0,1]. We set z(t) = [, g Then z € ACG.([0,1])
and z(0) = z(0+) = z(1) = z(1—) = 0. Therefore, z € W,. It is clear

that ||z, —2|l, — 0 and ||z, —z||l, =

u"k

hun,: — Oy, % — gHA — 0. Thus
[A(un,) — 2| — 0.
Therefore A is a compact operator.

We shall use the Fredholm'’s Alternative Theorem:
Theorem 4.2. (Kress, 1989, Theorem 3.4) If A: X — X is a compact
operator on a normed space X. The equation (A + I)u = f has a unique

solution for all f € X if and only if the homogeneous equation
(A + Iu = 0 has only the trivial solution.

Affirmation 4. Let A: Wyy, — Wy, be the operator defined in
(10). If p > 0 and q > O then the equation (A + I)u = 0 has only the
trivial solution in Wy,.

Proof. Let u € Wy, be such that (A+I)u=0 a.e. on [0,1]. Then
zy = —u hence by Proposition 3.5 it = —hy + oy %. This implies that

pevice) (| [qu) o,

for almost all t € [0, 1]. Again, by Proposition 3.5,
(pit) = qu. (11)

Denote by u* the conjugate of u, it is clear that u* € Wyg,. Then
by Corollary 3.7,

1 1 ~ 1 1
[ aww = [ oo = piwrty - [ pia)=~ [ pici
JOo JOo 0 JO

Thus

1 1
/ qluf’ +/ plitf =0
0 0

which implies that u = 0 a.e. on [0, 1].

Affirmation 5. If p > 0 and q > 0, then the uniqueness of the vari-
ational problem (8) holds.

Proof. Suppose that there exist u, v € Wy, such that satisfy the
variational problem (8). Then

/:p(u—'v)w’:—/:q(u—vxo

for all » € V. Therefore
lp(it— )] = q(u - v). (12)

Thus in similar way to Affirmation 4, we have that

1 1
/ q\u—v\2+/ plit— 92 = 0.
0 0

Therefore u = » a.e. on [0, 1].

Remark 3. From (11) and (12) it follows that the conclusions of
Affirmation 4 and Affirmation 5 are also fulfilled if we assume that
the homogeneous problem

—[pu] + qu=0 a.e. on (0,1);
u(0)=u(0+)=0, u(l)=u(1-)=0
has only the trivial solution.

Finally, we present the existence and uniqueness theorem.

Theorem 4.3. Let f € HK([0,1]) and let q, p be real valued functions
such that q € I?([0,1]), p € ACG.([0,1]) N BV([0,1]) and |p(x)| > ofor
all x € [0,1] and some o > 0. If one of the following conditions holds:

(i)p>0andq>0,
(ii) the homogeneous problem

—[pu] +qu=0 a.e. on (0,1);
u(0) =u(0+)=0, u(l)=u(1-)=0

has only the trivial solution,
then there exists a unique u € W, such that

—[pu] + qu=f a.e.on (0,1);
u(0) =u(0+) =0, u(l) =u(1-)=0.

Example 1. The unique solution of the problem
~[pil] +qu=f a.e. on (0,1);
u(0) =u(0+) =0, u(l)=u(1-) =0;
where p(x) = vx+1,qx) =1 and f(x) =3x +2 -3l +x—x2, is
given by
ux) =x(x—1).
In this case f € HK([0, 1)).
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