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This study aims to construct an implicit block method with three-point to tackle general second-order
ordinary differential equations (ODEs) directly. Hermite Interpolating Polynomial is used as the funda-
mental function to obtain the proposed method which involved the first and second derivatives of
f(t,u,uv’). From the investigation done, it was found that the proposed method is consistent and zero-
stable, hence it is convergent. The proposed method’s efficiency was obtained and a comparison was
made in terms of accuracy to some existing methods with similar order or higher than it. This new
method is able to solve linear and nonlinear initial value problems of the general second-order ODEs
and outperformed existing methods with impressive results. Applications of the new method such as

IVPs in the Fermi-Pasta-Ulam problem and van der Pol oscillator are discussed.

Hermite interpolation
Implicit
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1. Introduction

Many problems in applied science, physics, chemistry, and engi-
neering are modeled as second-order ordinary differential equa-
tions (ODEs) (Boatto et al., 1993; Troy, 1993). For instance,
orbital dynamics problems, electric circuit, damped and undamped
spring-mass or any problem including Newton second law of
motion. A good number of literature is available for the solutions
of second-order ODEs, especially the special case (Mansor et al.,
2017; Liu et al., 2019; Mehdizadeh and Shokri, 2020). Other meth-
ods, among others that attempted to integrate general second-
order ODEs directly, are due to Waeleh and Majid (2017),
Abdelrahim et al. (2016), Omar et al. (2017), Nasir et al. (2018),
Singh and Ramos (2019) and Hashim et al. (2019) etc. Moreover,
recently, several studies have been conducted to implement
derivative methods in solving ODEs, but these methods have only
the first derivative of f(t, u,u’), (see Cash, 1981; Ismail and Ibrahim,
1999; Hojjati et al., 2006; Khalsaraei et al., 2012; Mohamed et al.,
2018; Ramos and Rufai, 2019; Turki et al., 2020; Lee et al., 2020),
which revealed that adding more derivatives might lead to more
accurate numerical schemes. Meanwhile, block methods have been
utilized to produce r-point of the approximate solutions at a step
simultaneously. Each block contains r-point approximation values
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of Uy, 1,Uny2, ... Unr, at each iteration. The block method is first pre-
sented by Milne and Milne (1953) which is later extended by many
scholars, (Badmus, 2014; Allogmany et al., 2019; Adeyeye and
Omar, 2019; Allogmany et al., 2020; Allogmany and Ismail,
2020). In recent literature, hybrid numerical approaches have been
developed with more function evaluations to obtain approximate
solutions with very high precision, (see Jator, 2010; Badmus,
2014; Adeyeye and Omar, 2017; Singh and Ramos, 2019;
Adeyeye and Omar, 2019). In general, A direct solution can be pro-
vided by using interpolation and collocation technique, (Awoyemi
et al., 2011; Kuboye and Omar, 2015; Ramos and Rufai, 2018;
Obarhua and Kayode, 2020). However, to determine the coeffi-
cients of the method via collocation and interpolation approach,
the points must be collocated and interpolated these results in a
system of linear equations which have to be solved simultane-
ously. Therefore, in this study, our main concern is to come up with
a direct three-point block implicit method with extra derivatives
by using a strategy which can be easily executed for directly solv-
ing both linear and nonlinear problems in the form of

u” =f(t,u,u"),u(a) = upt'(a) = uyt € [a,b]. (1)

Let us supposed that the higher derivatives of fin (1) exist and
meet the requirement of the Lipschitz condition as below:
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lf(tvulvu/) 7f(t7 u27ul)|
If (6, u ) — F(tu,uh)|

Liuy — uy|,
Ljuy — ),

NN

vV (t,u, ), (t,u,u);i=1,2 € R Then, the IVPs in (1) has a
unique solution in R (see Wend, 1969; Wend, 1967).

The method is able to approximate solution of (1) at three
points simultaneously using interpolation and integration proce-
dure, which involved the first and second derivatives of f(t,u,u’)
with constant step-size. Where these derivatives are

u/// :f/(tv u7 u/) :ft +fuul +fu’f = g(tv u7 u/)a
u® :f”(t: u, u/) :ftt +ftuu/ +fm/f + (ftu +fuuul +fuu’f)u/
Huf + Fo +fultl +Fund)f + o+ full + Fuf)fw = q(tu,w).

The paper is structured as follows: In Section 2, the derivation of
the three-point implicit block method of order eight (DI3PB) is pre-
sented. Section 3, analysis of the main properties of the proposed
method including order, stability, consistency, and convergence,
is presented. Section 4 is dedicated for implementation procedure
the method. The outcome of the numerical experiment of the
method is given in Section 5. Lastly, Section 6 provided the study’s
conclusion.

2. Derivation of Method

In the three-point block method, the interval [a,b] is divided
into a series of blocks that generate three approximate values,
Up,1, U2 and u,,3, at each block, concurrently using one earlier
block. In Fig. 1, the idea is illustrated where t, is the first point
and t,, 3 is the last point of the block with step size 3h where h is
constant step-size, h=t; —t; yandi=0,1,...,n.

The derivation of the method is done by integrating Eq. (1) to
come up with the approximate solution uy, 1, Uy, and 3.

Integrating the first, second, and the third point once gives:

tniq

U (tgr) = U (tn) + f(t,u,u)dt, (2)
W(t) =t (twr) + [ Ftu e, 3)
W(ts) =t (ta) + [ F(t. e, (4)

Integrating twice gives:

U(tns1) = u(ty) + hu'(t,) + /[W (tag1 — Of (¢, u,u')dt, (5)
u(tn+2) = u(tHH) + hul(th) + / . (tn+2 - t)f(t’ u, u/)dtv (6)
3h

g/ T\
s

th+1 th+2

Fig. 1. Three point block.
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Ultnss) = Ultnra) + htt (Ensa) + / " ltns — OF (6, u, ). (7)

tns2

In order to estimate f(t,u,u’) in Eq. (1), we will use the Polyno-
mial of Hermite interpolating P,(t) (Stoer and Bulirsch, 1991). The
polynomial has the following form

n mi—1

Po(t) = SN FP L), (8)

i=0 k=0
where,

fi=f(t,u,u),ti=a+ih,i=0,1,...,n

L(,"k) (t) is the
k=0,1,...,m.

For the first point, u, 1, let s = HT” and dt = hds be substituted
into (5). By calculating the integral from —3 to —2. MAPLE was used
to carry out the computations

generalized Lagrange polynomial, and

v +h<912523f Llo21077, 473931 . 35339 )
i = U1 53950087 T 23950087 "1 T 2395008 "2 T 23950087
+hz(214943 g 287739 287739 17823 )
39916805 ~ 3991680°™' ' 3991680572 ~ 399168051+
+h3< 11369 199035 67077 1513 ) o
3991680 '" ' 3991680 ™! 3991680 '™ " 3991680 "+3 )’
., 45715504 » 48136923 » 17331408
Unit =t + Bty 0 oo o0 n 1 155675520/ 1 ~ " 155675520712
2 1316741
1556755207 "+
5/ 1941647 1073232 2105073 132958
(51891840g" ~ 518918405 T 5189184052 51891840g"+3>
+h4< 97150 1367226 495225 . 11300 > (10)
51891840 1" " 51891840 9! ~ 51891840 2 " 51891840 12 )

Where g and q denote the third and fourth derivatives of the
solution, respectively.

Applying similar technique by taking s = =2 and dt = hds for
the second point, u,,,, and calculating the integral from -2 to
—1. MAPLE was used to carry out the computations

v —u +h<7155f L4930, 14939 155 )
ne2 = Uit +11 59568/ n T 295687 11 T 295687 2 29568 13
(6047 398331 308331 6047
39916805" " 3991680°"" ~ 399168052 T 39916805+
(=163 15063 15063 163 "
11330560 ™" " 1330560 7 T 133056072 ~ 1330560 "3 )" amn
Upip = Up + hu:,ﬂ
2 425851 56250288 22403547 390224
(155675520f "+ 155675520 "1 T 155675520/ "2 ~ 1556755207 "+3>
+h3( 40866 3240207 1938096 7745 )
518918405 T 51891840°"' ~ 518918405"2 ~ 51891840°"3
(3292 333063 254394 3065 12
51891840 7" " 5189184091 * 5189184092 ~ 51891840713 )

For the third point, we take s = [’[,;”3 and dt = hds. similarly, we
calculate the integral from —1 to 0. MAPLE was used to carry out
the computations

(35339 473031 1021077 012523
w3 = iz 11 53950087 " ~ 23950087 "1 T 23950087 "2 T 23950087 "2
(17823 287739 287739 214943
3991680°" ~ 3991680°™" " 3991680°"2 ~ 3991680°"+3
L 1513 67077 199035 11369 (13)
1330560 \ 1330560 7" ~ 1330560 "' 1330560 7> T 1330560973 )
Un3 = Upyp + hu;Hz
e 980204 13474107 76733082 13598491
155675520/ " ~ 155675520 ™1 * 1556755207 "2 * 155675520 "3
o[ 98741 1635534 2667375 852612
51891840°" 518918405 1 51891840°"2 ~ 518918405
(8369 376776 1220220 50638 (14
51891840 7" ~ 5189184091 * 51891840 %2 " 518918407+ ) )
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3. Properties of the method

3.1. Order of the method

To verify the order of the proposed method, we write Egs. (9)-

(14) in the matrix difference equation as below:

W = hPU, + h*9Fm + 3G + h*(Q,.

Where o, 8,7, 6, and { are matrices of coefficients defined as

(15)

0 0 0 0 0 07
00 -1 1 0 O
00 0 0O O0 O
o=
00 0 -1 1 0
00 0 0 O0 O
L0 0 0 0 -1 1]
0 01 -1 0 017
001 0 0 O
P 000 1 -1 O
000 1 0 o0}
000 O 1 -1
L1000 0 1 0|
-0 0 912523 23717 —5851 35339
2395008 29568 29568 2395008
00 2857219 594283  -13373 1316741
9729720 1921920 120120 155675520
00 —155 14939 14939 —155
Ay 29568 29568 29568 29568
y= 00 —425851 43403 276587 —24389 ’
155675520 120120 1921920 9729720
00 35339 —5851 23717 912523
2395008 29568 29568 2395008
00 70021 —55449 157887 13598491
L 11119680 640640 320320 155675520 |
_0 0 214943 —10657 10657 _—5941
3991680 147840 147840 1330560
00 1941647 —7453 233897 —9497
51891840 360360 5765760 3706560
00 —6047 14753 —14753 6047
5= 3991680 147840 147840 3991680
- 00 —973 360023  —13459 7549 ’
1235520 5765760 360360 10378368
00 5941 —10657 10657 —214943
1330560 147840 147840 3991680
00 98741 —90863 59275 —71051
L 51891840 2882880 1153152 4324320
—0 0 11369 4423 —7453 _ 1513
3991680 88704 443520 3991680
00 97159 3617 —11005 565
51891840 137280 1153152 2594592
00 —163 5021 5021 —163
v __ 1330560 443520 443520 1330560
6= 00 —823 37007 673 —613 ’
12972960 5765760 137280 10378368
00 1513 —7453 4423 11369
3991680 443520 88704 3991680
00 8369 —5233 135581 3617
L 51891840 720720 5765760 3706560 |

T
Un = (Un—2, Un_1, Up, Uns1, Uy, Uny3)

/! !

T
U;n = (ut/%zvun—l’u;’un+l7uz’1+27u;1+3) )
T
Fm = (fnfzvfn—lvfnvfwrl 7fn+2afn+3) )
T
Gm = (8n-2:8n-1,8n8ns1:8n2:8n:3) >

T
Qm = (qn—27 qnfl ) qm qn+] ) qn+27 Qn+3) .

We assume z(t) is a sufficiently differentiable function. Next, we
write the difference operator L associated with the implicit block
method (9)-(14) as

k
Liz(t):h] = Y~ [oz(t + jh) — hfyZ (¢ + ) = h*9;2" (€ + jh) — Wo2" (¢ + ji)
j=0

_hz® (t +jh)] , (16)
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where oy, ;,7;,9;, and {; are the vector columns of the matrices
o, B,7,6, and ({, respectively. Following Lambert (1973) and Ola
Fatunla (1991), the proposed method (9)-(14) and the associated
formula are of order p if Co=C; =..=Cp;1 =0 and Cpy2 #0,
where C,,, is the error constants, and the constant coefficients C,
are vectors given as

k k
Co=) 0,Cr = (jo— ),
=0 j=0
k
CZ :Z(ﬁyaj _]ﬁj /j)7
=0
k 3 ) i
C3: / <Lyajfjfvﬁ] 7]?]7()])7
’:f’ (17)
4 3 2 .
Co=> (5o 58 -57-0% - ),
=0
o o ~ g
Co=D 5% - &b~ D
j=0 j=0 Jj=0
k i 3 k Jil 4
DD Gad=56.
j=0 j=0

By applying (17) in the new method we have that
Co=Ci=...Co=0and Cyo = [0,72,0, 257 0,124),

Hence, we conclude that the proposed method DI3PB is of order
p = 8,and Cs is the error constant. As the order of the proposed method
isp > 2, then, the proposed method is consistent (Lambert, 1991).

3.2. Zero-stability

To check the zero-stability of the direct three-point block
method, we rewrite Egs. (9)-(14) as

AUy =AU + h(BOUp + By ) + b (COFy + CGr)
+ (DG +DQy ) +h*EOQu,

A® = 6 x 6identity matrix,

Up.y Uy 5
Uni1 Up_2
Uiy = Up. Uy = Uy 4 7
Uny2 Up—1
ul/‘l+3 u:l
Upi3 Up
fn—2 _gn—z
fna &n-1
Fm: fn ’Gm: gn ,
fn+1 En+1
fn+2 En+2
fn+3 L8n+3
Qs 000010
Qs 000O0O0 1
q 00O0O0T1D0O
Qn = q:+1 AD = 000001
Qnin 000O0T10
s 00 00O 1

Following Lambert (1973), a method is said to be zero-stable if
the roots R;=1,2,...,n of the first characteristic polynomial

p(R) = det(RA<°> - A“)) satisfies |R;| < 1.
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Fig. 2. The region of stability for the proposed method.

Then, p(R) = det(RA(o) —A“)) =0

p(R)=R® —2R° + R* =0, as a result, R = 0,0,0,0,1,1.

Thus, the method is zero stable. The direct three-point implicit
block method (9)-(14) is convergent since it is consistent and zero-
stable. (Ackleh et al., 2009).

implies that

3.3. Linear Stability

For the linear stability, we substitute the linear test equation
u” = 0u’' + Ju into the formulae of the proposed method. This for-
mulae can be stated in the matrix form as

Aty = <B +hC+hD+HE+ h4F)um,1,
where

T
Un = (U;HU un+17u;|+27 Upi2, u;1+37 un+3) )

Una = (u;r,,Zsun—27u;,]»un717u;17un)7‘s
and AB,CDEF are matrices of (h,0,4). By setting H; = h6 and
H, = h?, the stability polynomial is given as

det(fzﬁ—§(§+f+5+ﬁ+ﬁ)):0. (18)

Where A,B,C,D,E,F are matrices of (H;,H,). Then, we solved
(18) for Hy and H, by setting cos(6) + isin(0) and 0 < 6 < 2w which
gives |¢| < 1. The absolute stability region of the method is the
shaded region as shown in Fig. 2. Actually, the region is unbounded
to the left for Hy, and H, is bounded by 0 and —8.6. Thus, the region
almost covers all the lower half plane up to H, = —8.6. It is clear
from this figure that the new method has a wider range of stability
region compared to the existing methods, (see Waeleh and Majid,
2017; Singh and Ramos, 2019; Kuboye and Omar, 2015). This
means we can expect that the new implicit method will cope with
IVP better than the existing methods.

4. Implementation

The proposed method has been implemented by using the predic-
tor—corrector technique to estimate the approximate solutions of
U g, Ung1, Uy o, Uny2, Uy, 5 and u,,3. To compute the starting values,
we begin the process by taking Taylor method as the predictor
equation:

/D . C

un+i - uilar(i—l) + hfn+(i—1)’

D _ c h? gC
Up,; = Upyony MUy + 5 i)

b)) = f(ta vl ul), (19)
gﬁ+i(t7 u7 u/) = f/ (tﬂ+i7 u£+i7 u;ﬁ,i ’

Qﬁﬂ‘(tvuau/) :f”(tn+i7uﬁ+i7u;—ﬂ,i s
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where i = 1,2,3. Define Eq. (19) as the initial estimate and used the
new method in (9)-(14) as corrector. To come up with the corrector
iteration, we use the following equations

o qqfc 912523 £C 1921077 fP  __ 473931 fP 35339 fP
un+1 - un + h<2395008fn + 23950087 n+1 23950087 n+2 + 2395008 n+3)

2(214943 5c _ _h* 5P h oGP _ 17823 oP
+h <3991680gn 2877398n+1 T 287739 8n+2 ~ 39916808 n+3

+* (B85 05 + 3525 )., — SR 0h + s G- 20)
UG, =+ oy (BN ST AR R AR 4 LT )

+e (3150154087 — 3905 8hs1 + Hu5 1820812 ~ 513913968n+3)

+h (s1a0r5m0 97 + S5 O — 51890890 n2 T 57801840 Tne3 ) -

Then, we evaluate the functions f;,, g5, ; and ¢¢,, which will be
utilize to estimate the solution at the second point as follows
Uy, = Uy, +h(%f¢l +%fﬁul +% ﬁu *%fﬁu)
1 (8T + 38k — B el + g,
+ (B0 05 + 130530 0hn T 3080 02 — T3heR0 T
UG, =uS, +h + 1 (T8RS + Tt o + (seraonf nea — Tos0men S hes)
+h (578939085 + 2500 8hi1 — S8z ~ STHI3A08N+3)

4 3292 c 333063 4c 254394 4P 3065 P
+h (51891840q" + 51891840 q"+1 + 51891840 quZ ~ 51891840 qn+3>‘

21)

.. . c . . .
Similarly, we evaluate the functions f;,,,g5., and q5,, which
will be utilize to estimate the solution at the third point as follows
Uiy =iy + h(33805S 0 — Hosoon/ w1 + F305008  ne2 + ascosi ne3)
2
+h” (5523085 — Toaican 81 + 816508n+2 — 20016608n+3)
3

+ 1530560 (1350560 0 — 1930260 Thn+1 T 1530860 T2 + 1330500 ns3) s (22)

o —C ’c 2 (980294 13474107 £€ 76733082 fC 13598491 P
un+3 - un+2 + hu"+2 + h (155675520 n 1556755207 n+1 + 155675520 n+2 + 1556755207 n+3

3( 98741 e _ 1635534 gc 2667375 ¢ 852612 P
I (sTaoi6a085 — Ssosan 81 T Aboiba08ni2 ~ 513918308n+3)

40 8369 ¢ 376776 gc 1220229 ¢ 50638 P
+h (5183320 07 — 51991990 0 + Siesrea0 ez T 51501890 Tnes)-

C

Next, we evaluate the functions f),,,,85,5 and g5, that we will
be used in the next corrector iteration. Then, the next corrector
iterations are performed by repeating the procedure given in Egs.
(20)—(22) until the end of the interval.

5. Numerical results

This section assesses the efficiency and accuracy of the pro-
posed DI3PB method with several direct block methods. Here,
some well-known test problems alongside the applications prob-
lem of Fermi-Pasta-Ulam and van der Pol oscillator are solved by
using the proposed 3-point block method. Based on the method,
C++ programming codes are developed and applied. Results
obtained from the new DI3PB method are compared with those
of existing methods with similar or higher order.

Problem 1:

u// - _ Uy

o
\/l;i_%,uz(O) =0,uy(0) =1,t €[0,1].

Exact solution:
uq(t) = cos(t), uy(t) = sin(t).

Problem 2:

uf = —e'up,u1(0) = 1,u(0) =0,

uj = 2e'u},u,(0) = 1,u4(0) = 1, € [0, 1].

0(0) = 1,14(0) = 0,

no_
U, = —

Exact solution:

Uy (t) = cos(t), uy(t) = e‘cos(t).
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Table 1
Maximum absolute errors for Problem 1.
NS DFPB NS FPMBM DI3PB
100 1.8627(-9) 18 5.6512(~12) 1.3207(~16)
25 2.2223(— 15) 1.4247(— 16)
32 5.0902(—16) 6.8052(~17)
38 1.5108(—15) 6.5156(—16)
45 1.8765(—15) 2.1578(—~16)
Table 2
Maximum absolute errors for Problem 2.
NS DFPB NS FPMBM DI3PB
100 5.4296(—6) 18 7.5088(—~12) 1.2089(—16)
25 2.8555(~12) 4.2735(— 16)
32 1.1597(~11) 5.0167(—16)
38 5.2300(—12) 4.3247(-16)
45 6.5093(~13) 3.6114(—16)
u” = —u+2cos(t),0 <t <1
Table 3
Maximum absolute errors for Problem 3. u(0)=1,u'(0) =0.
NS VEM VAT DI3PB Exact solution:
67 7.1122(-07) 6.5286(—11) 7.7716(—16) _ .
82 9.2632(—08) 1.3679(<11) 1.8874(~15) u(t) = cos(t) + tsin(t).
112 1.2108(—10) 1.1897(~12) 1.1601(—15)

In Problem 1 and Problem 2, we have examined the maximum
absolute errors in the given interval using different total steps. In
Table 1 and Table 2, the results acquired by the proposed method
(DI3PB) are compared with direct 4-point block methods (DFPB) of
order five by Abdelrahim et al. (2016) with regards to precision and
the total number of steps (NS), and (FPMBM) of order nine by
Waeleh and Majid (2017) with the same number of steps. It is
investigated that the results of the proposed method are signifi-
cantly improved and outperformed both DFPB and FPMBM.

Problem 3:

Py’ + tu' + (2 —

u(t) = Zsnc) ) -

025)u=0,te[1,8].

The numerical results for this problem were obtained using the
proposed DI3PB method, the direct hybrid block method of order
seven (DHBM) in Adeyeye and Omar (2017), and the direct six-
step block method of order seven(DSSB) in Kuboye and Omar
(2015), were compared. These three methods satisfy the method
of order seven. Accuracy of DI3PB and DHBM are comparable at
all step sizes, as presented in Table 4. In addition to that, the
numerical result for this proposed method has more accuracy by
two decimal places compared to DSSB at h = 0.001 also has more
accuracy by five decimal places at h = 0.01.

Problem 5:

6 4
u+-u+—-u=0,t>0
t t

Table 5
Exact solution: Comparison of the absolute errors for Problem 5.
5 t SPH DIB DI3PB
u(t) = 1/_5in(t) 1.003125 1.645000(—-7) 8.300(—8) 6.452039(-11)
nt 1.006250 6.603500(—7) 1.160(—6) 2.247858(—-10)
In Problem 3, we calculate the results for different step sizes 1.009375 4.414100(-6) 6.638(—6) 4.791279(-10)
d check th Its found usine th DI3PB hod agai 1.012500 1.299366(—5) 9.491(-6) 8.568926(—10)
and chec the resu.ts oun 'usmgt e new metho agam_st 1015625 1.637756(_5) 1.954(_6) 1.324059(_09)
the variable stepsize hybrid method of order seven (VJAT) in 1.018750 2.829683(-5) 9.416(—6) 1.879007(—09)
Jator (2010), and the variable stepsize Falkner method of order 1.021875 5.051695(-5) 4.651(-5) 2.551165(—09)
eight (VFM) in Vigo-Aguiar and Ramos (2006). It is clear from }-ggg?gg 32382335 g; ;‘-Zéggjg i'fgggégﬁfggﬂ
Table 3 tlllat. the proposed method yielded better results compared 1031250 1.458835(_4) 4433(_4) 5.092236(_09)
to the existing methods.
Problem 4:
Table 4 Table 6
Maximum absolute errors for Problem 4. Comparison of the absolute errors for Problem 6.
h Method MAXE t SPH DIB DI3PB
0.01 DI3PB 2.212510(—16) 0.005 3.159000(—7) 1.5800(—7) 2.214756(—16)
DHBM 8.881784(—16) 0.01 1.270900(—6) 3.1760(—6) 0.000000 + 00
DSSB 1.428607(—11) 0.015 8.655400(—6) 1.2941(-5) 2.202533(-16)
_ 0.02 2.591480(-5) 1.9323(-5) 0.000000 + 00
0.001 DDII_?;& ;g;gzzzg;g; 0.025 3.395058(-5) 4.0181(-5) 2.189176(—16)
DSSB 1'687539(713) 0.03 5.990417(-5) 2.2075(-5) 1.091034(—16)
: 0.04 8.885833(-5) 8.9916(—5) 1.087335(—16)
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u(t)
0.6

0.4

0.2 .13PBDO8

— NDSolve

-0.2

-04

-0.6

Fig. 3. Response curve concerning van der Pol Oscillator with h = 0.1..

Exact solution:

5 2
u(t) = 3t 34
Problem 6:

DI3PB
— NDSolve
Values of u;
u(t)
0.5
. DI3PB
2 . B 8 _ NDSolve
~0.5!
-1 O‘
Values of ug
u(t)
0.005
| ‘ ‘ DI3PB
| \ ' | . —NDSolve
| i i | 0

-0.005:

Values of us
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2t
u” —3u' = 8e,

u(0)=1,v'(0) =1.

Exact solution:

u(t) = —4e* +3e* + 2.

We have solved the nonlinear Problem 5 and the linear Problem
6 using the proposed DI3PB method and the existing methods, the
direct seven-point hybrid block method (SPH) in Badmus (2014),
and the direct implicit block method (DIB) in Badmus (2014), that
satisfied order eight. Table 5 and Table 6 show the absolute errors
recorded for various t. DI3PB clearly shows the best performance
compared with the existing methods.

To sum up, the proposed method DI3PB of order eight has
shown remarkable convergence since the approximate answers
are almost identical to the real solutions. Moreover, the efficiency
of the proposed method is better than other existing methods
whose algebraic order is almost equal to or greater than the new
method. Tables 1-6 show the superiority of DI3PB with regards

DI3PB
— NDSolve
Values of uq
u(t)
0.04+
0.02!
\ | DI3PB
| ‘ _ NDSolve
i ‘ l fi ’ ‘ 0 L
I o |
-0.02]
-0.04+
Values of uy
u(t)
0.0010
0.0005
DI3PB

l — NDSolve

-0.0005

Values of ug

Fig. 4. Values of u’s for the solution of Fermi-Pasta-Ulam problem in [0, 10].
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to accuracy as well as the total number of steps taken at different
points of t or different step sizes.

5.1. Application on Van Der Pol Oscillator

The van der Pol oscillator is a non conservative oscillator with
nonlinear damping construed by second order ODE

u =201 -u*)u' +u=0,

u(0) = 0,u'(0) = 0.5, [0, 10].

Where @ = 0.005 is a scalar parameter stating the nonlinearity
and power of the damping. The theoretical solution for this prob-
lem is unknown. Fig. 3 illustrates the numerical solutions for Van
Der Pol oscillator with h = 0.1. It is obvious that the numerical
approximations obtained by DI3PB are in very well agreement with
approximations found using Mathematica built in package NDSolve.

5.2. Application on Fermi-Pasta-Ulam

The Fermi-Pasta-Ulam problem is nonlinear second order
equations

U = (U — us — Uy — Ug)’ — (U — ug)’

Uy = —(Uy —Us — Uy — Us)’ + (U — U — U — Us)’

uy = —(us — s — Uy — Us)® — (Us + Ug)’

U = (U — Us — Uy — Us)’ + (U — ug)’ — 1y

Ul = (Uy — Us — Uy — Ug)® + (Us — Us — Uy — Us)® — W2Us

Ul = —(Us — U — Uy — Us)° — (U3 + Us)® — W*Ug

subject to initial conditions

u1(0) = 1,1, (0) = 1,15(0) = 0,5 (0) = 0,
u3(0) = 0,14(0) = 0,u4(0) = ", u,(0) = 1,
us(0) = 0, u(0) = 0, ug(0) = 0,14(0) = 0.

It is a highly oscillatory problem with system of nonlinear equa-
tions. The theoretical solution of this problem is undefined. Fig. 4
depict the numerical solutions for Fermi-Pasta-Ulam problem,
where w =50 and h = 0.001. The solutions obtained by DI3PB
are in good agreement with solutions found by Mathematica built
in package NDSolve.

6. Conclusions

In this paper, we proposed an easy to implement three-point
implicit block method with third and fourth derivatives that solves
linear and nonlinear second-order initial value problems directly.
This newly proposed method also can solve real-life applications
of the second-order ODEs directly. The numerical results signifi-
cantly improved the precision of the solutions and effectiveness.
The convergence of the new block method was confirmed using
relevant stability and consistency conditions. Thus, we suggest
the use of this method as a powerful solver for second-order ODEs.
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