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Abstract The main aim and contribution of the current paper is to implement a semi-analytical

iterative method suggested by Temimi and Ansari in 2011 namely (TAM) to solve two chemical

problems. An approximate solution obtained by the TAM provides fast convergence. The current

chemical problems are the absorption of carbon dioxide into phenyl glycidyl ether and the other

system is a chemical kinetics problem. These problems are represented by systems of nonlinear ordi-

nary differential equations that contain boundary conditions and initial conditions. Error analysis

of the approximate solutions is studied using the error remainder and the maximal error remainder.

Exponential rate for the convergence is observed. For both problems the results of the TAM are

compared with other results obtained by previous methods available in the literature. The results

demonstrate that the method has many merits such as being derivative-free, and overcoming the

difficulty arising in calculating Adomian polynomials to handle the non-linear terms in Adomian

Decomposition Method (ADM). It does not require to calculate Lagrange multiplier in Variational

Iteration Method (VIM) in which the terms of the sequence become complex after several iterations,

thus, analytical evaluation of terms becomes very difficult or impossible in VIM. No need to con-

struct a homotopy in Homotopy Perturbation Method (HPM) and solve the corresponding alge-

braic equations. The MATHEMATICA� 9 software was used to evaluate terms in the iterative

process.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In practical life, there are many phenomena in Chemistry,

Mechanics, Biology, Physics and Fluid Dynamics can be rep-
resented by either linear or nonlinear differential equations.
In Chemistry for example, the condensations of carbon dioxide

and phenyl glycidyl ether and chemical kinetics problem are
represented by systems of nonlinear ordinary differential equa-
tions (ODEs).
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Figure 1 Logarithmic plots of MER1,n against n is 1 through 4

and m = 1.
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Carbon dioxide (CO2) is used in many fields such as plant
photosynthesis, fire extinguishers, and removing caffeine from

coffee. Carbon dioxide is generally a beneficial gas which con-
sists of one carbon atom and two oxygen atoms (Duan et al.,
2015; AL-Jawary and Radhi, 2015; Muthukaruppan et al.,

2012). On the other hand the chemical kinetics system intro-
duced by Robertson in 1966 is a nonlinear model
(Aminikhah, 2011; Ganji et al., 2007).

Many types of ODEs are solved either analytically or
numerically for examples: the Variational Iteration Method
(VIM) is used to solve the nonlinear settling particle equation
of Motion (Ganji, 2012). The He’s Homotopy Perturbation

Method (HPM), which does not need small parameter in the
equation is implemented for solving the nonlinear Hirota–Sat-
suma coupled KdV partial differential equation (Ganji and

Rafei, 2006). Deniz and Bildik (2014) have implemented the
comparison of Adomian Decomposition Method (ADM)
and Taylor matrix method for solving different kinds of partial

differential equations. Also, Bildik and Deniz (2015a) have
used both Taylor collocation and ADM for solving systems
of ordinary differential equations. Moreover, Bildik and
Deniz (2015b) have successfully implemented taylor colloca-

tion method, lambert w function and VIM for solving systems
of delay differential equations. Wazwaz (2005) has used the
ADM for solving the Bratu-type equations.

Several methods have been used to solve the system of con-
densations of carbon dioxide and phenyl glycidyl ether and
obtained analytical approximate solutions such as, Adomian

Decomposition Method (ADM) was applied to simple
steady-state condensations of CO2 and PGE (Duan et al.,
2015; Muthukaruppan et al., 2012), the VIM (AL-Jawary

and Radhi, 2015) and the iterative method (DJM) (AL-
Jawary et al., 2016).

On the other hand, the chemical kinetics problem is solved
by many methods and the solution is obtained as approximate

solutions. Ganji et al. (2007) have successfully implemented
both the VIM and HPM for the system. Khader (2013) has
used the so-called Picard–Pade technique to solve the system.

Also, Aminikhah (2011) has used (HPM) to solve the system.
Moreover, Matinfar et al. (2014) have applied the homotopy
analysis method (HAM) and the solutions obtained by

HAM have high accuracy in comparison with HPM and
VIM introduced in Ganji et al. (2007).
Furthermore, some analytic and approximate methods
have recently been used and implemented to solve different
chemical and physics problems and other sciences for exam-

ples: Differential Transform Method (DTM) has been used
to solve fourth order singularly perturbed two-point boundary
value problems which occur in chemical reactor theory (El-

Zahar, 2013). Matinfar et al. (2015) have found that the inter-
action of electromagnetic wave with electron is solved by VIM.
In Vazquez-Leal et al. (2015) the authors present a comparison

of Homotopy Perturbation Method (HPM), Nonlinearities
Distribution Homotopy Perturbation Method (NDHPM),
Picard, and Picard–Pade´ methods to solve Michaelis–Menten
equation. Also, Ca´ zares-Ramı ´rez and Espinosa-Paredes

(2016) the authors studied the behavior of heat and mass trans-
fer during hydrogen generation in the core of the boiling water
reactor (BWR). Makinde (2007a,b) has implemented the

ADM to compute an approximation to the solution of the
non-linear system of differential equations governing the SIR
epidemic model and the ratio-dependent predator–prey system

with constant effort harvesting. In addition, Makinde (2009)
has successfully applied the ADM coupled with Padé approx-
imation technique and VIM to approximate the solution of the

governing non-linear systems of a mathematical model that
describes the dynamics of re-infection under the assumption
that the vaccine induced immune protection may wane over
time.

Recently, Temimi and Ansari (2011a) have introduced the
semi-analytical iterative technique in 2011 for solving nonlin-
ear problems. The TAM is used for solving many differential

equations, such as nonlinear second order multi-point bound-
ary value problems (Temimi and Ansari, 2011b), nonlinear
ordinary differential equations (Temimi and Ansari, 2015),

korteweg–de vries equations (Ehsani et al., 2013) and the
results obtained from the method indicate that the TAM is
accurate, fast, appropriate, time saver and has a higher

convergence.
In this paper, the TAM will be applied to solve two chem-

ical problems. The first problem is a nonlinear system of the
concentrations of carbon dioxide and phenyl glycidyl ether.

The other is a chemical kinetics problem which is also repre-
sented by a nonlinear system of ODEs. Special discussion is
given for the study of the convergence based on Temimi and

Ansari (2015), the error analysis of the method (TAM), the
error remainders and the convergence of the TAM will be
discussed.

This paper has been organized as follows: In Section 2, the
steady-state of the chemical problems will be introduced. In
Section 3, the basic idea of TAM is presented and discussed.
In Section 4, solving the chemical problems by the TAM will

be given. In Section 5, the convergence and error analysis
are introduced and discussed. In Section 7, the numerical sim-
ulation will be illustrated and discussed. Finally, the conclu-

sion in Section 8 will be given.

2. Steady-state of the chemical problems

2.1. Condensations of carbon dioxide and phenyl glycidyl ether

The mathematical formulation of the concentrations of Car-
bon dioxide and phenyl glycidyl ether can be shown as follows
(Muthukaruppan et al., 2012):



Table 1 Comparison the absolute errors for w1ðxÞ obtained by TAM and RK4.

x r2 r4 r6 r8 r10 r12 r14 RK4

0.01 0.0000262321 0.0000004391 0.0000000062 7.54566 � 10�11 7.68318 � 10�13 5.72573 � 10�15 7.29719 � 10�18 4.13714 � 10�14

0.02 0.000024461 0.0000008795 0.0000000124 1.50827 � 10�10 1.53562 � 10�12 1.14416 � 10�14 1.453 � 10�17 8.37143 � 10�14

0.03 0.0000786239 0.0000013183 0.0000000186 2.26025 � 10�10 2.30089 � 10�12 1.71378 � 10�14 2.16332 � 10�17 1.27044 � 10�13

0.04 0.0001047471 0.0000017560 0.0000000248 3.00963 � 10�10 3.06311 � 10�12 2.28044 � 10�14 2.85416 � 10�17 1.71349 � 10�13

0.05 0.0001307976 0.0000021921 0.0000000309 3.75556 � 10�10 3.82125 � 10�12 2.84314 � 10�14 3.51824 � 10�17 2.16605 � 10�13

0.06 0.000156757 0.0000026263 0.0000000370 4.49716 � 10�10 4.57429 � 10�12 3.40091 � 10�14 4.15249 � 10�17 2.62727 � 10�13

0.07 0.0001826069 0.0000030581 0.0000000431 5.23354 � 10�10 5.32120 � 10�12 3.95271 � 10�14 4.74338 � 10�17 3.09697 � 10�13

0.08 0.0002083288 0.0000034873 0.0000000492 5.96383 � 10�10 6.06094 � 10�12 4.49756 � 10�14 5.29091 � 10�17 3.57353 � 10�13

0.09 0.0002339039 0.0000039133 0.0000000551 6.68714 � 10�10 6.79247 � 10�12 5.03445 � 10�14 5.78964 � 10�17 4.05634 � 10�13

0.1 0.0002593132 0.0000043358 0.0000000611 7.40257 � 10�10 7.51467 � 10�12 5.56233 � 10�14 6.22332 � 10�17 4.54387 � 10�13

Table 2 Comparison the absolute errors between for w2ðxÞ obtained by TAM and RK4.

x q2 q4 q6 q8 q10 q12 q14 RK4

0.01 0.0000043404 0.0000000867 1.43202 � 10�9 2.07046 � 10�11 2.63624 � 10�13 2.89372 � 10�15 2.5289 � 10�17
2:62139� 10�12

0.02 0.0000087001 0.0000001737 2.86934 � 10�9 4.14783 � 10�11 5.28026 � 10�13 5.79446 � 10�15 5.06322 � 10�17
5:24143� 10�12

0.03 0.0000130979 0.0000002615 4.31717 � 10�9 6.23893 � 10�11 7.93962 � 10�13 8.70885 � 10�15 7.6111 � 10�17
7:85826� 10�12

0.04 0.0000175522 0.0000003502 5.7806 � 10�9 8.3504 � 10�11 1.06217 � 10�12 1.16439 � 10�14 1.01481 � 10�16
1:04701� 10�11

0.05 0.0000220809 0.0000004404 7.26459 � 10�9 1.04887 � 10�10 1.33341 � 10�12 1.46064 � 10�14 1.27502 � 10�16
1:30750� 10�11

0.06 0.0000267014 0.0000005322 8.77399 � 10�9 1.26603 � 10�10 1.60836 � 10�12 1.76018 � 10�14 1.53089 � 10�16
1:56714� 10�11

0.07 0.0000314306 0.0000006251 1.03135 � 10�8 1.48711 � 10�10 1.88771 � 10�12 2.06371 � 10�14 1.78677 � 10�16
1:82574� 10�11

0.08 0.0000362846 0.0000007220 1.18875 � 10�8 1.71272 � 10�10 2.17214 � 10�12 2.3718 � 10�14 2.04697 � 10�16
2:08313� 10�11

0.09 0.0000412793 0.0000008207 1.35006 � 10�8 1.94342 � 10�10 2.46225 � 10�12 2.685 � 10�14 2.30718 � 10�16
2:33914� 10�11

0.1 0.0000464297 0.0000009222 1.51568 � 10�8 2.17975 � 10�10 2.75868 � 10�12 3.00385 � 10�14 2.58474 � 10�16
2:59360� 10�11
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The comprehensive reaction between CO2 and PGE for
forming (5-membered cyclic carbonate) can be presented as

ð1Þ

where R is a functional group of –CH2–O–C6H5. The compre-
hensive reaction of Eq. (1) consists the two following succes-
sive steps: (1) the reaction between PGE (A2) and THA-CP-

MS41(QX) for forming (E1); (2) the reaction between (E1)
and CO2 (A1) for forming (QX)and 5-membered cyclic carbon-
ate (C):

A2 þQX �
b1

b2
E1 ð2Þ

A1 þ E1 !b3 CþQX ð3Þ
At steady state condition, the successively chemical reaction

rate of CO2 for forming E1 is given as follows:

rA1 ;cond ¼
CA2

St

1
b1
þ 1

Bb3CA1

þ CA2

b3CA1

ð4Þ

where, CA1
and CA2

are the concentrations CO2 and PGE

respectively, St is the surface area of catalyzer. B is the reaction

balance constant, the constant b1 in Eq. (2), is the forward
reaction rate constant and in Eq. (3) b3 is the forward reaction
rate constant. The mass equilibrium of CO2 and PGE using the

film theory escorted by the successively chemical reactions are
presented as follows (Choe et al., 2010):

DA1

d2CA1

dz2
¼ CA2

St

1
b1
þ 1

Bb3CA1

þ CA2

b3CA1

ð5Þ

DA2

d2CA2

dz2
¼ CA2

St

1
b1
þ 1

Bb3CA1

þ CA2

b3CA1

ð6Þ

where z is the distance and DA1
and DA2

are the diffusivity of

CO2 and PGE successively. The boundary conditions are:

CA1
¼ CA1i

;
dCA2

dz
¼ 0 at z ¼ 0;CA1

¼ CA1L ;

CA2
¼ CA20 at z ¼ zL ð7Þ
The Eqs. (5), (6) and the boundary conditions (7) can be

normalized by employing the following parameters:

y1 ¼
CA1

CA1 i

; y2 ¼
CA2

CA20

; a1 ¼ z2LStCA20Bb3
DA1

;

a2 ¼ z2LStCA1 iBb3
DA2

;

b1 ¼
CA1 iBb3

b1
; b2 ¼

CA20Bb1
b1

; x ¼ z

zL

where a1, a2, b1, b2 are normalized parameters, y1 is the con-
densation of (CO2), y2 is the condensation of (PGE) and x is
the dimensionless distance.
Now, the two nonlinear reactions Eqs. (5) and (6) in nor-
malized form will become as follows:

d2y1
dx2

¼ a1y1y2
1þb1y1þb2y2

d2y2
dx2

¼ a2y1y2
1þb1y1þb2y2

8<
: ð8Þ

and boundary conditions will become:

y1ð0Þ ¼ 0; y1ð1Þ ¼
1

m
;

y02ð0Þ ¼
1

m
; y2ð1Þ ¼

1

m
:

where the above Eqs. (8) is the system of nonlinear differential
equations and m P 3. The enhancement factor of CO2 is as

follows: b ¼ dy1
dx

� �
x¼0

.

2.2. Chemical kinetics problem

The mathematical model of chemical kinetics problem is pre-
sented in Aminikhah (2011), Ganji et al. (2007), Khader
(2013) and Matinfar et al. (2014):

Let us define three spaces of a model of chemical process
which are denoted by D, E and H, the reactions are presented
by:

D ! E ð9Þ
EþH ! DþH ð10Þ
Eþ E ! H ð11Þ
The concentrations of D, E and H can be denoted by w1;w2

and w3, respectively. It is worth to suppose that these are
aggregations of 3 concentrations is one. Let ðc1Þ denote the
reaction rate of Eq. (9) this meaning that the rate at which
w2 increases and at which w1 decreases, because of this reac-

tion, will be equal to (c1w1). In the second we will denote to
the reaction rate of Eq. (10) by (c2), and H works as a catalyzer
in the production of D from E, meaning that in this reaction

the increase of w1 and the decrease of w3 will have a rate equiv-
alent to (c2w2w3).

Lastly the rate of the third reaction will be equivalent to

(c3w
2
2) because the production of H from E will have constant

rate equivalent to (c3).
The system of ordinary differential equations to difference

with time of the three condensations by putting all these Ingre-

dients of the process together will then be (Aminikhah, 2011;
Ganji et al., 2007; Khader, 2013; Matinfar et al., 2014):

dw1

dx
¼ �c1w1 þ c2w2w3

dw2

dx
¼ c1w1 � c2w2w3 � c3w

2
2

dw3

dx
¼ c3w

2
2

8><
>: ð12Þ

and the initial conditions are:

w1ð0Þ ¼ 1; w2ð0Þ ¼ 0; w3ð0Þ ¼ 0

where c1, c2 and c3 are the reaction rates.



Table 3 Comparison between the ADM, the VIM and TAM of MER1;n.

n MER1;n by the ADM MER1;n by the VIM MER1;n by the TAM

1 0.0263902 0.00285565 0.000205654

2 0.00318202 0.00114207 0.0000884596

3 0.000296418 0.000456784 0.000068774

4 0.0000205945 0.000182708 0.000064352

Table 4 Comparison between the ADM, the VIM and TAM of MER2;n.

n MER2;n by the ADM MER2;n by the VIM MER2;n by the TAM

1 0.0527803 0.00571131 0.000411307

2 0.00636405 0.00228414 0.000176919

3 0.000592835 0.000913568 0.000137548

4 0.000041189 0.000365417 0.000128704

Table 5 The MER1,n by the TAM, where n= 1,. . .,4 and x are divided by m.

m n

1 2 3 4

3 0:000205654 0:0000884596 0:000068774 0:000064352

5 0:0000471627 0:0000125072 5:87609� 10�6 3:3354� 10�6

10 6:1817� 10�6 8:3866� 10�7 1:99081� 10�7 5:69789� 10�8

15 1:86177� 10�6 1:69779� 10�7 2:69968� 10�8 5:16875� 10�9

20 7:91955� 10�7 5:43946� 10�8 6:50441� 10�9 9:35771� 10�10

25 4:07511� 10�7 2:24494� 10�8 2:15122� 10�9 2:47894� 10�10

30 2:36618� 10�7 1:08814� 10�8 8:69954� 10�10 8:36112� 10�11

35 1:49365� 10�7 5:89497� 10�9 4:04314� 10�10 3:33282� 10�11

40 1:00243� 10�7 3:46501� 10�9 2:08082� 10�10 1:50156� 10�11

45 7:05026� 10�8 2:16782� 10�9 1:15778� 10�10 7:42927� 10�12

50 5:14541� 10�8 1:42474� 10�9 6:85117� 10�11 3:95786� 10�12

Table 6 The MER2,n by the TAM where n= 1,. . .,4 and x are divided by m.

m n

1 2 3 4

3 0:000411307 0:000176919 0:000137548 0:000128704

5 0:0000943255 0:0000250144 0:0000117522 6:6708� 10�6

10 0:0000123634 1:67732� 10�6 3:98162� 10�7 1:13958� 10�7

15 3:72354� 10�6 3:39557� 10�7 5:39935� 10�8 1:03375� 10�8

20 1:58391� 10�6 1:08789� 10�7 1:30088� 10�8 1:87154� 10�9

25 8:15022� 10�7 4:48988� 10�8 4:30245� 10�9 4:95789� 10�10

30 4:73236� 10�7 2:17629� 10�8 1:73991� 10�9 1:67222� 10�10

35 2:98729� 10�7 1:17899� 10�8 8:08628� 10�10 6:66563� 10�11

40 2:00486� 10�7 6:93002� 10�9 4:16165� 10�10 3:00313� 10�11

45 1:41005� 10�7 4:33564� 10�9 2:31556� 10�10 1:48585� 10�11

50 1:02908� 10�7 2:84949� 10�9 1:37023� 10�10 7:91572� 10�12
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3. Basic idea of semi-analytical iterative technique (TAM)

To illustrate the basic idea of TAM, let us consider the general

differential equation as given in Temimi and Ansari (2011a,b,
2015), Ehsani et al. (2013):
LðuðxÞÞ þNðuðxÞÞ þ gðxÞ ¼ 0 ð13Þ
with boundary conditions

B u;
du

dx

� �
¼ 0



Table 7 Comparison between the HPM, the VIM and TAM of MER1,n.

n MER1;n by the HPM MER 1;n by the VIM MER1;n by the TAM

1 0:001 0:001 0:001

2 5:� 10�6 4:99999� 10�6 4:99999� 10�6

3 1:66726� 10�8 1:66666� 10�8 1:66666� 10�8

4 3:57414� 10�11 4:16664� 10�11 4:16665� 10�11

Table 8 Comparison between the ADM, the VIM and TAM of MER2,n.

n MER2;n by the HPM MER2;n by the VIM MER2;n by the TAM

1 0:0010009 0:0010009 0:0010009

2 4:10898� 10�6 5:00898� 10�6 5:00898� 10�6

3 7:71961� 10�9 1:66965� 10�8 1:66965� 10�8

4 1:12015� 10�11 4:17412� 10�11 4:17412� 10�11
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where uðxÞ is an unknown function, x is the independent vari-
able, L is a linear operator, gðxÞ is a known function, N is a
nonlinear operator and B is a boundary operator.

L is the main requirement here and it’s the linear part of the

differential equation but we can taken some linear parts and
put them with the nonlinear parts N as needed.

The suggestion method works in the following way. Let us

consider that the initial approximate of the problem is u0ðxÞ
and it’s a solution of the problem

Lðu0ðxÞÞ þ gðxÞ ¼ 0; ð14Þ
with B u0;

du0
dx

� � ¼ 0, and to calculate the next iterative u1ðxÞ; we
must solve the following problem

Lðu1ðxÞÞ þNðu0ðxÞÞ þ gðxÞ ¼ 0; ð15Þ
with B u1;

du1
dx

� � ¼ 0,

Generally, we can calculate the other iterations by solving
the following problem

Lðunþ1ðxÞÞ þNðunðxÞÞ þ gðxÞ ¼ 0; ð16Þ
with B unþ1;

dunþ1

dx

� � ¼ 0.

It is worth to mention that each of the uiðxÞ represents
alone solutions to Eq. (13). This iterative procedure is very

simple to use and has characterized that each solution is a
development of the previous iterate, when we increase the iter-
ations, we obtain a solution that is convergent to solution of

Eq. (13).

4. Solving the chemical problems by TAM

In this section, we implement the proposed method (TAM) to
solve the nonlinear chemistry problems

4.1. Problem (1)

System of condensations of carbon dioxide and phenyl glycidyl
ether

We can rewrite the system of Eq. (8) as follows:

y001ðxÞ ¼ a1y1ðxÞy2ðxÞ � y001ðxÞðb1y1ðxÞ þ b2y2ðxÞÞ
y002ðxÞ ¼ a2y1ðxÞy2ðxÞ � y002ðxÞðb1y1ðxÞ þ b2y2ðxÞÞ

�
ð17Þ
with boundary conditions

y1ð0Þ ¼ 0; y1ð1Þ ¼
1

m
;

y02ð0Þ ¼
1

m
; y2ð1Þ ¼

1

m
:

First, we will divide the system of Eqs. (17) as follows:

L1ðy1; y2Þ ¼ y001ðxÞ;

N1ðy1; y2Þ ¼ a1y1ðxÞy2ðxÞ � y001ðxÞðb1y1ðxÞ þ b2y2ðxÞÞ;

g1ðxÞ ¼ 0;

L2ðy1; y2Þ ¼ y002ðxÞ;

N2ðy1; y2Þ ¼ a2y1ðxÞy2ðxÞ � y002ðxÞðb1y1ðxÞ þ b2y2ðxÞÞ;

g2ðxÞ ¼ 0:

For simplicity and accuracy purposes, we will consider the
boundary conditions in the following form:

y1ð0Þ ¼
x

3
; y1ð1Þ ¼

x

3
;

y2ð0Þ ¼
x

3
; y2ð1Þ ¼

x

3
:

which satisfies the boundary conditions when m= 3. Now, to
calculate the initial approximate of the system, we will solve
the initial problem:

y001;0ðxÞ ¼ 0;

y002;0ðxÞ ¼ 0;

(
ð18Þ

with boundary conditions

y1;0ð0Þ ¼
x

3
; y1;0ð1Þ ¼

x

3
;

y2;0ð0Þ ¼
x

3
; y2;0ð1Þ ¼

x

3
;

By taking the double integration to both sides of the prob-
lem (18), then we get:
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y1;0ðxÞ ¼
x

3
;

y2;0ðxÞ ¼
x

3
;

We can calculate the second iteration by solving the
problem:

y001;1ðxÞ ¼ a1y1;0ðxÞy2;0ðxÞ � y001;0ðxÞðb1y1;0ðxÞ þ b2y2;0ðxÞÞ;

y002;1ðxÞ ¼ a2y1;0ðxÞy2;0ðxÞ � y002;0ðxÞðb1y1;0ðxÞ þ b2y2;0ðxÞÞ;

8<
:

ð19Þ
with boundary conditions

y1;1ð0Þ ¼
x

3
; y1;1ð1Þ ¼

x

3
;

y2;1ð0Þ ¼
x

3
; y2;1ð1Þ ¼

x

3
;

Once again, by taking the double integration to both sides
of problem (19), we obtain:

y1;1ðxÞ ¼
1

108
ð36x� xa1 þ x4a1Þ;

y2;1ðxÞ ¼
1

108
ð36x� xa2 þ x4a2Þ:

In the same way, the additional solutions can be obtained by
solving the problems generated by:

y001;nþ1ðxÞ ¼ a1y1;nðxÞy2;nðxÞ � y001;nðxÞðb1y1;nðxÞ þ b2y2;nðxÞÞ;

y002;nþ1ðxÞ ¼ a2y1;nðxÞy2;nðxÞ � y002;nðxÞðb1y1;nðxÞ þ b2y2;nðxÞÞ;

8<
:

ð20Þ
with boundary conditions

y1;nþ1ð0Þ ¼
x

3
; y1;nþ1ð1Þ ¼

x

3
;

y2;nþ1ð0Þ ¼
x

3
; y2;nþ1ð1Þ ¼

x

3
:

Then each of y1;nðxÞ and y2;nðxÞ, with n ¼ 1; 2; . . . represents

the solutions of the system of Eq. (17). To show the accuracy
of the realized approximate solution (since the exact solution

of the system in Eq. (8) unavailable) the relevance function
of the error remainder will be used as follows (Duan et al.,
2015; AL-Jawary and Radhi, 2015):

ER1;n ¼ y001;nðxÞ �
a1y1;nðxÞy2;nðxÞ

1þ b1y1;nðxÞ þ b2y2;nðxÞ
; ð21Þ

ER2;n ¼ y002;nðxÞ �
a2y1;nðxÞy2;nðxÞ

1þ b1y1;nðxÞ þ b2y2;nðxÞ
; ð22Þ

and the maximal error remainder parameters are:

MER1;n ¼ max
0:016x60:1

jER1;nj; MER2;n ¼ max
0:016x60:1

jER2;nj: ð23Þ
4.2. Problem (2)

System of chemical kinetics problem:

Let us rewrite the system of Eq. (12) as:
w0
1ðxÞ ¼ �c1w1 þ c2w2w3;

w0
2ðxÞ ¼ c1w1 � c2w2w3 � c3w

2
2;

w0
3ðxÞ ¼ c3w

2
2;

8><
>: ð24Þ

with the initial conditions

w1ð0Þ ¼ 1; w2ð0Þ ¼ 0; w3ð0Þ ¼ 0:

First, we will divide the system of Eq. (24) as follows:

L1ðw1;w2;w3Þ ¼ w0
1ðxÞ;

N1ðw1;w2;w3Þ ¼ �c1w1 þ c2w2w3;

g1ðxÞ ¼ 0;

L2ðw1;w2;w3Þ ¼ w0
2ðxÞ;

N2ðw1;w2;w3Þ ¼ c1w1 � c2w2w3 � c3w
2
2;

g2ðxÞ ¼ 0;

L3ðw1;w2;w3Þ ¼ w0
3ðxÞ;

N3ðw1;w2;w3Þ ¼ c3w
2
2;

g3ðxÞ ¼ 0:

To calculate the initial approximate of system w1;0ðxÞ,
w2;0ðxÞ, and w3;0ðxÞ, we will solve the initial problems:

w0
1;0ðxÞ ¼ 0;

w0
2;0ðxÞ ¼ 0;

w0
3;0ðxÞ ¼ 0;

8><
>: ð25Þ

with initial conditions

w1;0ð0Þ ¼ 1; w2;0ð0Þ ¼ 0; w3;0ð0Þ ¼ 0;

By integrating both sides of the problem (25), we achieve:

w1;0ðxÞ ¼ 1;

w2;0ðxÞ ¼ 0;

w3;0ðxÞ ¼ 0;

and we can calculate the second iteration by solving the
problem:

w0
1;1ðxÞ ¼ �c1w1;0ðxÞ þ c2w2;0ðxÞw3;0ðxÞ;

w0
2;1ðxÞ ¼ c1w1;0ðxÞ � c2w2;0ðxÞw3;0ðxÞ � c3w

2
2;0ðxÞ;

w0
3;1ðxÞ ¼ c3w

2
2;0ðxÞ;

8><
>: ð26Þ

Once again, by taking the integration to both sides of prob-
lem (26), we get:

w1;1ðxÞ ¼ 1� c1x;

w2;1ðxÞ ¼ c1x;

w3;1ðxÞ ¼ 0:

In the same way, the additional solutions can be obtained by
solving the problems generated by:

w0
1;nþ1ðxÞ ¼ �c1w1;nðxÞ þ c2w2;nðxÞw3;nðxÞ;

w0
2;nþ1ðxÞ ¼ c1w1;nðxÞ � c2w2;nðxÞw3;nðxÞ � c3w

2
2;nðxÞ;

w0
3;nþ1ðxÞ ¼ c3w

2
2;nðxÞ:

8><
>: ð27Þ

with initial conditions

w1;nþ1ð0Þ ¼ 1; w2;nþ1ð0Þ ¼ 0; w3;nþ1ð0Þ ¼ 0;

Then each of w1;nðxÞ, w2;nðxÞ and w3;nðxÞ; n ¼ 1; 2; . . . repre-
sents the solutions of the system of Eq. (24), it is worth to men-

tion here the exact solution for the system in Eq. (12) is
unavailable.
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To show the accuracy of the realized approximate solution
we will use the relevance function of the error remainder as fol-
lows (Duan et al., 2015; AL-Jawary and Radhi, 2015):

ER1;n ¼ w0
1;nðxÞ þ c1w1;nðxÞ � c2w2;nðxÞw3;nðxÞ; ð28Þ

ER2;n ¼ w0
2;nðxÞ � c1w1;nðxÞ þ c2w2;nðxÞw3;nðxÞ þ c3w

2
2;nðxÞ;

ð29Þ

ER3;n ¼ w0
3;nðxÞ � c3w

2
2;nðxÞ: ð30Þ

and the maximal error remainder parameters are:

MER1;n ¼ max
0:016x60:1

jER1;nj; MER2;n ¼ max
0:016x60:1

jER2;nj;

MER3;n ¼ max
0:016x60:1

jER3;nj: ð31Þ
:

5. Convergence and error analysis

Firstly, we will present the error reminder for the system, then

will recall the L2-norm

jjfijj ¼
Z x

0

f2i dt

� �1
2

ð32Þ

Let us rewrite the system of m –coupled nonlinear ordinary
differential equations:

L1ðw1;w2; . . . ;wmÞ þN1ðw1;w2; . . . ;wmÞ þ g1ðxÞ ¼ 0;

L2ðw1;w2; . . . ;wmÞ þN2ðw1;w2; . . . ;wmÞ þ g2ðxÞ ¼ 0;

..

.

Lmðw1;w2; . . . ;wmÞ þNmðw1;w2; . . . ;wÞ þ gmðxÞ ¼ 0;

8>>>><
>>>>:

ð33Þ
Then the error remainders of the system are (Duan et al.,

2015; AL-Jawary and Radhi, 2015):

ERi;nðxÞ ¼ Liðw1;w2; . . . ;wmÞ þNiðw1;w2; . . . ;wmÞ þ giðxÞ;
i ¼ 1; . . . ;m ð34Þ

and the maximal error remainders are (Duan et al., 2015; AL-
Jawary and Radhi, 2015)

MERi;n ¼ max
0:016x60:1

jERi;nðxÞj; i ¼ 1; . . . ;m ð35Þ
6. Convergence of initial value problems

Now, we will present the convergence of semi analytical itera-
tive technique (TAM) for system of m-coupled nonlinear ordi-

nary differential equations with initial conditions as follows
(Temimi and Ansari, 2015):Let us rewrite the system of Eq.
(33) as follows:

L1ðw1;w2; . . . ;wmÞ þN1ðw1;w2; . . . ;wmÞ þ g1ðxÞ ¼ 0;

L2ðw1;w2; . . . ;wmÞ þN2ðw1;w2; . . . ;wmÞ þ g2ðxÞ ¼ 0;

..

.

Lmðw1;w2; . . . ;wmÞ þNmðw1;w2; . . . ;wmÞ þ gmðxÞ ¼ 0;

8>>>><
>>>>:

ð36Þ
with initial conditions

w1ð0Þ ¼ a1;

w2ð0Þ ¼ a2;

..

.

wmð0Þ ¼ am:

ð37Þ

The system of Eq. (36) will transform to

w0
1ðxÞ ¼ f1ðw0

1;w1;w
0
2;w2; . . . ;w

0
m;wm; xÞ;

w0
2ðxÞ ¼ f2ðw0

1;w1;w
0
2;w2; . . . ;w

0
m;wm; xÞ;

..

.

w0
mðxÞ ¼ fmðw0

1;w1;w
0
2;w2; . . . ;w

0
m;wm; xÞ;

8>>>><
>>>>:

ð38Þ

subject to the initial conditions (37).
Where f1; f2; . . . ; fm are nonlinear analytic functions and

f1ðw0
1;w1;w

0
2;w2; . . . ;w

0
m;wm; xÞ ¼ �N1ðw1;w2; . . . ;wmÞ � g1ðxÞ;

f2ðw0
1;w1;w

0
2;w2; . . . ;w

0
m;wm; xÞ ¼ �N2ðw1;w2; . . . ;wmÞ � g2ðxÞ;

..

.

fmðw0
1;w1;w

0
2;w2; . . . ;w

0
m;wm; xÞ ¼ �Nmðw1;w2; . . . ;wmÞ � gmðxÞ

The main aim in this section is prove the sequences of the
functions w1;k;w2;k; . . . ;wm;k which are solutions of

w0
1;kþ1ðxÞ ¼ f1ðw0

1;k;w1;k;w
0
2;k;w2;k; . . . ;w

0
m;k;wm;k; xÞ;

w0
2;kþ1ðxÞ ¼ f2ðw0

1;k;w1;k;w
0
2;k;w2;k; . . . ;w

0
m;k;wm;k; xÞ;

..

.

w0
m;kþ1ðxÞ ¼ fmðw0

1;k;w1;k;w
0
2;k;w2;k; . . . ;w

0
m;k;wm;k; xÞ;

8>>>>><
>>>>>:

ð39Þ

with initial conditions (37).
Converge to the solutions of problem (38) and we can take

the initial guess functions w1;0;w2;0; . . . ;wm;0 as the solutions of

the initial problem

L1ðw1;0ðxÞ;w2;0ðxÞ; . . . ;wm;0Þ þ g1ðxÞ ¼ 0;

L2ðw1;0ðxÞ;w2;0ðxÞ; . . . ;wm;0Þ þ g2ðxÞ ¼ 0;

..

.

Lmðw1;0ðxÞ;w2;0ðxÞ; . . . ;wm;0Þ þ gmðxÞ ¼ 0

8>>>><
>>>>:

ð40Þ

with initial conditions (37).
The solution of (38) in linear integral form:

wi ¼
Z 1

0

Giðx; tÞfiðw0
1;w1;w

0
2;w2; . . . ;w

0
m;wm; sÞds ð41Þ

where i ¼ 1; 2; . . . ;m, we will start with Green’s formula over a
finite interval

0 < x < X, by Jerri (1985) we get

wi �
Z X

0

Giðx; tÞfiðw0
1;w1;w

0
2;w2; . . . ;w

0
m;wm; sÞds

¼ wiðXÞ dGiðX; sÞ
dx

� �
� wið0Þ dGið0; sÞ

dx

� �
ð42Þ

By putting the two terms on the right hand side in the limit
X ! 1 as follows (Makinde, 2007b)

lim
x!1

Giðx; sÞ ¼ lim
x!1

dGiðx; sÞ
dx

; i ¼ 1; . . . ;m

we get the solution wi as follows
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wi ¼
Z 1

0

Giðx; tÞfiðw0
1;w1;w

0
2;w2; . . . ;w

0
m;wm; sÞds

� a1
dGið0; tÞ

dx
þ a2

dGið0; tÞ
dx

þ � � � þ am
dGið0; tÞ

dx

� �
ð43Þ

To study the convergence of the semi-analytical iterative

technique (TAM), we need to recall the Green’s function
(G), which was firstly introduced by Bellman and Kalaba
(1965) associated with (38) that is

G1ðx; sÞ ¼
A1 þ B1x; x < s

C1 þD1x; x > s

�
;

G2ðx; sÞ ¼
A2 þ B2x; x < s

C2 þD2x; x > s

�
;

..

.

Gmðx; sÞ ¼
Am þ Bmx; x < s

Cm þDmx; x > s

�
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð44Þ

We have Ci ¼ Di ¼ 0; i ¼ 1; . . . ;m. The continuity and

jump conditions at x ¼ s then yields

Giðx; sÞ ¼
s� x; x < s

0; x > s
;

�
i ¼ 1; . . . ;m ð45Þ

Let ki ¼ max
x;s

jGiðx; sÞj ¼ fjs� xjg
and

k ¼ max
16i6m

ki ð46Þ

By putting the values of Green’s function dGið0;tÞ
dx

¼ �1
	 


in

Eq. (43) we get

wi ¼
Z x

0

Giðx; tÞfiðw0
1;w1;w

0
2;w2; . . . ;w

0
m;wm; sÞds

þ ½a1 þ a2 þ � � � þ am� ð47Þ
and

wi;kþ1 ¼
Z x

0

Giðx; tÞfiðw0
1;k;w1;k;w

0
2;k;w2;k; . . . ;w

0
m;k;wm;k; sÞds

þ ½a1 þ a2 þ � � � þ am�
ð48Þ

In order to illustrate of formulation, we use the notation

~wi ¼ ðw0
i;wiÞ;

Then, applying the general mean value theorem and sub-

tracting (47) from (48) leads to

wi;kþ1 � wi ¼
Z 1

0

Giðx; sÞfiðhi;kÞ:ðw1;k � w1;w2;k

� w2; . . . ;wm;k � wmÞds ð49Þ
where hi;k ¼ ðhi;1;k; hi;2;k; . . . ; hi;m;kÞ and hi;r;k 2 ðwi;k;wiÞ for

i; r ¼ 0; 1; . . . ;m
Let

Mi;j ¼ max
jjhi;k<1jj

dfi
dwj

ðhi;kÞ
����

����; i; j ¼ 1; 2; . . .

Mi ¼ max
16j6m

Mi;j; M ¼ max
16i6m

Mi ð50Þ
We can prove the sequences of functions wi;k converge to

the exact solutions wi of system (36) through the next
theorems:

Theorem 5.1. Let wi and wi;k respectively, be the solution of

(38) and (39). Assume that fi are nonlinear analytic functions

for i ¼ 1; 2; . . . ;m. Then, if MKbm < 1, the sequences of

functions wi;k converge to the exact solutions wi in the L2�
norm, where (M) and (K) are defined, respectively, by (46) and
(50).

Proof: see Temimi and Ansari (2015).

Theorem 5.2. Let wi and wi;k be the solution of (38) and (39),

respectively. Assume that fi are nonlinear analytic functions
for i ¼ 1; 2; . . . ;m. Then, if MKbm < 1, the residual error

defined by (35)converges to zero with respect to the exact
solutions wi where ðM)and (KÞare defined, respectively, by (46)
and (50).

Proof: see Temimi and Ansari (2015).
7. Numerical simulations

Perhaps a good starting point for testing the performance of
TAM is to consider an example in which the exact solution
is available. Let us consider the following system of nonlinear
ODEs (Saadatmandi et al., 2009):

w00
1ðxÞ ¼ xw0

2 � w1 þ x3 � 2x2 þ 6x;

w00
2ðxÞ ¼ �xw0

1 � w1w2 þ x5 � x4 þ 2x3 þ x2 � xþ 2;

�
ð51Þ

with boundary conditions

w1ð0Þ ¼ 0; w1ð1Þ ¼ 0;

w2ð0Þ ¼ 0; w2ð1Þ ¼ 0:

First, we will divide the system of Eq. (51) as follows:

L1ðw1;w2Þ ¼ w00
1ðxÞ;

N1ðw1;w2Þ ¼ xw0
2 � w1;

g1ðxÞ ¼ x3 � 2x2 þ 6x;

L2ðw1;w2Þ ¼ w00
2ðxÞ;

N2ðw1;w2Þ ¼ �xw0
1 � w1w2

g2ðxÞ ¼ x5 � x4 þ 2x3 þ x2 � xþ 2:

Now, to calculate the initial approximate of the system, we
will solve the initial problem:

w00
1;0ðxÞ ¼ x3 � 2x2 þ 6x;

w00
2;0ðxÞ ¼ x5 � x4 þ 2x3 þ x2 � xþ 2;

(
ð52Þ

with boundary conditions

w1;0ð0Þ ¼ 0; w1;0ð1Þ ¼ 0;

w2;0ð0Þ ¼ 0; w2;0ð1Þ ¼ 0:
ð53Þ

By taking the double integration to both sides of problem
(52), we get:

w1;0ðxÞ¼ 1
60
ð�53xþ60x3�10x4þ3x5Þ;

w2;0ðxÞ¼ 1
420

ð�423xþ420x2�70x3þ35x4þ42x5�14x6þ10x7Þ:
and we can calculate the second iteration by solving the
problem:



Figure 2 Logarithmic plots of MER2,n against n is 1 through 4

and m = 1.
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w00
1;1ðxÞ ¼ xw0

2;0 � w1;0 þ x3 � 2x2 þ 6x;

w00
2;1ðxÞ ¼ �xw0

1;0 � w1;0w2;0 þ x5 � x4 þ 2x3 þ x2 � xþ 2;

(

ð54Þ
with boundary conditions

w1;1ð0Þ ¼ 0; w1;1ð1Þ ¼ 0;

w2;1ð0Þ ¼ 0; w2;1ð1Þ ¼ 0:

Once again, by taking the double integration to both sides of
the problem (53), we obtain:

w1;1ðxÞ ¼ 1

15120
�14825xþ 14808x3 � 378x5 þ 252x6
�

þ162x7 � 54x8 þ 35x9
�

w2;1ðxÞ ¼ 1

1816214400
�1813695333xþ 1816214400x2
�

�35315280x3 þ 16702686x4 � 10594584x5

þ31879848x6 � 14886300x7 þ 15308865x8

�4806802x9 � 1145144x10 þ 756756x11 � 472836x12

þ65604x13 � 11880x14
�

Figure 3 Logarithmic plots of MER1,n
In the same way, the additional solutions can be obtained
by solving the problems generated by:

w00
1;nþ1ðxÞ ¼ xw0

2;n � w1;n þ x3 � 2x2 þ 6x;

w00
2;nþ1ðxÞ ¼ �xw0

1;n � w1;nw2;n þ x5 � x4 þ 2x3 þ x2 � xþ 2;

(

ð55Þ
with boundary conditions

w1;nþ1ð0Þ ¼ 0; w1;nþ1ð1Þ ¼ 0;

w2;nþ1ð0Þ ¼ 0; w2;nþ1ð1Þ ¼ 0:

Then each of w1;nðxÞ and w2;nðxÞ; n ¼ 1; 2; . . . represents the
solutions of the system of Eq. (51) and the exact solution of

Eq. (51) is:

w1exðxÞ ¼ x3 � x; w2exðxÞ ¼ x2 � x ð56Þ
Next, we will compare the results obtained by the ATM

between the exact and approximate solution together with its
convergence.

Further investigation can be done by applying the classical

Runge–Kutta method (RK4) using MATHEMATICA (see
appendix) and compute the absolute errors to assess the per-
formance of TAM in comparison with the numerical method.
In the Tables 1 and 2 below, we note that the increase in the

number of iterations n from 1 to 14 leads to the decrease in
the values of absolute errors (riandqiÞ;, where ri ¼ jw1exðxÞ�
w1iðxÞj; qi ¼ jw2exðxÞ � w2iðxÞj; i ¼ 2; 4; 6; 8; 10; 12 and 14;
and w1ex;w2exa, are the exact solutions given in Eq. (55), and
w1iðxÞ;w2iðxÞ are the approximate iterations for both functions
obtained by TAM.

Moreover, it can be seen clearly from Tables 1 and 2 the
absolute errors obtained by ATM are less than those obtained
by RK4 and the values of absolute errors in the columns
become less and less by increasing the number of iterations.

This indicates that the ATM converges faster with high
accuracy.

Now the evidence of the high performance of TAM has

been achieved, therefore, the TAM will be implemented to
the main two problems which are the main goal and contribu-
tion of the current work.
against n is 1 through 4 and m= 35.



Figure 4 Logarithmic plots of MER2, against n is 1 through 4 and m= 35.

Figure 5 Logarithmic plots of MER1,n against n is 1 through 4.

Figure 6 Logarithmic plots of MER2,n against n is 1 through 4.

Figure 7 Logarithmic plots of MER3,n against n is 1 through 4.

Table 9 Comparison between the ADM, the VIM and TAM

of MER3,n.

n MER3;n by the

HPM

MER3;n by the

VIM

MER3;n by the

TAM

1 9:� 10�7 9:� 10�7 9:� 10�7

2 8:91023� 10�7 8:98287� 10�9 8:98287� 10�9

3 8:95302� 10�9 2:98904� 10�11 2:98904� 10�11

4 4:69428� 10�11 7:4733� 10�14 7:4733� 10�14
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7.1. Numerical simulations of the system of condensations of
CO2 and PGE

In this section, we compute the error remainders and the max-
imal error remainders to assess the convergence of TAM for
the system of condensations of CO2 and PGE, and we will take

the values of the parameters as: a1 ¼ 1; a2 ¼ 2; b1 ¼ 1 and
b2 ¼ 3 as given in Duan et al. (2015), AL-Jawary and Radhi
(2015).

In Tables 3 and 4 below, the values of MER1;n and MER2;n

which are obtained by TAM are compared with those resulted

by ADM and VIM (Duan et al., 2015; AL-Jawary and Radhi,
2015). It can be observed that the maximal error remainder
values obtained from the TAM are lower than of those

obtained from ADM and VIM (Duan et al., 2015; AL-
Jawary and Radhi, 2015) which mean better accuracy is
achieved, and we note that the increase in the number of iter-

ations n from 1 to 4 leads to the decrease in the values of
MER1;n and MER2;n as follows:
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In the Figs. 1 and 2 below, we can show the analysis of the
logarithmic plots of error remainders of TAM for both
MER1;n and MER2;n.

It is necessary to mention here, the accuracy will be increas-

ing by increase of the denominator of the initial conditions x
m

� �
also the error will be decreasing. Moreover, we can note that as
shown in Tables 4 and 5 and Figs. 3 and 4, when we increase

the iteration ðn from 1 to 4) we obtain a best accuracy. It can
be clearly seen that the points lay on straight lines which
means an exponential rate of convergence is achieved (see

Table 6).

7.2. Numerical simulations of the system of chemical kinetics

In this section, we also compute the error remainders and the
maximal error remainders ðMER1;nÞ, ðMER2;nÞ and MER3;n to

assess the convergence of TAM for the system of chemical
kinetics problems. We suppose the values of the three reaction
rates are: c1 ¼ 0:1, c2 ¼ 0:02 and c3 ¼ 0:009, as given in

Aminikhah (2011).
In Tables 7–9 below, the values of MER1;n, MER2;n and

MER3;n which are obtained by TAM are compared with those

resulted by VIM and HPM (Aminikhah, 2011; Ganji et al.,

2007). The results demonstrate that the method has many mer-
its such as, overcoming the difficulty arising in calculating
Adomian polynomials to handle the nonlinear terms in

ADM. It does not require to calculate Lagrange multiplier
as in VIM (which is time consuming) and does not need to con-
struct a homotopy and solve the corresponding algebraic equa-
tions as in HPM.

We can note that in Tables 7–9 below, the increase in the
values of n from 1 to 4 leads to the decrease in the values of
MER1;n, MER2;n and MER3;n as follows:

Furthermore, we can show the analysis of the maximal
error remainders for MER1,n, MER2,n and MER3,n, respec-

tively, through the Figs. 5–7, where the points lay on a straight
line which means we achieved an exponential rate of
convergence.

8. Conclusion

In the present paper, the semi-analytical iterative technique

(TAM) is implemented for solving the two systems of chemical
problems which are represented by systems of nonlinear ordi-
nary differential equations. We have presented the conver-

gence and accuracy of the method (TAM) for the systems of
nonlinear equations by theorems and numerical results.
Through the figures and tables, it can be seen clearly that the

maximal error remainders decreased when the number of iter-
ations are increased. Numerical results showed that for both
systems of chemical problems the TAM is able to generate
accurate solutions with exponential rate of the convergence.

Motivation of current work is achieved by comparing the
Runge–Kutta method (RK4) with TAM for an example in
which the exact solution is available. Numerical experiments

demonstrated that the suggested method possesses the high-
order accuracy in comparison of RK4 with some other existing
technique. Also, the main goal of the current paper is achieved

by solving the two systems of chemical problems accurately
with reliable results.
Furthermore, in comparison with the some existing meth-
ods such as ADM, HPM and VIM results, it is observed in
general that the approximate solutions obtained by the TAM

converge faster without any restricted assumptions.
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Appendix A. MATHEMATICA code for applying the RK4 for

the system given in Eq. (51)

ClearAll[‘‘Global‘ *”]

ClassicalRungeKuttaCoefficients½4; prec � :¼ With½famat

¼ ff1=2g; f0; 1=2g; f0; 0; 1gg; bvec
¼ f1=6; 1=3; 1=3; 1=6g; cvec
¼ f1=2; 1=2; 1gg;N½famat; bvec; cvecg; prec��

fw1f;w2fg ¼ fw1;w2g=:First@NDSolve

½fw100½t� ¼¼ t � w20½t� � w1½t� þ t3 � 2 � t2 þ 6 � t;
w200½t� ¼¼ �t � w10½t� � w1½t� � w2½t� þ t5 � t4 þ 2 � t3 þ t2 � tþ 2;

w1½0� ¼¼ 0;w1½1� ¼¼ 0;w2½0� ¼¼ 0;w2½1� ¼¼ 0g;
fw1;w2g; ft; 0; 0:1g;Method ! f\Explicit Runge Kutta";

\DifferenceOrder" ! 4; \Coefficients" !
Classical Runge Kutta Coefficientsg;Starting Step Size ! 0:01�;

wlff¼MapThread½Append;fw1f½\Grid"�;w1f½\ValuesOnGrid"�g�

w2ff¼MapThread½Append;fw2f½\Grid"�;w2f½\ValuesOnGrid"�g�
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