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Ultra-low frequency (ULF) signals in the geomagnetic records are important indicators for many phenom-
ena; therefore identification of such signals is an important issue. Automatic identification of these ULF
signals is not an easy target because of their small magnitudes. Through this study in hand, two algo-
rithms are proposed to automatically detect these micro-pulsations. The first algorithm uses the multi-
level components (details) of the discrete wavelet transform (DWT) instead of the original geomagnetic
record. The vector of the maximum values of the cross-correlation between the record and an arbitrary
chosen ULF pattern in the same frequency range is a good indicator for the existence of these micro-
pulsations. The second algorithm is based on convolutional neural network (CNN) framework guided
with the multi-resolution-analysis (MRA) of the DWT. Preprocessing the geomagnetic records using
the MRA of DWT to produce the fifth and the sixth details to be the input to the deep CNN topology,
highly improved the accuracy to approach 91.11%. In addition, deep learning based algorithm showed
better results than the DWT based algorithm in light of all the performance metrics.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Geomagnetic micro-pulsation or the so called ultra-low fre-
quency signals are waves in the magnetic field of the Earth with
different frequencies and may last for several minutes (Jacobs
et al., 1970). They are generated by various mechanisms
(Takahashi and Anderson, 1992; Borovsky and Valdivia, 2018),
their existence affects the electrons and ions in the radiation belt
and they intervene between the ion plasma sheet, solar wind and
the electro-ion radiation belts, their generation and propagation
are associated with many physical phenomena in the magneto-
sphere. Borovsky and Denton (2014) showed that the indices of
the ULF signals are cross-correlated with the solar wind, its driver
function and the geomagnetic indices. Mean values of the fluctua-
tions in the relativistic electron flux and all these geomagnetic
indices are measures of latitude current intensity (AE, AL, AU and
Polar Cap Index (PCI)) (Kozyreva et al., 2007) and (Romanova
et al., 2007). The inner magnetosphere plasma pressure (Dst,
Dst*) and the magnetosphere convection strength (kp, index of
midnight boundary) are affecting the indices of the ULF signals
as well, (Singh et al., 2013; Romanova and Pilipenko, 2009).
Kozyreva et al. (2007)) demonstrated that the micro-pulsation
(ULF) index is related to the outer electron radiation belt. Addition-
ally, the ULF pulsations have effective role in the inner magneto-
sphere within the geomagnetic storms, 2Murphy et al. (2018)
estimated mode, periods and the number of azimuthal wave of
the micro-pulsations within the evolution high speed solar wind
(HSS) and the moderate storms as well.
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Fig. 1. Wavelet and scaling coefficients using pyramid algorithm.

E. Rabie, A.G. Hafez, O.M. Saad et al. Journal of King Saud University – Science 33 (2021) 101263
Shi et al. (2018) used data of 6 s resolution extracted from super
Dual Auroral Rader Network (SuperDARN), radars in the high-mid
latitudes to make a survey on ionospheric ULF (PC3-5) signature
such as the time of maximum and minimum values (day, night)
effects on continuous pulsation.

Therefore identification of these ULF waves is an important
issue for a good understanding, monitoring and modeling of the
space physics. Manually achieving this identification is not an easy
task and consumes time because these waves have small magni-
tudes and occur in limited durations. In addition, this monitoring
is done for multiple of stations to confirm the existence of the
ULF waves. In light of that, this article introduces two models for
automatic identification of ULF waves. First algorithm is based on
multi-level resolution (MRA), specifically the details, of the dis-
crete wavelet transform (DWT). The second algorithm uses deep
convolutional neural network (CNN) framework where data input
had been preprocessed using DWT.

MRA of DWT had been used in the analysis of geomagnetic data
for many purposes such as; determination of geomagnetic sudden
commencements (Hafez et al., 2013a,b). Nose et al. (1998) and
Nose (1999) had used wavelets in detection of Pi2 micro-
pulsation. Deep learning technique is recently one of the powerful
techniques in machine learning (Jürgen, 2015). Deep learning is a
nonlinear technique that encodes the input into multiple process-
ing layers representing data with multiple stages of abstraction.
CNN is one of the most used layers in deep learning due to its abil-
ity to extract significant features from the input time series, allow-
ing the classifier to improve the performance (LeCun et al., 2015).
Deep learning is widely used in different aspects, e.g., natural lan-
guage processing (Jian et al., 2020), speech recognition (Zhang
et al., 2018), automatic navigation systems (Robail et al., 2019),
parallel computations (Ben-Nun and Hoefler, 2019), image pro-
cessing (Razzak et al., 2018), and geophysics (Saad and Chen,
2020a, 2020b; Saad et al., 2020, 2018). However, for the best of
our knowledge, deep learning is the first time to be proposed for
geomagnetic micro-pulsation classification.
2. DWT and its MRA

Daubechies, (Daubechies, 1992); introduced wavelet transform
using different width-filters, called wavelet filter. These filters
enabled making very precise time scaled frequency sub-bands
which led to highlight anomalies within the recorded time trace.
This technique clarifies these anomalies even those with small
magnitudes by detecting them in their specific frequency ranges,
i.e. it could detect very small signals which cannot be recognized
in the initial time series because of other dominant large frequen-
cies. This technique is implemented by using the coefficients of the
DWT in calculation of the MRA bands versus time. Every MRA band
represents the selected frequency band in the specified time dura-
tion. Fig. 1, shows the pyramid algorithm introduced by (Percival
and Walden, 2000), where the wavelet and scaling filters are used
in calculating the wavelet and scaling coefficients, respectively, for
each scale, which represents the frequency range.

X, is the input time series, the wavelet and scaling filters for the

first and second stages are GðkNÞ and HðkNÞ, Gð k
N=2Þ and H k

N=2

� �
; respec-

tively. The outputs from these filters are V1, W1, V2, W2, which rep-
resent scaling and wavelet coefficients for the first and second
stages, respectively. These coefficients are then used to calculate
the time domain component for the selected frequency band. High
frequency component at each stage is calculated from the corre-
sponding wavelet coefficients and the low frequency component
is calculated from the scaling coefficients. The calculations for this
pyramid algorithm and MRA technique can be found in (Hafez
et al., 2010). The frequency ranges, f, for each stage can be calcu-
2

lated from the following equation, F
2jþ1 � f � F

2j
, j is the stage num-

ber, F is the nyquist rate.

3. Data set

The used geomagnetic records are extracted from ground based
magnetometers belong to MAGDAS network (the Magnetic Data
Acquisition System), (Yumoto et al., 2006). The selected records
are daily H-comp from January 2007 to December 2007, sampled
at one sample per second. The timing of the micro-pulsations
occurred in the selected dataset had been gathered from (http://
www.icswse.kyushu-u.ac.jp/gaikyo/index.html) and listed in an
excel sheet in the supplementary data. Micro-pulsations (including
Pi2, Pc3 and Pc4) had been found in the period of the selected
records. This excel sheet is used for developing, validation and test-
ing of the developed models. This dataset had been used by
(Elgiddawy et al., 2020), where, the geomagnetic and geographic
locations of the six magnetometers can be found as well; Davao
(DAV) in Philippine, in South Africa, Hermanus (HER), in Brazil
Santa Maria (SMA), in Italy, L’Aquila (LAQ), Magadan (MGD) in Rus-
sia, and in Canada, Wadena (WAD).

4. Decomposition of geomagnetic record with MRA

Applying the MRA sub-banding on the one sample per second
resolution geomagnetic records, it can be found that the MRA of
these records will represent the different types of the ULF waves.
Fig. 2, represents one example for the effectiveness of this sub-
banding, where one day ground magnetometer recording at DAV
station. Six detail components and the approximation of this
record have been calculated as shown in the left column of
Fig. 2. In this day eight Pi2 pulsations had been declared (http://
www.icswse.kyushu-u.ac.jp/gaikyo/index.html), the first one is at
6:30 am. The windows around this timing are enlarged for the ini-
tial time series and the MRA components in the right side column
of Fig. 2. The sixth detail (7.8 to 15.6 mHz) is the best component
which distinguishes this pulsation from the background noise. This
observation is confirmed by (Jacobs et al., 1970), where he identi-
fied the frequency ranges for each of the micro-pulsations as
shown in Table 1. From this table we can expect the detail which
corresponds to the specific micro-pulsation. This means that the
amplitudes of the details will point to the existence of the corre-
sponding micro-pulsation. Other pulsations such as Pc3 or Pc4
can be well identified in their corresponding frequency ranges as
shown in the third and fourth columns of Fig. 2.

4.1. DWT based algorithm

The proposed algorithm uses the previous MRA decomposition
in extracting the sixth detail (D6) which has proven the best
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http://www.icswse.kyushu-u.ac.jp/gaikyo/index.html
http://www.icswse.kyushu-u.ac.jp/gaikyo/index.html
http://www.icswse.kyushu-u.ac.jp/gaikyo/index.html


Fig. 2. One day record at DAV station, January 18th 2006. The original time series, six DWT details and the smooth components are plotted in the left side column. The
enlarged windows around 6:30 am for these MRA components are in the right side column.

Table 1
The different frequency ranges of the continuous and irregular micro-pulsations.

Micro-pulsation Frequency Range (mHz)

Continuous Pc1 200–500
Pc2 100–200
Pc3 22–100
Pc4 7–22
Pc5 2–7

Irregular Pi1 25–1000
Pi2 2–25
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tracking in monitoring the existence of the micro-pulsation signals.
This sixth detail is calculated for an arbitrary chosen ULF segment
which will be assigned as the micro-pulsation pattern (Pm). This
pattern is then cross-correlated with the sixth detail of the geo-
magnetic records of the data set. The cross-correlation (RPm,D6)
(Stoica, 2005) is calculated by using a moving window over each
record then the maximum value of the cross-correlation (Cmax =-
max(RPm,D6)) is determined. Cmax defines the similarity between
the chosen pattern and the examined record, which can be consid-
ered as a powerful tool to indicate whether this interval contains a
micro-pulsation or not. A threshold had been set to the Cmax, above
3

which a micro-pulsation is declared. Fig. 3, is a block diagram for
the DWT-based algorithm.

Fig. 4, highlights two cases where there will be high cross-
correlation, in the left side column of the figure, between the sixth
detail (D6) and the used pattern (Pm). The right side column of
Fig. 4, shows a window of the geomagnetic record where there will
be low cross-correlation. Different segments containing micro-
pulsations and noise segments had been used to determine the
threshold above which a micro-pulsation will be declared as
shown in the plotted Cmax in Fig. 4.
4.2. DWT based algorithm results

The DWT-based algorithm had been applied on the dataset
where the outcomes of this model can be either positive or nega-
tive decisions. The positive possibilities are either successfully
declaring that the micro-pulsation segment exist or not, Tp or Tn,
respectively. The negative decisions, where the algorithm gives a
wrong decision for either the micro-pulsation segment exist or
not, Fp or Fn, respectively. The false decisions are due to other
anomalies in the geomagnetic record. Counting these four
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Fig. 3. Block diagram for the proposed DWT-based algorithm.
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possibilities then, precision (Pr), recall (rc), F-value and accuracy
(Acc) can be determined as follows:

Pr ¼ Tp=ðTp þ FpÞ ð1Þ
rc ¼ Tp=ðTp þ FnÞ ð2Þ
F � value ¼ 2 � rc � Pr

ðrc þ PrÞ ð3Þ
Acc ¼ ðTp þ TnÞ=ðTp þ Tn þ Fp þ FnÞ ð4Þ
Out of 1194 geomagnetic records, (597 pulsations and 597

noise segments); the values for the Tp, Tn, Fp and Fn are 685, 227,
90 and 192, respectively. Using these values in equations (1:4),
the values of Pr, rc, F-value and Acc are 88.38%, 78.1%, 76.38%and,
82.92% respectively.
5. Deep learning based algorithm

We propose to use deep learning network to classify between
the noise and the pulsation signals. Firstly, we divide the raw data
into several windows, where each window contains 2,400 samples,
i.e., 40 min where the sampling rate is one sample per second.
Accordingly, during 2007, we use 597 pulsation segments and
597 noise segments for training and testing the proposed algo-
rithm. The dataset is randomly split into 85% for training, and
15% for testing. Secondly, for each segment, the fifth and sixth
detail components of the DWT are obtained to be the input of
the proposed deep learning network, i.e., the input of the deep
learning network has a shape of 2x2400. Thirdly, we use six iden-
tical blocks to extract significant features from the input data. Each
block consists of several types of layers; convolutional, batch nor-
malization, activation, maxpooling, and dropout. The convolutional
4

layer extracts several significant feature maps using the following
formula:

hi ¼ x � Ki þ bi ð5Þ

where, x is the input, Ki and bidenote the ithconvolution and bias fil-
ters, respectively. For the six convolutional layers, the numbers of
the extracted feature maps are 2, 4, 8, 16, 32, and 64, respectively
with a kernel size of 5. To accelerate the training process, each con-
volutional layer is followed by a batch-normalization layer (Sergey
and Szegedy, 2015). Afterward, Rectified Linear Unit (ReLU) activa-
tion function is added to squash the network, which has an output
as follows:

r zð Þ ¼ z for z > 0
0 for z � 0

�
ð6Þ

Then, a dropout layer (Jürgen, 2015) is utilized to avoid the over
fitting problemwith a rate of 0.1. Finally, maxpooling layer reduces
the data dimension and allow the framework to extract more fea-
ture maps in the following blocks, which has an output as follows:

out ¼ maxðd iþ z; jþ r½ �Þ ð7Þ
where, r and z are the maxpooling dimensions. After the sixth block,
a fully connected layer is utilized to wrap the extracted features by
the proposed deep learning architecture. The output layer has a sig-
moid activation function, where the value of the target label is zero
for the noise segments and one for the pulsation segments. The
architecture of the framework for the proposed algorithm is demon-
strated in Fig. 5.

It is worth to highlight that the preprocessing of the initial data
using MRA of the DWT to calculate the fifth and sixth details is a
basic block in the proposed study. This preprocessing removed
all unnecessary components from the original time series. The fifth
and sixth components represent the ULF waves effectively as had
been shown in Section 4. To test this step, the precision has been
determined in both cases; in case the original records have been
used to drive the framework input of the prescribed deep CNN
architecture in the second case the fifth and sixth details where
the input to the framework. The second case had showed much
higher accuracy than the first case. This preprocessing proves the
effect of using the MRA of the DWT as the perfect guide for the
deep CNN topology.

5.1. Deep learning result

We use Adam optimizer (Kingma and Ba, 2014) with learning
rate of 0.001 to determine the best parameters of the network.
As a result, the proposed deep learning network reaches a training
accuracy of 98.62% after 100 epochs, while the testing accuracy is
91.11%. To test the proposed algorithm performance, we obtain the
confusion matrix as follows:

CM ¼ Tn Fn

Fp Tp

� �
¼ 68 2

14 96

� �

The positive class represents the pulsation and the negative
class is the noise. Accordingly, the proposed algorithm precision,
recall, and F- value are 97.95%, 87.27%, and 92.30%, respectively.
For further check of the proposed algorithm, we use a k-fold
cross-validation test. We split the dataset into K partitions, K-1 is
used for training, then this training process is repeated K times,
however, each time a different K-1 partition is used for training.
The accuracy from all K tests are averaged, we set K to be 15. As
a result, the average test accuracy is 89.84%. From these results,
we can conclude that deep learning performs well in classifying
the noise and pulsation signals, however, it needs more datasets
to be used for training to have better performance.



Fig. 4. High and low cross-correlation cases between D6 and Pm.

Fig. 5. The proposed architecture framework of the deep learning network.

E. Rabie, A.G. Hafez, O.M. Saad et al. Journal of King Saud University – Science 33 (2021) 101263
Table 2, lists the performance measures for two proposed algo-
rithms, DWT and deep learning based models. From this able it is
clear that using DWT-guided deep learning model improves the
identification performance for the micro-pulsations.
5

6. Conclusion

Through this article two algorithms have been proposed to
automatically detect the ULF signals and distinguish them from



Table 2
Comparison between the DWT- and deep learning- based algorithms in terms of the
performance measures.

Performance
measure

DWT based
algorithm

Deep learning based
algorithm

Precision (Pr) 88.38% 97.95%
Recall (rc) 78.1% 87.27%
F-value 82.92% 92.30%
Accuracy (Acc) 76.38% 91.11%

E. Rabie, A.G. Hafez, O.M. Saad et al. Journal of King Saud University – Science 33 (2021) 101263
background noise. The first algorithm is based on cross-correlating
the sixth detail of both the geomagnetic record and an arbitrary
chosen pulsation pattern. Performance metrics showed that this
first algorithm can be used in the automatic identification of the
ULF pulsations recorded at multi-station-network. The second
algorithm is based on deep CNN framework driven by the MRA
of the DWT as a preprocessing step. The fifth and sixth details of
the DWT are chosen to drive the input to the deep CNN model
which could successfully classify micro-pulsations from back-
ground noise from one magnetometer with 91.11% average
accuracy.
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